Advertisement

Resistance in Aerobic Gram-Positive Bacilli

  • David J. Weber
  • William A. Rutala
Part of the Infectious Disease book series (ID)

Aerobic Gram-positive bacilli comprise a variety of organisms, including Bacillus, Listeria, Erysipelothrix, Lactobacillus, Corynebacterium, Gardnerella, Actinomyces, Nocardia, and Mycobacterium. This chapter will focus on infections due to Bacillus spp. because of the threat of anthrax as a bioterrorist weapon, the signifi cance of Bacillus cereus as an agent of foodborne illness, and Bacillus spp. as occasional but important pathogens. This genus is a diverse group of Gram-positive, spore-forming organisms (1, 2).

Keywords

Bacillus Cereus Antimicrob Agent Bacillus Anthracis Emerg Infect Open Globe Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weber DJ, Rutala WA. Bacillus species. Infect Control Hosp Epidemiol 1988; 9:368–373PubMedGoogle Scholar
  2. 2.
    Logan NG, Turnball PC. Bacillus and other aerobic endosporeforming bacteria. In: Manual of Clinical Microbiology, Murray PR. (Ed in Chief), ASM Press, Washington DC, 2003, pp. 445–460Google Scholar
  3. 3.
    Mock M, Fouet A. Anthrax. Ann Rev Microbiol 2001; 55:647–671CrossRefGoogle Scholar
  4. 4.
    Weber DJ, Rutala WA. Risks and prevention of nosocomial transmission of rare zoonotic diseases. Clin Infect Dis 2003; 32:446–456CrossRefGoogle Scholar
  5. 5.
    Oncu S, Oncu S, Sakarya S. Anthrax — an overview. Med Sci Monit 2003; 9:RA276–RA283PubMedGoogle Scholar
  6. 6.
    Centers for Disease Control and Prevention. Summary of notifiable diseases — United States, 2001. Morb Mort Weekly Rep (MMWR) 2003; 50:1–97Google Scholar
  7. 7.
    Cieslak TJ, Eitzen EM. Clinical and epidemiologic principles of anthrax. Emerg Infect Dis 1999; 5:552–555PubMedCrossRefGoogle Scholar
  8. 8.
    Inglesby T V, O' Toole T, Henderson DA, et al. Anthrax as a biological weapon, 2002. JAMA 2002; 287:2236–2252PubMedCrossRefGoogle Scholar
  9. 9.
    Spencer RC. Bacillus anthracis. J Clin Pathol 2003; 56:182–187PubMedCrossRefGoogle Scholar
  10. 10.
    Centers for Disease Control and Prevention. Biological and chemical terrorism: strategic plan for preparedness and response. Morb Mort Weekly Rep (MMWR) 2000; 49(RR-4):1–14Google Scholar
  11. 11.
    Jernigan JA, Stephens DS, Ashford DA, et al. Bioterrorism-related inhalation anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001; 7:933–944PubMedGoogle Scholar
  12. 12.
    Jernigan DB, Ragunathan PL, Bell BP, et al. Investigation of bioterrorism-related anthrax, United States 2001: epidemiologic findings. Emerg Infect Dis 2002; 8:1019–1028PubMedGoogle Scholar
  13. 13.
    Titball RW, Turnball P, Hutson RA. The monitoring and detection of Bacillus anthracis in the environment. Soc Appl Bacteriol Symp Ser 1991; 20:9S–18SPubMedGoogle Scholar
  14. 14.
    Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 2000; 64:548–572PubMedCrossRefGoogle Scholar
  15. 15.
    Manchee RJ, Broster MG, Melling J, Henstridge RM, Stagg AJ. Bacillus anthracis on Gruinlard Island. Nature 1981; 294:254–255PubMedCrossRefGoogle Scholar
  16. 16.
    Manchee RJ, Broster MG, Anderson IS, Henstridge RM, Melling J. Decontamination of Bacillus anthracis on Gruinlard Island? Nature 1983; 303:239–240PubMedCrossRefGoogle Scholar
  17. 17.
