Skip to main content

Antibiotic Resistance in Neisseria

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

The genus Neisseria includes both pathogenic and commensal species. N. meningitidis and N. gonorrhoeae are obligate human pathogens with no reservoir outside of the human host. N. lactamica, N. sicca, N. subfl ava (biovars subfl ava, fl ava, and perfl ava), N. mucosa, N. fl avescens, N. cinerea, N. polysaccharea, and N. elongata subspecies elongata, glycolytica, and nitroreducens are human commensal organisms that are rarely associated with disease. Commensal organisms found in animal respiratory tract or oral fl ora include N. canis and N. weaveri in dogs, N. dentrifi cans in guinea pigs, N. macacae in rhesus monkeys, N. dentiae in cows, and N. iguanae in iguanid lizards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections: Overview and Estimates. World Health Organization, Geneva, 15–19, 2001

    Google Scholar 

  2. Gerbase AC, Rowley JT, Heymann DH, Berkley SF, Piot P. Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect 1998; 74 Suppl 1:12–16

    Google Scholar 

  3. Lacey CJ, Merrick DW, Bensley DC, Fairley I. Analysis of the sociodemography of gonorrhoea in Leeds, 1989–93. BMJ 1997; 314(7096):1715–1718

    PubMed  CAS  Google Scholar 

  4. Low N, Daker-White G, Barlow D, Pozniak AL. Gonorrhoea in inner London: results of a cross sectional study. BMJ 1997; 314(7096):1719–1723

    PubMed  CAS  Google Scholar 

  5. Tapsall JW. Perspectives on gonococcal disease in Australia. In: Asche V, ed. Recent Advances in Microbiology 1999. The Australian Society for Microbiology, Melbourne, 171–196, 1999

    Google Scholar 

  6. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance, 2003. U.S. Department of Health and Human Services, CDC, Atlanta, GA, 2004

    Google Scholar 

  7. Centers for Disease Control and Prevention. Increases in fluoroquinolone-resistant Neisseria gonorrhoeae among men who have sex with men — United States, 2003, and revised recommendations for gonorrhea treatment, 2004. MMWR Morb Mortal Wkly Rep 2004; 53(16):335–338

    Google Scholar 

  8. Donovan B, Bodsworth NJ, Rohrsheim R, McNulty A, Tapsall JW. Increasing gonorrhoea reports — not only in London. Lancet 2000; 355(9218):1908

    Article  PubMed  CAS  Google Scholar 

  9. Martin IM, Ison CA. Rise in gonorrhoea in London, UK. London Gonococcal Working Group. Lancet 2000; 355(9204):623

    Article  PubMed  CAS  Google Scholar 

  10. Waugh MA. Task force for the urgent response to the epidemics of sexually transmitted diseases in eastern Europe and central Asia. Sex Transm Infect 1999; 75(1):72–73

    Article  PubMed  CAS  Google Scholar 

  11. Sparling PF, Handsfield HH. Neisseria gonorrhoeae. In: Mandell GL, Bennett JE, eds. Principles and Practice of Infectious Diseases. Churchill Livingstone, Philadelphia, 2242–2258, 2000

    Google Scholar 

  12. Laga M, Manoka A, Kivuvu M, Malele B, Tuliza M, Nzila N et al. Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 1993; 7(1):95–102

    Article  PubMed  CAS  Google Scholar 

  13. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC, et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 1997; 349(9069):1868–1873

    Article  PubMed  CAS  Google Scholar 

  14. Cohen MS. Sexually transmitted diseases enhance HIV transmission: no longer a hypothesis. Lancet 1998; 351 Suppl 3:5–7

    Article  PubMed  Google Scholar 

  15. Tapsall JW. Antimicrobial Resistance in Neisseria gonorrhoeae WHO/CDS/CSR/DRS/2001.3. World Health Organization, Geneva, 2001

    Google Scholar 

  16. Haizlip J, Isbey SF, Hamilton HA, Jerse AE, Leone PA, Davis RH et al. Time required for elimination of Neisseria gonorrhoeae from the urogenital tract in men with symptomatic urethritis: comparison of oral and intramuscular single-dose therapy. Sex Transm Dis 1995; 22(3):145–148

    PubMed  CAS  Google Scholar 

  17. Holmes KK, Johnson DW, Floyd TM. Studies of venereal disease. I. Probenecid-procaine penicillin G combination and tetracycline hydrochloride in the treatment of “penicillin-resistant” gonorrhea in men. JAMA 1967; 202(6):461–473

    CAS  Google Scholar 

  18. Fussenegger M, Rudel T, Barten R, Ryll R, Meyer TF. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae — a review. Gene 1997; 192(1):125–134

    Article  PubMed  CAS  Google Scholar 

  19. Cannon JG, Sparling PF. The genetics of the gonococcus. Annu Rev Microbiol 1984; 38:111–133

    Article  PubMed  CAS  Google Scholar 

  20. Hamilton HL, Dillard JP. Natural transformation of Neisseria gon-orrhoeae: from DNA donation to homologous recombination. Mol Microbiol 2006; 59(2):376–385

    Article  PubMed  CAS  Google Scholar 

  21. Reyn A, Korner B, Bentzon MW. Effects of penicillin, streptomycin, and tetracycline on N. gonorrhoeae isolated in 1944 and in 1957. Br J Vener Dis 1958; 34(4):227–239

    PubMed  CAS  Google Scholar 

  22. Laga M. Epidemiology and control of sexually transmitted diseases in developing countries. Sex Transm Dis 1994; 21 2 Suppl: S45–S50

    PubMed  CAS  Google Scholar 

  23. Adu-Sarkodie YA. Antimicrobial self medication in patients attending a sexually transmitted diseases clinic. Int J STD AIDS 1997; 8(7):456–458

    Article  PubMed  CAS  Google Scholar 

  24. Abellanosa I, Nichter M. Antibiotic prophylaxis among commercial sex workers in Cebu City, Philippines. Patterns of use and perceptions of efficacy. Sex Transm Dis 1996; 23(5):407–412

    PubMed  CAS  Google Scholar 

  25. Taylor RB, Shakoor O, Behrens RH. Drug quality, a contributor to drug resistance? Lancet 1995; 346(8967):122

    Article  PubMed  CAS  Google Scholar 

  26. Van der Veen F, Fransen L. Drugs for STD management in developing countries: choice, procurement, cost, and financing. Sex Transm Infect 1998; 74 Suppl 1:S166–S174

    Google Scholar 

  27. Johnson SR, Morse SA. Antibiotic resistance in Neisseria gonor-rhoeae: genetics and mechanisms of resistance. Sex Transm Dis 1988; 15(4):217–224

    PubMed  CAS  Google Scholar 

  28. Sparling PF. Antibiotic resistance in Neisseria gonorrhoeae. Med Clin North Am 1972; 56(5):1133–1144

    PubMed  CAS  Google Scholar 

  29. Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2002; 46(3):769–777

    Article  PubMed  CAS  Google Scholar 

  30. Dougherty TJ. Involvement of a change in penicillin target and peptidoglycan structure in low-level resistance to beta-lactam antibiotics in Neisseria gonorrhoeae. Antimicrob Agents Chemother 1985; 28(1):90–95

    PubMed  CAS  Google Scholar 

  31. Sparling PF, Sarubbi FA, Jr, Blackman E. Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 1975; 124(2):740–749

    PubMed  CAS  Google Scholar 

  32. Guymon LF, Sparling PF. Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol 1975; 124(2):757–763

    PubMed  CAS  Google Scholar 

  33. Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 1995; 141 (Pt 3):611–622

    Article  PubMed  CAS  Google Scholar 

  34. Gill MJ, Simjee S, Al Hattawi K, Robertson BD, Easmon CS, Ison CA. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 1998; 42(11):2799–2803

    PubMed  CAS  Google Scholar 

  35. Olesky M, Hobbs M, Nicholas RA. Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2002; 46(9):2811–2820

    Article  PubMed  CAS  Google Scholar 

  36. Olesky M, Zhao S, Rosenberg RL, Nicholas RA. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 2006; 188(7):2300–2308

    Article  PubMed  CAS  Google Scholar 

  37. Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 2005; 57(5):1238–1251

    Article  PubMed  CAS  Google Scholar 

  38. Ison CA. Antimicrobial agents and gonorrhoea: therapeutic choice, resistance and susceptibility testing. Genitourin Med 1996; 72(4):253–257

    PubMed  CAS  Google Scholar 

  39. Bygdeman S. Polyclonal and monoclonal antibodies applied to the epidemiology of gonococcal infection. In: Young H, McMillan A, eds. Immunologic Diagnosis of Sexually Transmitted Diseases. Marcel Dekker, New York, 117–165, 1988

    Google Scholar 

  40. Knapp JS, et al. Nomenclature for the serologic classification of Neisseria gonorrhoeae. In: Schoolnik G, Brooks GF, Falkow S, et al. eds. The Pathogenic Neisseriae. American Society for Microbiology, Washington DC, 4–5, 1985

    Google Scholar 

  41. Phillips I. Beta-lactamase-producing, penicillin-resistant gonococ-cus. Lancet 1976; 2(7987):656–657

    Article  PubMed  CAS  Google Scholar 

  42. Ashford WA, Golash RG, Hemming VG. Penicillinase-producing Neisseria gonorrhoeae. Lancet 1976; 2(7987):657–658

    Article  PubMed  CAS  Google Scholar 

  43. van Embden JD, van Klingeren B, Dessens-Kroon M, van Wijngaarden LJ. Emergence in the Netherlands of penicilli-nase-producing gonococci carrying “Africa” plasmid in combination with transfer plasmid. Lancet 1981; 1(8226):938

    Article  PubMed  Google Scholar 

  44. Laufs R, Kaulfers PM, Jahn G, Teschner U. Molecular characterization of a small Haemophilus influenzae plasmid specifying beta-lactamase and its relationship to R factors from Neisseria gonorrhoeae. J Gen Microbiol 1979; 111(1):223–231

    PubMed  CAS  Google Scholar 

  45. van Embden JD, van Klingeren B, Dessens-Kroon M, van Wijngaarden LJ. Penicillinase-producing Neisseria gonorrhoeae in the Netherlands: epidemiology and genetic and molecular characterization of their plasmids. Antimicrob Agents Chemother 1980; 18(5):789–797

    PubMed  Google Scholar 

  46. Brunton JL, Clare D, Ehrman N, Meier MA. Evolution of antibiotic resistance plasmids in Neisseria gonorrhoeae and Haemophilus species. Clin Invest Med 1983; 6(3):221–228

    PubMed  CAS  Google Scholar 

  47. Flett F, Humphreys GO, Saunders JR. Intraspecific and interge-neric mobilization of non-conjugative resistance plasmids by a 24.5 megadalton conjugative plasmid of Neisseria gonorrhoeae. J Gen Microbiol 1981; 125(1):123–129

    PubMed  CAS  Google Scholar 

  48. Roberts M, Elwell LP, Falkow S. Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonor-rhoeae. J Bacteriol 1977; 131(2):557–563

    PubMed  CAS  Google Scholar 

  49. Lim KB, Rajan VS, Giam YC, Lui EO, Sng EH, Yeo KL. Two dose augmentin treatment of acute gonorrhoea in men. Br J Vener Dis 1984; 60(3):161–163

    PubMed  CAS  Google Scholar 

  50. Lim KB, Thirumoorthy T, Lee CT, Sng EH, Tan T. Three regimens of procaine penicillin G, Augmentin, and probenecid compared for treating acute gonorrhoea in men. Genitourin Med 1986; 62(2):82–85

    PubMed  CAS  Google Scholar 

  51. Tapsall JW, Phillips EA, Morris LM. Chromosomally mediated intrinsic resistance to penicillin of penicillinase producing strains of Neisseria gonorrhoeae isolated in Sydney: guide to treatment with Augmentin. Genitourin Med 1987; 63(5):305–308

    PubMed  CAS  Google Scholar 

  52. Ison CA, Bindayna KM, Woodford N, Gill MJ, Easmon CS. Penicillin and cephalosporin resistance in gonococci. Genitourin Med 1990; 66(5):351–356

    PubMed  CAS  Google Scholar 

  53. Rice RJ, Biddle JW, JeanLouis YA, DeWitt WE, Blount JH, Morse SA. Chromosomally mediated resistance in Neisseria gon-orrhoeae in the United States: results of surveillance and reporting, 1983–1984. J Infect Dis 1986; 153(2):340–345

    PubMed  CAS  Google Scholar 

  54. Schwebke JR, Whittington W, Rice RJ, Handsfield HH, Hale J, Holmes KK. Trends in susceptibility of Neisseria gonorrhoeae to ceftriaxone from 1985 through 1991. Antimicrob Agents Chemother 1995; 39(4):917–920

    PubMed  CAS  Google Scholar 

  55. Muratani T, Akasaka S, Kobayashi T, Yamada Y, Inatomi H, Takahashi K et al. Outbreak of cefozopran (penicillin, oral cephems, and aztreonam)-resistant Neisseria gonorrhoeae in Japan. Antimicrob Agents Chemother 2001; 45(12):3603–3606

    Article  PubMed  CAS  Google Scholar 

  56. Ito M, Deguchi T, Mizutani KS, Yasuda M, Yokoi S, Ito S et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob Agents Chemother 2005; 49(1):137–143

    Article  PubMed  CAS  Google Scholar 

  57. Takahata S, Senju N, Osaki Y, Yoshida T, Ida T. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2006; 50(11):3638–3645