    Dixon TC, Meselson M, Guillemin J, Hanna PC. (1999) Anthrax. N Engl J Med 1999; 341:815–826PubMedCrossRefGoogle Scholar
  18. 18.
    Swartz MN. Recognition and management of anthrax — an update. N Engl J Med 2001; 345:1621–1626PubMedCrossRefGoogle Scholar
  19. 19.
    Weber DJ, Rutala WA. Recognition and management of anthrax. N Engl J Med 2002; 346:944Google Scholar
  20. 20.
    Tutrone WD, Scheinfeld NS, Weinberg JM. Cutaneous anthrax: a concise review. Cutis 2000; 69:27–33Google Scholar
  21. 21.
    Celia F. Cutaneous anthrax: an overview. Dermatol Nurs 2002; 14:89–92PubMedGoogle Scholar
  22. 22.
    Demirdag K, Ozden M, Saral Y, Kalkan A, Kilic SS, Ozdarendeli A. Cutaneous anthrax in adults: a review of 25 cases in the Eastern Anatolian region of Turkey. Infection 2003; 31:327–330PubMedGoogle Scholar
  23. 23.
    Godyn JJ, Siderits R, Dzaman J. Cutaneous anthrax. Arch Pathol Lab Med 2004; 128:709–710PubMedGoogle Scholar
  24. 24.
    Shafazand S, Doyle R, Ruoss S, Weinacker A, Raffin TA. Inhalation anthrax. Chest 1999; 116:1369–1376PubMedCrossRefGoogle Scholar
  25. 25.
    Quintiliani Jr. R, Quintiliani R. Inhalation anthrax and bioterrorism. Cur Opin Pulmon Med 2003; 9:221–226CrossRefGoogle Scholar
  26. 26.
    Cuneo BM. Inhalation anthrax. Respir Care Clin N Am 2004; 10:75–82PubMedCrossRefGoogle Scholar
  27. 27.
    Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J. Gastrointestinal anthrax. Arch Intern Med 2003; 163:2527–2531PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer ME. Neurologic complications of anthrax. Arch Neurol 2003; 60:483–488PubMedCrossRefGoogle Scholar
  29. 29.
    Lanska DJ. Anthrax meningoencephalitis. Neurol 2002; 59:327–334Google Scholar
  30. 30.
    Ascenzi P, Visca P, Ippolito G, Spallarossa A, Bolognesi M, Montecucco C. FEBS Lett 2002; 531:384–388PubMedCrossRefGoogle Scholar
  31. 31.
    Moayeri M, Leppla SH. The role of anthrax toxin in pathogenesis. Curr Opin Microbiol 2004; 7:19–24PubMedCrossRefGoogle Scholar
  32. 32.
    Mourez M. Anthrax toxins. Rev Physiol Biochem Pharmacol 2004; 152:135–164PubMedCrossRefGoogle Scholar
  33. 33.
    Sirsanthana T, Nelson KE, Ezzell JW, Abshire TG. Serological studies of patients with cutaneous and oral-oropharyngeal anthrax from northern Thailand. Am Trop Med Hyg 1988; 39:575–581Google Scholar
  34. 34.
    Ichhpujani RL, Rajogopal V, Bhattachary D, et al. An outbreak of human anthrax in Mysore (India). J Commun Dis 2004; 36:199–204PubMedGoogle Scholar
  35. 35.
    Kanafani ZA, Ghossain A, Sharara AI, Hatem JM, Kanj SS. Epidemic gastrointestinal anthrax in 1960s Lebanon: clinical manifestations and surgical findings. Emerg Infect Dis 2003; 9:520–525PubMedGoogle Scholar
  36. 36.
    Kyriacou DN, Stein AC, Yarnold PR, et al. Clinical predictors of bioterrorism-related inhalational anthrax. Lancet 2004; 354:449–452CrossRefGoogle Scholar
  37. 37.
    Centers for Disease Control and Prevention. Surveillance for foodborne-disease outbreaks-United States, 1993–1997. Morb Mort Weekly Rep (MMWR) 2000; 49(SS-1):1–62Google Scholar
  38. 38.