    Article  PubMed  CAS  Google Scholar 

  58. Tanaka M, Nakayama H, Huruya K, Konomi I, Irie S, Kanayama A et al. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int J Antimicrob Agents 2006; 27(1):20–26

    Article  PubMed  CAS  Google Scholar 

  59. Lindberg R, Fredlund H, Nicholas R, Unemo M. Neisseria gon-orrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob Agents Chemother 2007; 51(6):2117–2122

    Article  PubMed  CAS  Google Scholar 

  60. Moran JS, Zenilman JM. Therapy for gonococcal infections: options in 1989. Rev Infect Dis 1990; 12 Suppl 6:S633–S644

    PubMed  Google Scholar 

  61. Ghanem KG, Giles JA, Zenilman JM. Fluoroquinolone-resistant Neisseria gonorrhoeae: the inevitable epidemic. Infect Dis Clin North Am 2005; 19(2):351–365

    Article  PubMed  Google Scholar 

  62. Dan M. The use of fluoroquinolones in gonorrhoea: the increasing problem of resistance. Expert Opin Pharmacother 2004; 5(4):829–854

    Article  PubMed  CAS  Google Scholar 

  63. Surveillance of antibiotic susceptibility of Neisseria gonorrhoeae in the WHO western Pacific region 1992–4. WHO Western Pacific Region Gonococcal Antimicrobial Surveillance Programme. Genitourin Med 1997; 73(5):355–361

    Google Scholar 

  64. Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the World Health Organization Western Pacific Region, 2003. Commun Dis Intell 2005; 29(1):62–64

    Google Scholar 

  65. Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gon-orrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol 1994; 14(2):371–380

    Article  PubMed  CAS  Google Scholar 

  66. Shultz TR, Tapsall JW, White PA. Correlation of in vitro susceptibilities to newer quinolones of naturally occurring quinolone-resistant Neisseria gonorrhoeae strains with changes in GyrA and ParC. Antimicrob Agents Chemother 2001; 45(3):734–738

    Article  PubMed  CAS  Google Scholar 

  67. Trees DL, Sandul AL, Whittington WL, Knapp JS. Identification of novel mutation patterns in the parC gene of ciprofloxacin-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1998; 42(8):2103–2105

    PubMed  CAS  Google Scholar 

  68. Deguchi T, Saito I, Tanaka M, Sato K, Deguchi K, Yasuda M, et al. Fluoroquinolone treatment failure in gonorrhea. Emergence of a Neisseria gonorrhoeae strain with enhanced resistance to fluoro-quinolones. Sex Transm Dis 1997; 24(5):247–250

    PubMed  CAS  Google Scholar 

  69. Tanaka M, Sagiyama K, Haraoka M, Saika T, Kobayashi I, Naito S. Genotypic evolution in a quinolone-resistant Neisseria gonorrhoeae isolate from a patient with clinical failure of levo-floxacin treatment. Urol Int 1999; 62(1):64–68

    Article  PubMed  CAS  Google Scholar 

  70. Tanaka M, Nakayama H, Haraoka M, Nagafuji T, Saika T, Kobayashi I. Analysis of quinolone resistance mechanisms in a sparfloxacin-resistant clinical isolate of Neisseria gonorrhoeae. Sex Transm Dis 1998; 25(9):489–493

    Article  PubMed  CAS  Google Scholar 

  71. Tanaka M, Sakuma S, Takahashi K, Nagahuzi T, Saika T, Kobayashi I et al. Analysis of quinolone resistance mechanisms in Neisseria gonorrhoeae isolates in vitro. Sex Transm Infect 1998; 74(1):59–62

    Article  PubMed  CAS  Google Scholar 

  72. Giles JA, Falconio J, Yuenger JD, Zenilman JM, Dan M, Bash MC. Quinolone resistance-determining region mutations and por type of Neisseria gonorrhoeae isolates: resistance surveillance and typing by molecular methodologies. J Infect Dis 2004; 189(11):2085–2093

    Article  PubMed  CAS  Google Scholar 

  73. Knapp JS, Fox KK, Trees DL, Whittington WL. Fluoroquinolone resistance in Neisseria gonorrhoeae. Emerg Infect Dis 1997; 3(1):33–39

    PubMed  CAS  Google Scholar 

  74. Dewi BE, Akira S, Hayashi H, Ba-Thein W. High occurrence of simultaneous mutations in target enzymes and MtrRCDE efflux system in quinolone-resistant Neisseria gonorrhoeae. Sex Transm Dis 2004; 31(6):353–359

    Article  PubMed  CAS  Google Scholar 

  75. Boslego JW, Tramont EC, Takafuji ET, Diniega BM, Mitchell BS, Small JW et al. Effect of spectinomycin use on the prevalence of spectinomycin-resistant and of penicillinase-producing Neisseria gonorrhoeae. N Engl J Med 1987; 317(5):272–278

    Article  PubMed  CAS  Google Scholar 

  76. Maness MJ, Foster GC, Sparling PF. Ribosomal resistance to streptomycin and spectinomycin in Neisseria gonorrhoeae. J Bacteriol 1974; 120(3):1293–1299

    PubMed  CAS  Google Scholar 

  77. Tapsall JW. Antibiotic resistance in Neisseria gonorrhoeae. Clin Infect Dis 2005; 41 Suppl 4:S263–S268

    Article  PubMed  CAS  Google Scholar 

  78. Hu M, Nandi S, Davies C, Nicholas RA. High-level chromosoma-lly mediated tetracycline resistance in Neisseria gonorrhoeae results from a point mutation in the rpsJ gene encoding ribosomal protein S10 in combination with the mtrR and penB resistance determinants. Antimicrob Agents Chemother 2005; 49(10):4327–4334

    Article  PubMed  CAS  Google Scholar 

  79. Faruki H, Kohmescher RN, McKinney WP, Sparling PF. A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosoma-lly mediated resistance). N Engl J Med 1985; 313(10):607–611

    Article  PubMed  CAS  Google Scholar 

  80. Morse SA, Johnson SR, Biddle JW, Roberts MC. High-level tetra-cycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant. Antimicrob Agents Chemother 1986; 30(5):664–670

    PubMed  CAS  Google Scholar 

  81. Gascoyne-Binzi DM, Heritage J, Hawkey PM. Nucleotide sequences of the tet(M) genes from the American and Dutch type tetracycline resistance plasmids of Neisseria gonorrhoeae. J Antimicrob Chemother 1993; 32(5):667–676

    Article  PubMed  CAS  Google Scholar 

  82. Turner A, Gough KR, Leeming JP. Molecular epidemiology of tetM genes in Neisseria gonorrhoeae. Sex Transm Infect 1999; 75(1):60–66