    Centers for Disease Control and Prevention. Surveillance for foodborne-disease outbreaks-United States, 1998–2002. Morb Mort Weekly Rep (MMWR) 2006; 55(SS-10):1–42Google Scholar
  39. 39.
    Dierick K, van Coillie E, Swiecicka I, et al. Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 2005; 43:4277–4279PubMedCrossRefGoogle Scholar
  40. 40.
    Drobniewski FA. Bacillus cereus and related species. Clin Microbiol Rev 1993; 6:324–338PubMedGoogle Scholar
  41. 41.
    Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 1997; 157:223–228PubMedCrossRefGoogle Scholar
  42. 42.
    Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2000; 2:189–198PubMedCrossRefGoogle Scholar
  43. 43.
    Gaur AH, Shenep JL. The expanding spectrum of diseases caused by Bacillus species. Pediatr Infect Dis J 2001; 20:533–534PubMedGoogle Scholar
  44. 44.
    Ehling-Schulz M, Fricher M, Scherer S. Bacillus cereus, the causative agent of emetic type of food-borne illness. Mol Nutr Food Res 2004; 48:479–487PubMedCrossRefGoogle Scholar
  45. 45.
    Sliman R, Rehm S, Shlaes DM. Serious infections caused by Bacillus species. Medicine 1987; 66:218–223PubMedCrossRefGoogle Scholar
  46. 46.
    Dubouix A, Bonnet E, Alvarez M, et al. Bacillus cereus infections in traumatology-orthopaedics department: retrospective investigation and improvement of healthcare practices. J Infect 2005; 50:22–30PubMedCrossRefGoogle Scholar
  47. 47.
    Pillai A, Thomas S, Arora J. Bacillus cereus: the forgotten pathogen. Surg Infect 2006; 7:305–308CrossRefGoogle Scholar
  48. 48.
    Rutala WA, Saviteer SM, Thomann CA, Wilson MB. Plaster-associated Bacillus cereus wound infection. Orthopedics 1986; 9:575–577PubMedGoogle Scholar
  49. 49.
    Stansfield R, Caudle S. Bacillus cereus and orthopaedic surgical wound infection associated with incontinence pads manufactured from virgin wood pulp. J Hosp Infect 1997; 37:336–338PubMedCrossRefGoogle Scholar
  50. 50.
    Hemady R, Zaltas M, Paton B, Foster CS, Baker AS. Bacillus-induced endophthalmitis: new series of 10 cases and review of the literature. Br J Ophthalmol 1990; 74:26–29PubMedCrossRefGoogle Scholar
  51. 51.
    Reynolds DS, Flynn HW Endophthalmitis after penetrating ocular trauma. Curr Opin Ophthalmol 1997; 8:32–38Google Scholar
  52. 52.
    Duch-Samper AM, Chaques-Alepuz V, Menezo JL, Hurtado-Sarrio M. Endophthalmitis following open-glove injuries. Curr Opin Ophthalmol 1998; 9:59–65PubMedCrossRefGoogle Scholar
  53. 53.
    Choudhuri KK, Sharma S, Garg P, Rao GN. Clinical and microbiologic profile of Bacillus keratitis. Cornea 2000; 19:301–306PubMedCrossRefGoogle Scholar
  54. 54.
    Das T, Choudhury K, Sharma S, Jaladi S, Nuthethi R. Clinical profile and outcome in Bacillus endophthalmitis. Ophthalmology 2001; 108:1819–1825PubMedCrossRefGoogle Scholar
  55. 55.
    Chhabra S, Kunimoto DY, Kazi L, et al. Endophthalmitis after open globe injury: microbiologic spectrum and susceptibilities of isolates. Am J Ophthalmol 2006; 142:852–854PubMedCrossRefGoogle Scholar
  56. 56.
    Gaur AH, Patrick CC, McCullers JA, et al. Bacillus cereus bacteremia and meningitis in immunocompromised children. Clin Infect Dis 2001; 32:1456–1462PubMedCrossRefGoogle Scholar
  57. 57.
    Weisse ME, Bass JW, Jarrett RV, Vincent JM. Nonanthrax Bacillus infections of the central nervous system. Pediatr Infect Dis J 1991; 10:243–246PubMedCrossRefGoogle Scholar
  58. 58.
    Tokieda K, Morikawa Y, Maeyama K, Mori K, Ikeda K. Clinical manifestations of Bacillus cereus meningitis in newborn infants. J Paediatr Child Health 1999; 35:582–584PubMedCrossRefGoogle Scholar
  59. 59.
    Frankard J, Li R, Taccone F, Struelens MJ, Jacobs F, Kentos A. Bacillus cereus pneumonia in a patient with acute lymphoblastic leukemia. Eur J Microbiol Infect Dis 2004; 23:725–728Google Scholar
  60. 60.
    Steen MK, Bruno-Murtha LA, Chaux G, Lazar H, Bernard S, Sulis C. Bacillus cereus endocarditis: report of a case and review. Clin Infect Dis 1992; 14:945–946PubMedGoogle Scholar
  61. 61.
    Castedo E, Castro A, Martin P, Roda J, Montero CG. Bacillus cereus prosthetic valve endocarditis. Ann Thorac Surg 1999; 68:2351–2352PubMedCrossRefGoogle Scholar
  62. 62.
    Hilliard NJ, Schelonka RL, Waites KB. Bacillus cereus bacteremia in a preterm neonate. J Clin Microbiol 2003; 41:3441–3444PubMedCrossRefGoogle Scholar
  63. 63.
    Musa MO, Al Douri MA, Khan S, ShafiT, Al Humaidh A, Al Rasheed AM. Fulminant septicaemic syndrome of Bacillus cereus: three case reports. J Infect 1999; 39:154–156PubMedCrossRefGoogle Scholar
  64. 64.
    Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on Gram-positive and resistant bacteria. Clin Infect Dis 1999; 29:490–494PubMedCrossRefGoogle Scholar
  65. 65.
    Ozkocamen V, Ozcelik T, Ali R, et al. Bacillus spp. among hospitalized patients with haematological malignancies: clinical features, epidemics and outcomes. J Hosp Infect 2006; 64:169–176Google Scholar
  66. 66.
    Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement, 2006. CLSI document M100-S16. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, PAGoogle Scholar
  67. 67.
    Mohammed MJ, Marston CK, Popovic T, Weyant RS, Tenover FC. Antimicrobial susceptibility testing of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and Etest agar gradient diffusion methods. J Clin Microbiol 2002; 40:1902–1907PubMedCrossRefGoogle Scholar
  68. 68.
    Lightfoot NF, Scott RJD, Turnball PCB. Antimicrobial susceptibility of Bacillus anthracis. Salisbury Med Bull 1990; 68(suppl):95–98Google Scholar
  69. 69.
    Odendaal MW, Pieterson PM, de Vos V, Botha AD. The antibiotic sensitivity patterns of Bacillus anthracis isolated from Kruger National Park. Onderstepoort J Vet Res 1991; 58:17–19PubMedGoogle Scholar
  70. 70.
    Doganay M, Aydin N. Antimicrobial susceptibility of Bacillus anthracis. Scand J Infect Dis 1991; 23:333–335PubMedCrossRefGoogle Scholar
  71. 71.
    Bryskier A. Bacillus anthracis and antibacterial agents. Clin Microbiol Infect 2002; 8:467–478PubMedCrossRefGoogle Scholar
  72. 72.
    Drago L, de Vecchi E, Lombardi A, Nicola L, Valli M, Gismondo MR. Bactericidal activity of levofloxacin, gatifloxacin, penicillin, meropenem and rokitamycin against Bacillus anthracis clinical isolates. J Antimicrob Chemother 2002; 50:1059–1063PubMedCrossRefGoogle Scholar
  73. 73.
    Bakici MZ, Eladi N, Bakir M, Bokmetas I, Erandac M, Turan M. Antimicrobial susceptibility of Bacillus anthracis in an endemic area. Scand J Infect Dis 2002; 34:564–566PubMedCrossRefGoogle Scholar
  74. 74.