    Article  PubMed  CAS  Google Scholar 

  83. Ison CA, Dillon JA, Tapsall JW. The epidemiology of global antibiotic resistance among Neisseria gonorrhoeae and Haemophilus ducreyi. Lancet 1998; 351 Suppl 3:8–11

    Article  PubMed  Google Scholar 

  84. Djajakusumah T, Sudigdoadi S, Meheus A, Van Dyck E. Plasmid patterns and antimicrobial susceptibilities of Neisseria gonor-rhoeae in Bandung, Indonesia. Trans R Soc Trop Med Hyg 1998; 92(1):105–107

    Article  PubMed  CAS  Google Scholar 

  85. West B, Changalucha J, Grosskurth H, Mayaud P, Gabone RM, Ka-Gina G et al. Antimicrobial susceptibility, auxotype and plasmid content of Neisseria gonorrhoeae in northern Tanzania: emergence of high level plasmid mediated tetracycline resistance. Genitourin Med 1995; 71(1):9–12

    PubMed  CAS  Google Scholar 

  86. Van Dyck E, Crabbe F, Nzila N, Bogaerts J, Munyabikali JP, Ghys P, et al. Increasing resistance of Neisseria gonorrhoeae in west and central Africa. Consequence on therapy of gonococcal infection. Sex Transm Dis 1997; 24(1):32–37

    Article  Google Scholar 

  87. Ho RI, Lai PH, Corman L, Ho J, Morse SA. Comparison of dihydrofolate reductases from trimethoprim- and sulfonamide-resistant strains of Neisseria gonorrhoeae. Sex Transm Dis 1978; 5(2):43–50

    Article  PubMed  CAS  Google Scholar 

  88. Slaney L, Chubb H, Ronald A, Brunham R. In-vitro activity of azithromycin, erythromycin, ciprofloxacin and norfloxacin against Neisseria gonorrhoeae, Haemophilus ducreyi, and Chlamydia tra-chomatis. J Antimicrob Chemother 1990; 25 Suppl A:1–5

    PubMed  CAS  Google Scholar 

  89. Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 2005; 56(5):856–860

    Article  PubMed  CAS  Google Scholar 

  90. Ehret JM, Nims LJ, Judson FN. A clinical isolate of Neisseria gon-orrhoeae with in vitro resistance to erythromycin and decreased susceptibility to azithromycin. Sex Transm Dis 1996; 23(4):270–272

    Article  PubMed  CAS  Google Scholar 

  91. Tapsall JW, Shultz TR, Limnios EA, Donovan B, Lum G, Mulhall BP. Failure of azithromycin therapy in gonorrhea and dis-correlation with laboratory test parameters. Sex Transm Dis 1998; 25(10):505–508

    Article  PubMed  CAS  Google Scholar 

  92. Steingrimsson O, Olafsson JH, Thorarinsson H, Ryan RW, Johnson RB, Tilton RC. Azithromycin in the treatment of sexually transmitted disease. J Antimicrob Chemother 1990; 25 Suppl A:109–114

    PubMed  Google Scholar 

  93. Young H, Moyes A, McMillan A. Azithromycin and erythromycin resistant Neisseria gonorrhoeae following treatment with azithro-mycin. Int J STD AIDS 1997; 8(5):299–302

    Article  PubMed  CAS  Google Scholar 

  94. Daly CC, Hoffman I, Hobbs M, Maida M, Zimba D, Davis R et al. Development of an antimicrobial susceptibility surveillance system for Neisseria gonorrhoeae in Malawi: comparison of methods. J Clin Microbiol 1997; 35(11):2985–2988

    PubMed  CAS  Google Scholar 

  95. Lkhamsuren E, Shultz TR, Limnios EA, Tapsall JW. The antibiotic susceptibility of Neisseria gonorrhoeae isolated in Ulaanbaatar, Mongolia. Sex Transm Infect 2001; 77(3):218–219

    Article  PubMed  CAS  Google Scholar 

  96. Bhalla P, Sethi K, Reddy BS, Mathur MD. Antimicrobial susceptibility and plasmid profile of Neisseria gonorrhoeae in India (New Delhi). Sex Transm Infect 1998; 74(3):210–212

    Article  PubMed  CAS  Google Scholar 

  97. Tapsall JW. Use of a quality assurance scheme in a long-term multicentric study of antibiotic susceptibility of Neisseria gonor-rhoeae. Genitourin Med 1990; 66(1):8–13

    PubMed  CAS  Google Scholar 

  98. Tapsall J, Members of the National Neisseria Network of Australia. Antimicrobial testing and applications in the pathogenic Neisseria. In: Merlino J, ed. Antimicrobial Susceptibility Testing: Methods and Practices with an Australian Perspective. Australian Society for Microbiology, Sydney, 175–188, 2005

    Google Scholar 

  99. Deguchi T, Yasuda M, Nakano M, Ozeki S, Kanematsu E, Kawada Y et al. Uncommon occurrence of mutations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gon-orrhoeae. Antimicrob Agents Chemother 1996; 40(10):2437–2438

    PubMed  CAS  Google Scholar 

  100. Deguchi T, Yasuda M, Nakano M, Kanematsu E, Ozeki S, Nishino Y et al. Rapid screening of point mutations of the Neisseria gonorrhoeae parC gene associated with resistance to quinolones. J Clin Microbiol 1997; 35(4):948–950

    PubMed  CAS  Google Scholar 

  101. Deguchi T, Yasuda M, Nakano M, Ozeki S, Ezaki T, Maeda S et al. Rapid detection of point mutations of the Neisseria gonor-rhoeae gyrA gene associated with decreased susceptibilities to quinolones. J Clin Microbiol 1996; 34(9):2255–2258

    PubMed  CAS  Google Scholar 

  102. Vernel-Pauillac F, Merien F. A novel real-time duplex PCR assay for detecting penA and ponA genotypes in Neisseria gonor-rhoeae: comparison with phenotypes determined by the E-test. Clin Chem 2006; 52(12):2294–2296

    Article  PubMed  CAS  Google Scholar 

  103. Giles J, Hardick J, Yuenger J, Dan M, Reich K, Zenilman J. Use of applied biosystems 7900HT sequence detection system and Taqman assay for detection of quinolone-resistant Neisseria gon-orrhoeae. J Clin Microbiol 2004; 42(7):3281–3283

    Article  PubMed  CAS  Google Scholar 

  104. Kilmarx PH, Knapp JS, Xia M, St Louis ME, Neal SW, Sayers D et al. Intercity spread of gonococci with decreased susceptibility to fluoroquinolones: a unique focus in the United States. J Infect Dis 1998; 177(3):677–682

    Article  PubMed  CAS  Google Scholar 

  105. van Klingeren B, Ansink-Schipper MC, Dessens-Kroon M, Verheuvel M. Relationship between auxotype, plasmid pattern and susceptibility to antibiotics in penicillinase-producing Neisseria gonorrhoeae. J Antimicrob Chemother 1985; 16(2):143–147