    Cavallo J-D, Ramisse F, Girardet M, Vaissaire J, Mock M, Hernandez E. Antimicrobial susceptibilities of 96 isolates of Bacillus anthracis isolated in France between 1994 and 2000. Antimicrob Agents Chemother 2002; 46:2307–2309PubMedCrossRefGoogle Scholar
  75. 75.
    Cooker PR, Smith KL, Hugh-Jones ME. Antimicrobial susceptibilities of diverse Bacillus anthracis isolates. Antimicrob Agents Chemother 2002; 46:3843–3845CrossRefGoogle Scholar
  76. 76.
    Frean J, Klugman KP, Arntzen L, Bukofzer S. Susceptibility of Bacillus anthracis to eleven antimicrobial agents including novel fluoroquinolones and a ketolide. J Antimicrob Chemother 2003; 52:297–299PubMedCrossRefGoogle Scholar
  77. 77.
    Jones ME, Goguen J, Critchley IA, et al. Antibiotic susceptibility of isolates of Bacillus anthracis, a bacterial pathogen with the potential use in biowarfare. Clin Microbiol Infect 2003; 9:984–986PubMedCrossRefGoogle Scholar
  78. 78.
    Turnbull PCB, Sirianni NM, LeBron CI, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thurigiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by Etest. J Antimicrob Chemother 2004; 42:3626–3634Google Scholar
  79. 79.
    Athamna A, Massalha M, Athamna M, et al. In vitro susceptibilities of Bacillus anthracis to various antibacterial agents and timekill activity. J Antimicrob Chemother 2004; 53:247–251PubMedCrossRefGoogle Scholar
  80. 80.
    Athamna A, Athamna M, Nura A, et al. Is in vitro antibiotic combination more effective than single-drug therapy against anthrax. Antimicrob Agents Chemother 2005; 49:1323–1325PubMedCrossRefGoogle Scholar
  81. 81.
    Anthamna A, Athamna M, Medlej B, Bast DJ, Rubinstein E. In vitro post-antibiotic effect of fluoroquinolones, macrolides, β -lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin— dalfopristin and rifampin on Bacillus anthracis. J Antimicrob Chemother 2004; 53:609–615CrossRefGoogle Scholar
  82. 82.
    Severn M. A fatal case of pulmonary anthrax. Br Med J 1976; 1:748PubMedCrossRefGoogle Scholar
  83. 83.
    Bradaric N, Punda-Polic J. Cutaneous anthrax due to penicillinresistant Bacillus anthracis transmitted by insect bite. Lancet 1992; 340:306–307PubMedCrossRefGoogle Scholar
  84. 84.
    Lalitha MK. Penicillin resistance in Bacillus anthracis. Lancet 1997; 349:1522PubMedCrossRefGoogle Scholar
  85. 85.
    Chen Y, Tenover FC, Koekler TM. β -lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother 2004; 48:4873–4877PubMedCrossRefGoogle Scholar
  86. 86.
    Chen Y, Succi J, Tenover FC, Koekler TM. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol 2003; 185:823–830PubMedCrossRefGoogle Scholar
  87. 87.
    Materon IC, Queenan AM, Koehler TM, Bush K, Palzkill T. Biochemical characterization of β -lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother 2993; 47:2040–2042CrossRefGoogle Scholar
  88. 88.
    Beharry Z, Chen H, Gadhachanda VR, Buynak JD, Palzkill T. Evaluation of penicillin-based inhibitors of the class A and B β -lactamases from Bacillus anthracis. Biochem Biophysical Res Commun 2004; 313:541–545CrossRefGoogle Scholar
  89. 89.
    Kim HS, Choi EC, Kim BK. A macrolide-lincosamide- streptogramin B resistance determination from Bacillus anthracis 590: cloning and expression of ermJ. J Gen Microbiol 1993; 139:601–607PubMedGoogle Scholar
  90. 90.
    Choe CH. In vitro development of resistance to ofloxacin and doxycycline in Bacillus anthracis Sterne. Antimicrob Agents Chemother 2000; 44:1766PubMedCrossRefGoogle Scholar
  91. 91.