    Article  PubMed  Google Scholar 

  106. Rothenberg R, Voigt R. Epidemiologic aspects of control of penicillinase-producing Neisseria gonorrhoeae. Sex Transm Dis 1988; 15(4):211–216

    Article  PubMed  CAS  Google Scholar 

  107. Increases in fluoroquinolone-resistant Neisseria gonorrhoeae — Hawaii and California, 2001. MMWR Morb Mortal Wkly Rep 2002; 51(46):1041–1044

    Google Scholar 

  108. Tanaka M, Nakayama H, Haraoka M, Saika T. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacin-resistant isolates in Japan, 1993 to 1998. J Clin Microbiol 2000; 38(2):521–525

    PubMed  CAS  Google Scholar 

  109. Trees DL, Sandul AL, Neal SW, Higa H, Knapp JS. Molecular epidemiology of Neisseria gonorrhoeae exhibiting decreased susceptibility and resistance to ciprofloxacin in Hawaii, 1991–1999. Sex Transm Dis 2001; 28(6):309–314

    Article  PubMed  CAS  Google Scholar 

  110. Tapsall JW, Shultz TR, Phillips EA. Characteristics of Neisseria gonorrhoeae isolated in Australia showing decreased sensitivity to quinolone antibiotics. Pathology 1992; 24(1):27–31

    Article  PubMed  CAS  Google Scholar 

  111. Tapsall JW, Limnios EA, Shultz TR. Continuing evolution of the pattern of quinolone resistance in Neisseria gonorrhoeae isolated in Sydney, Australia. Sex Transm Dis 1998; 25(8):415–417

    Article  PubMed  CAS  Google Scholar 

  112. Yagupsky P, Schahar A, Peled N, Porat N, Trefler R, Dan M et al. Increasing incidence of gonorrhea in Israel associated with countrywide dissemination of a ciprofloxacin-resistant strain. Eur J Clin Microbiol Infect Dis 2002; 21(5):368–372

    Article  PubMed  CAS  Google Scholar 

  113. Palmer HM, Leeming JP, Turner A. Investigation of an outbreak of ciprofloxacin-resistant Neisseria gonorrhoeae using a simplified opa-typing method. Epidemiol Infect 2001; 126(2):219–224

    Article  PubMed  CAS  Google Scholar 

  114. Unemo M, Sjostrand A, Akhras M, Gharizadeh B, Lindback E, Pourmand N et al. Molecular characterization of Neisseria gonorrhoeae identifies transmission and resistance of one ciprofloxacin-resistant strain. APMIS 2007; 115(3):231–241

    Article  PubMed  CAS  Google Scholar 

  115. Sexually transmitted diseases treatment guidelines 2002. Centers for Disease Control and Prevention. MMWR Recomm Rep 2002; 51(RR-6):1–78

    Google Scholar 

  116. Bignell CJ. BASHH guideline for gonorrhoea. Sex Transm Infect 2004; 80(5):330–331

    Article  PubMed  CAS  Google Scholar 

  117. Bignell CJ. European guideline for the management of gonorrhoea. Int J STD AIDS 2001; 12 Suppl 3:27–29

    Article  PubMed  Google Scholar 

  118. World Health Organization. Guidelines for the Management of Sexually Transmitted Infections. World Health Organization, Geneva, 2003

    Google Scholar 

  119. Backman M, Jacobson K, Ringertz S. The virgin population of Neisseria gonorrhoeae in Stockholm has decreased and antimicrobial resistance is increasing. Genitourin Med 1995; 71(4):234–238

    PubMed  CAS  Google Scholar 

  120. Marrazzo JM. Sexual tourism: implications for travelers and the destination culture. Infect Dis Clin North Am 2005; 19(1):103–120

    Article  PubMed  Google Scholar 

  121. Annual report of the Australian Gonococcal Surveillance Programme, 2004. Commun Dis Intell 2005; 29(2):137–142

    Google Scholar 

  122. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance, 2002. U.S. Department of Health and Human Services, CDC, Atlanta, GA, 2003

    Google Scholar 

  123. Paine TC, Fenton KA, Herring A, Turner A, Ison C, Martin I et al. GRASP: a new national sentinel surveillance initiative for monitoring gonococcal antimicrobial resistance in England and Wales. Sex Transm Infect 2001; 77(6):398–401

    Article  PubMed  CAS  Google Scholar 

  124. Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific Region, 2002. Commun Dis Intell 2003; 27(4):488–491

    Google Scholar 

  125. Dillon JA, Li H, Sealy J, Ruben M, Prabhakar P. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from three Caribbean countries: Trinidad, Guyana, and St Vincent. Sex Transm Dis 2001; 28(9):508–514

    Article  PubMed  CAS  Google Scholar 

  126. Penicillin sensitivity of gonococci in Australia: development of Australian gonococcal surveillance programme. Members of the Australian Gonococcal Surveillance Programme. Br J Vener Dis 1984; 60(4):226–230

    Google Scholar 

  127. Gorwitz RJ, Nakashima AK, Moran JS, Knapp JS. Sentinel surveillance for antimicrobial resistance in Neisseria gonor-rhoeae — United States, 1988–1991. The Gonococcal Isolate Surveillance Project Study Group. MMWR CDC Surveill Summ 1993; 42(3):29–39

    CAS  Google Scholar 

  128. CDC. Sexually Transmitted Disease Surveillance 2003 Supplement: Gonococcal Isolate Surveillance Project (GISP) Annual Report — 2003. U.S. Department of Health and Human Services, Atlanta, GA, 2004

    Google Scholar 

  129. GRASP Steering Group. The Gonococccal Resistance to Antimicrobials Surveillance Programme. 2005. London, Health Protection Agency

    Google Scholar 

  130. Mayaud P, Hawkes S, Mabey D. Advances in control of sexually transmitted diseases in developing countries. Lancet 1998; 351 Suppl 3:29–32

    Article  PubMed  Google Scholar 

  131. Zenilman JM, Deal CD. Gonorrhoea: epidemiology, control and prevention. In: Stanberry LR, Bernstein DI, eds. Sexually Transmitted Diseases Vaccines, Prevention and Control. Academic Press, London, 369–385, 2000

    Google Scholar 

  132. Brooks GF, Donegan EA. Uncomplicated gonococcal infection. In: Brooks GF, Donegan GF, eds. Gonococcal Infection. Edward Arnold, London, 85–104, 1985

    Google Scholar 

  133. Schachter J. Chlamydial infections (second of three parts). N Engl J Med 1978; 298(9):490–495

    Article  PubMed  CAS  Google Scholar 

  134. Lyss SB, Kamb ML, Peterman TA, Moran JS, Newman DR, Bolan G et al. Chlamydia trachomatis among patients infected with and treated for Neisseria gonorrhoeae in sexually transmitted disease clinics in the United States. Ann Intern Med 2003; 139(3):178–185

    PubMed  Google Scholar 

  135. Miller WC, Zenilman JM. Epidemiology of chlamydial infection, gonorrhea, and trichomoniasis in the United States — 2005. Infect Dis Clin North Am 2005; 19(2):281–296

    Article  PubMed  Google Scholar 

  136. Harry C. The management of uncomplicated adult gonococcal infection: should test of cure still be routine in patients attending genitourinary medicine clinics? Int J STD AIDS 2004; 15(7):453–458

    Article  PubMed  CAS  Google Scholar 

  137. Tapsall JW, Limnios EA, Thacker C, Donovan B, Lynch SD, Kirby LJ et al. High-level quinolone resistance in Neisseria gonorrhoeae: a report of two cases. Sex Transm Dis 1995; 22(5):310–311

    Article  PubMed  CAS  Google Scholar 

  138. Laga M, Plummer FA, Piot P, Datta P, Namaara W, Ndinya-Achola JO, et al. Prophylaxis of gonococcal and chlamydial ophthalmia neonatorum. A comparison of silver nitrate and tetra-cycline. N Engl J Med 1988; 318(11):653–657

    Article  PubMed  CAS  Google Scholar 

  139. Update to CDC's sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. MMWR Morb Mortal Wkly Rep 2007; 56(14):332–336

    Google Scholar 

  140. Discontinuation of cefixime tablets — United States. MMWR Morb Mortal Wkly Rep 2002; 51(46):1052

    Google Scholar 

  141. Handsfield HH, Dalu ZA, Martin DH, Douglas JM Jr, Mc Carty JM, Schlossberg D. Multicenter trial of single-dose azi-thromycin vs. ceftriaxone in the treatment of uncomplicated gonorrhea. Azithromycin Gonorrhea Study Group. Sex Transm Dis 1994; 21(2):107–111

    Article  PubMed  CAS  Google Scholar 

  142. Dillon JA, Rubabaza JP, Benzaken AS, Sardinha JC, Li H, Bandeira MG et al. Reduced susceptibility to azithromycin and high percentages of penicillin and tetracycline resistance in Neisseria gonorrhoeae isolates from Manaus, Brazil, 1998. Sex Transm Dis 2001; 28(9):521–526

    Article  PubMed  CAS  Google Scholar 

  143. Kamwendo F, Forslin L, Bodin L, Danielsson D. Decreasing incidences of gonorrhea- and chlamydia-associated acute pelvic inflammatory disease. A 25-year study from an urban area of central Sweden. Sex Transm Dis 1996; 23(5):384–391

    CAS  Google Scholar 

  144. Kamwendo F, Forslin L, Bodin L, Danielsson D. Programmes to reduce pelvic inflammatory disease — the Swedish experience. Lancet 1998; 351 Suppl 3:25–28

    Article  PubMed  Google Scholar 

  145. Kamwendo F, Forslin L, Bodin L, Danielsson D. Epidemiology of ectopic pregnancy during a 28 year period and the role of pelvic inflammatory disease. Sex Transm Infect 2000; 76(1):28–32

    Article  PubMed  CAS  Google Scholar 

  146. Grosskurth H, Mosha F, Todd J, Mwijarubi E, Klokke A, Senkoro K et al. Impact of improved treatment of sexually transmitted diseases on HIV infection in rural Tanzania: randomised controlled trial. Lancet 1995; 346(8974):530–536

    Article  PubMed  CAS  Google Scholar 

  147. Simonsen GS, Tapsall JW, Allegranzi B, Talbot EA, Lazzari S. The antimicrobial resistance containment and surveillance approach — a public health tool. Bull World Health Organ 2004; 82(12):928–934

    PubMed  Google Scholar 

  148. From the Centers for Disease Control and Prevention. Increases in unsafe sex and rectal gonorrhea among men who have sex with men — San Francisco, California, 1994–1997. JAMA 1999; 281(8):696–697

    Article  Google Scholar 

  149. Katz AR, Lee MV, Ohye RG, Whiticar PM, Effler PV. Ciprofloxacin resistance in Neisseria gonorrhoeae: trends in Hawaii, 1997–2002. Lancet 2003; 362(9382):495

    Article  PubMed  Google Scholar 

  150. Enhanced surveillance of epidemic meningococcal meningitis in Africa: a three-year experience. Wkly Epidemiol Rec 2005; 80(37):313–320

    Google Scholar 

  151. Raghunathan PL, Bernhardt SA, Rosenstein NE. Opportunities for control of meningococcal disease in the United States. Annu Rev Med 2004; 55:333–353

    Article  PubMed  CAS  Google Scholar 

  152. Trotter CL, Fox AJ, Ramsay ME, Sadler F, Gray SJ, Mallard R et al. Fatal outcome from meningococcal disease — an association with meningococcal phenotype but not with reduced susceptibility to benzylpenicillin. J Med Microbiol 2002; 51(10):855–860

    PubMed  CAS  Google Scholar 

  153. Antignac A, Ducos-Galand M, Guiyoule A, Pires R, Alonso JM, Taha MK. Neisseria meningitidis strains isolated from invasive infections in France (1999–2002): phenotypes and antibiotic susceptibility patterns. Clin Infect Dis 2003; 37(7):912–920

    Article  PubMed  Google Scholar 

  154. Apicella MA. Neisseria meningitidis. In: Mandell GL, Bennett JE, eds. Principles and Practice of Infectious Diseases. Churchill Livingstone, Philadelphia, 2228–2241, 2000

    Google Scholar 

  155. Greenfield S, Sheehe PR, Feldman HA. Meningococcal carriage in a population of “normal” families. J Infect Dis 1971; 123(1):67–73

    PubMed  CAS  Google Scholar 

  156. Schwentker FF, Gelman S, Long PH. Landmark article April 24, 1937. The treatment of meningococci meningitis with sulfa-nilamide. Preliminary report. By Francis F. Schwentker, Sidney Gelman, and Perrin H. Long. JAMA 1984; 251(6):788–790

    CAS  Google Scholar 

  157. Meningococcal infections. In: Pickering LK, ed. Red Book: 2003 Report of the Committee on Infectious Diseases. American Academy of Pediatrics, Elk Grove Village, 430–436, 2003

    Google Scholar 

  158. Nathan N, Borel T, Djibo A, Evans D, Djibo S, Corty JF et al. Ceftriaxone as effective as long-acting chloramphenicol in short-course treatment of meningococcal meningitis during epidemics: a randomised non-inferiority study. Lancet 2005; 366(9482):308–313

    Article  PubMed  CAS  Google Scholar 

  159. Aguilera JF, Perrocheau A, Meffre C, Hahne S. Outbreak of sero-group W135 meningococcal disease after the Hajj pilgrimage, Europe, 2000. Emerg Infect Dis 2002; 8(8):761–767