    Brook I, Elliott TB, Pryor II HI, et al. In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolones. Int J Antimicrob Agents 2001; 18:559–562PubMedCrossRefGoogle Scholar
  92. 92.
    Athamna A, Athamna M, Abu-Rashed N, Medlej B, Bast DJ, Rubinstein E. Selection of Bacillus anthracis isolates resistant to antibiotics. J Antimicrob Chemother 2004; 54:424–428PubMedCrossRefGoogle Scholar
  93. 93.
    Inglesby T V, Henderson DA, Bartlett JG, et al. Anthrax as a biological weapon, 1999. JAMA 2002; 281:1735–1745CrossRefGoogle Scholar
  94. 94.
    Friedlander AM, Welkos SL, Pitt ML, et al. Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis 1993; 167:1239–1243PubMedGoogle Scholar
  95. 95.
    Centers for Disease Control and Prevention. Update: investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001. Morb Mort Weekly Rep (MMWR) 2001; 50:909–919Google Scholar
  96. 96.
    Centers for Disease Control and Prevention. Update: interim recommendations for antimicrobial prophylaxis for children and breastfeeding mothers and treatment for children with anthrax. Morb Mort Weekly Rep (MMWR) 2001; 50:1014–1016Google Scholar
  97. 97.
    Brook I. The prophylaxis and treatment of anthrax. Int J Antimicrob Agents 2002; 20:320–325PubMedCrossRefGoogle Scholar
  98. 98.
    Meselson M, Guillemin J, Langmuir MH-A, Popova I, Yampolskaya ASO. The Sverdlovsk anthrax outbreak of 1979. Science 1994; 266:1202–1208PubMedCrossRefGoogle Scholar
  99. 99.
    Centers for Disease Control and Prevention. Update: investigation of bioterrorism-related anthrax and interim guidelines for clinical evaluation of persons with possible anthrax. Morb Mort Weekly Rep (MMWR) 2001; 50:941–948Google Scholar
  100. 100.
    Barlett JG, Inglesby T V, Borio L. Management of anthrax. Clin Infect Dis 2002; 35:851–858CrossRefGoogle Scholar
  101. 101.
    Brook I, Germana A, Giraldo DE, et al. Clindamycin and quinolone therapy for Bacillus anthracis Sterne infection in 60Co-gamma-photon-irradiated and sham-irradiated mice. J Antimicrob Chemother 2005; 56:1074–1080PubMedCrossRefGoogle Scholar
  102. 102.
    Henderson DW, Peacock S, Belton FC. Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J Hyg 1956; 54:28–36CrossRefGoogle Scholar
  103. 103.
    Vietri NJ, Purcell BK, Lawler J V, et al. Short-course post-exposure antibiotic prophylaxis combined with vaccination protects against experimental inhalation anthrax. PNAS 2006; 103:7813–7816PubMedCrossRefGoogle Scholar
  104. 104.
    Altboum Z, Gozes Y, Barnea A, Pass A, White M, Kobiler D. Postexposure prophylaxis against anthrax: evaluation of various treatment regiments in intranasally infected guinea pigs. Infect Immun 2002; 70:6231–6241PubMedCrossRefGoogle Scholar
  105. 105.
    Fowler RA, Sanders GD, Bravata DM, et al. Cost-effectiveness of defending against bioterrorism: a comparison of vaccination and antibiotic prophylaxis against anthrax. Ann Intern Med 2005; 142:601–610PubMedGoogle Scholar
  106. 106.
    Sejvar JJ, Tenover FC, Stephens DS. Management of anthrax meningitis. Lancet Infect Dis 2005; 5:287–295PubMedCrossRefGoogle Scholar
  107. 107.
    Sever JL, Brenner AI, Gale AD, et al. Safety of anthrax vaccine: an expanded review and evaluation of adverse events reported to the Vaccine Adverse Event Reporting System (VAERS). Pharmacoepidemiol Drug Saf 2004; 13:825–840PubMedCrossRefGoogle Scholar
  108. 108.
    Wells TS, Sato PA, Smith TC, Wang LZ