    PubMed  Google Scholar 

  160. Trotter CL, Andrews NJ, Kaczmarski EB, Miller E, Ramsay ME. Effectiveness of meningococcal serogroup C conjugate vaccine 4 years after introduction. Lancet 2004; 364(9431):365–367

    Article  PubMed  CAS  Google Scholar 

  161. Auckland C, Gray S, Borrow R, Andrews N, Goldblatt D, Ramsay M et al. Clinical and immunologic risk factors for menin-gococcal C conjugate vaccine failure in the United Kingdom. J Infect Dis 2006; 194(12):1745–1752

    Article  PubMed  CAS  Google Scholar 

  162. De Wals P, Trottier P, Pepin J. Relative efficacy of different immunization schedules for the prevention of serogroup C meningococcal disease: a model-based evaluation. Vaccine 2006; 24(17):3500–3504

    Article  CAS  Google Scholar 

  163. Frasch CE. Recent developments in Neisseria meningitidis group A conjugate vaccines. Expert Opin Biol Ther 2005; 5(2):273–280

    Article  PubMed  CAS  Google Scholar 

  164. Kshirsagar N, Mur N, Thatte U, Gogtay N, Viviani S, Preziosi MP, et al. Safety, immunogenicity, and antibody persistence of a new meningococcal group A conjugate vaccine in healthy Indian adults. Vaccine 2007

    Google Scholar 

  165. Martin DR, Walker SJ, Baker MG, Lennon DR. New Zealand epidemic of meningococcal disease identified by a strain with phenotype B:4:P1.4. J Infect Dis 1998; 177(2):497–500

    Article  PubMed  CAS  Google Scholar 

  166. Thornton V, Lennon D, Rasanathan K, O'hallahan J, Oster P, Stewart J et al. Safety and immunogenicity of New Zealand strain meningococcal serogroup B OMV vaccine in healthy adults: beginning of epidemic control. Vaccine 2005; 24(9):1395–1400

    Article  PubMed  CAS  Google Scholar 

  167. Wong S, Lennon D, Jackson C, Stewart J, Reid S, Crengle S et al. New Zealand epidemic strain meningococcal B outer membrane vesicle vaccine in children aged 16–24 months. Pediatr Infect Dis J 2007; 26(4):345–350

    Article  PubMed  Google Scholar 

  168. Oster P, O'Hallahan J, Aaberge I, Tilman S, Ypma E, Martin D. Immunogenicity and safety of a strain-specific MenB OMV vaccine delivered to under 5-year olds in New Zealand. Vaccine 2007; 25(16):3075–3079

    Article  PubMed  CAS  Google Scholar 

  169. Ameratunga S, Macmillan A, Stewart J, Scott D, Mulholland K, Crengle S. Evaluating the post-licensure effectiveness of a group B meningococcal vaccine in New Zealand: a multi-faceted strategy. Vaccine 2005; 23(17–18):2231–2234

    Article  PubMed  Google Scholar 

  170. Antignac A, Boneca IG, Rousselle JC, Namane A, Carlier JP, Vazquez JA et al. Correlation between alterations of the penicillin-binding protein 2 and modifications of the peptidoglycan structure in Neisseria meningitidis with reduced susceptibility to penicillin G. J Biol Chem 2003; 278(34):31529–31535

    Article  PubMed  CAS  Google Scholar 

  171. Saez-Nieto JA, Fontanals D, Garcia DJ, Martinez DAV, Pena P, Morera MA, et al. Isolation of Neisseria meningitidis strains with increase of penicillin minimal inhibitory concentrations. Epidemiol Infect 1987; 99(2):463–469

    Article  PubMed  CAS  Google Scholar 

  172. Arreaza L, de La FL, Vazquez JA. Antibiotic susceptibility patterns of Neisseria meningitidis isolates from patients and asymptomatic carriers. Antimicrob Agents Chemother 2000; 44(6):1705–1707

    Article  PubMed  CAS  Google Scholar 

  173. Canica M, Dias R, Nunes B, Carvalho L, Ferreira E. Invasive culture-confirmed Neisseria meningitidis in Portugal: evaluation of serogroups in relation to different variables and antimicrobial susceptibility (2000–2001). J Med Microbiol 2004; 53(Pt 9):921–925

    Article  PubMed  CAS  Google Scholar 

  174. Berron S, Vazquez JA. Increase in moderate penicillin resistance and serogroup C in meningococcal strains isolated in Spain. Is there any relationship? Clin Infect Dis 1994; 18(2):161–165

    CAS  Google Scholar 

  175. Tapsall JW, Shultz T, Limnios E, Munro R, Mercer J, Porritt R et al. Surveillance of antibiotic resistance in invasive isolates of Neisseria meningitidis in Australia 1994–1999. Pathology 2001; 33(3):359–361

    PubMed  CAS  Google Scholar 

  176. Woods CR, Smith AL, Wasilauskas BL, Campos J, Givner LB. Invasive disease caused by Neisseria meningitidis relatively resistant to penicillin in North Carolina. J Infect Dis 1994; 170(2):453–456

    PubMed  CAS  Google Scholar 

  177. Rosenstein NE, Stocker SA, Popovic T, Tenover FC, Perkins BA. Antimicrobial resistance of Neisseria meningitidis in the United States, 1997. The Active Bacterial Core Surveillance (ABCs) Team. Clin Infect Dis 2000; 30(1):212–213

    Article  PubMed  CAS  Google Scholar 

  178. Mastrantonio P, Stefanelli P, Fazio C, Sofia T, Neri A, La Rosa G et al. Serotype distribution, antibiotic susceptibility, and genetic relatedness of Neisseria meningitidis strains recently isolated in Italy. Clin Infect Dis 2003; 36(4):422–428

    Article  PubMed  CAS  Google Scholar 

  179. Hsueh PR, Teng LJ, Lin TY, Chen KT, Hsu HM, Twu SJ et al. Re-emergence of meningococcal disease in Taiwan: circulation of domestic clones of Neisseria meningitidis in the 2001 outbreak. Epidemiol Infect 2004; 132(4):637–645

    Article  PubMed  CAS  Google Scholar 

  180. Kyaw MH, Bramley JC, Clark S, Christie P, Jones IG, Campbell H. Prevalence of moderate penicillin resistant invasive Neisseria meningitidis infection in Scotland, 1994–9. Epidemiol Infect 2002; 128(2):149–156

    PubMed  CAS  Google Scholar 

  181. Punar M, Eraksoy H, Cagatay AA, Ozsut H, Kaygusuz A, Calangu S et al. Neisseria meningitidis with decreased susceptibility to penicillin in Istanbul, Turkey. Scand J Infect Dis 2002; 34(1):11–13

    Article  PubMed  Google Scholar 

  182. Saez-Nieto JA, Lujan R, Berron S, Campos J, Vinas M, Fuste C et al. Epidemiology and molecular basis of penicillin-resistant Neisseria meningitidis in Spain: a 5-year history (1985–1989). Clin Infect Dis 1992; 14(2):394–402

    PubMed  CAS  Google Scholar 

  183. Thulin S, Olcen P, Fredlund H, Unemo M. Total variation in the penA gene of Neisseria meningitidis: correlation between susceptibility to beta-lactam antibiotics and penA gene heterogeneity. Antimicrob Agents Chemother 2006; 50(10):3317–3324

    Article  PubMed  CAS  Google Scholar 

  184. Orus P, Vinas M. Mechanisms other than penicillin-binding protein-2 alterations may contribute to moderate penicillin resistance in Neisseria meningitidis. Int J Antimicrob Agents 2001; 18(2):113–119

    Article  PubMed  CAS  Google Scholar 

  185. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 2003; 185(3):1101–1106

    Article  PubMed  CAS  Google Scholar 

  186. Galimand M, Gerbaud G, Guibourdenche M, Riou JY, Courvalin P. High-level chloramphenicol resistance in Neisseria meningitidis. N Engl J Med 1998; 339(13):868–874

    Article  PubMed  CAS  Google Scholar 

  187. Shultz TR, Tapsall JW, White PA, Ryan CS, Lyras D, Rood JI et al. Chloramphenicol-resistant Neisseria meningitidis containing catP isolated in Australia. J Antimicrob Chemother 2003; 52(5):856–859

    Article  PubMed  CAS  Google Scholar 

  188. Tondella ML, Rosenstein NE, Mayer LW, Tenover FC, Stocker SA, Reeves MW et al. Lack of evidence for chloramphenicol resist-ance in Neisseria meningitidis, Africa. Emerg Infect Dis 2001; 7(1):163–164

    Article  PubMed  CAS  Google Scholar 

  189. Feldman HA. Sulfonamide-resistant meningococci. Annu Rev Med 1967; 18:495–506

    Article  PubMed  CAS  Google Scholar 

  190. Millar JW, Siess EE, Feldman HA, Silverman C, Frank P. In vivo and in vitro resistance to sulfadiazine in strains of Neisseria men-ingitidis. JAMA 1963; 186:139–141

    PubMed  CAS  Google Scholar 

  191. Vazquez JA. The resistance of Neisseria meningitidis to the antimicrobial agents: an issue still in evolution. Rev Med Microbiol 2001; 12(1):39–45

    Google Scholar 

  192. Cooper ER, Ellison RT, III, Smith GS, Blaser MJ, Reller LB, Paisley JW. Rifampin-resistant meningococcal disease in a contact patient given prophylactic rifampin. J Pediatr 1986; 108(1):93–96

    Article  PubMed  CAS  Google Scholar 

  193. Yagupsky P, Ashkenazi S, Block C. Rifampicin-resistant menin-gococci causing invasive disease and failure of chemoprophy-laxis. Lancet 1993; 341(8853):1152–1153

    Article  PubMed  CAS  Google Scholar 

  194. Jackson LA, Alexander ER, DeBolt CA, Swenson PD, Boase J, McDowell MG et al. Evaluation of the use of mass chemo-prophylaxis during a school outbreak of enzyme type 5 serogroup B meningococcal disease. Pediatr Infect Dis J 1996; 15(11):992–998

    Article  PubMed  CAS  Google Scholar 

  195. Shultz TR, Tapsall JW, White PA, Newton PJ. An invasive isolate of Neisseria meningitidis showing decreased susceptibility to quinolones. Antimicrob Agents Chemother 2000; 44(4):1116

    Article  PubMed  CAS  Google Scholar 

  196. Alcala B, Salcedo C, de La FL, Arreaza L, Uria MJ, Abad R et al. Neisseria meningitidis showing decreased susceptibility to cip-rofloxacin: first report in Spain. J Antimicrob Chemother 2004; 53(2):409

    Article  PubMed  CAS  Google Scholar 

  197. Shultz TR, White PA, Tapsall JW. In vitro assessment of the further potential for development of fluoroquinolone resistance in Neisseria meningitidis. Antimicrob Agents Chemother 2005; 49(5):1753–1760

    Article  PubMed  CAS  Google Scholar 

  198. Luaces CC, Garcia Garcia JJ, Roca MJ, Latorre Otin CL. Clinical data in children with meningococcal meningitis in a Spanish hospital. Acta Paediatr 1997; 86(1):26–29

    Article  Google Scholar 

  199. Turner PC, Southern KW, Spencer NJ, Pullen H. Treatment failure in meningococcal meningitis. Lancet 1990; 335(8691):732–733

    Article  PubMed  CAS  Google Scholar 

  200. Bardi L, Badolati A, Corso A, Rossi MA. [Failure of the treatment with penicillin in a case of Neisseria meningitidis meningitis]. Medicina (B Aires) 1994; 54(5 Pt 1):427–430

    CAS  Google Scholar 

  201. Rainbow J, Cebelinski E, Bartkus J, Glennen A, Boxrud D, Lynfield R. Rifampin-resistant meningococcal disease. Emerg Infect Dis 2005; 11(6):977–979

    PubMed  Google Scholar 

  202. Briggs S, Ellis-Pegler R, Roberts S, Thomas M, Woodhouse A. Short course intravenous benzylpenicillin treatment of adults with meningococcal disease. Intern Med J 2004; 34(7):383–387

    Article  PubMed  CAS  Google Scholar 

  203. Brouqui P, Raoult D. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev 2001; 14(1):177–207

    Article  PubMed  CAS  Google Scholar 

  204. Haddow LJ, Mulgrew C, Ansari A, Miell J, Jackson G, Malnick H et al. Neisseria elongata endocarditis: case report and literature review. Clin Microbiol Infect 2003; 9(5):426–430

    Article  PubMed  CAS  Google Scholar 

  205. Morla N, Guibourdenche M, Riou JY. Neisseria spp. and AIDS. J Clin Microbiol 1992; 30(9):2290–2294

    PubMed  CAS  Google Scholar 

  206. Orus P, Vinas M. Transfer of penicillin resistance between Neisseriae in microcosm. Microb Drug Resist 2000; 6(2):99–104

    Article  PubMed  CAS  Google Scholar 

  207. Arreaza L, Salcedo C, Alcala B, Vazquez JA. What about antibiotic resistance in Neisseria lactamica?. J Antimicrob Chemother 2002; 49(3):545–547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bash, M.C., McKnew, D.L., Tapsall, J.W. (2009). Antibiotic Resistance in Neisseria . In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-595-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-595-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-594-1

  • Online ISBN: 978-1-60327-595-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics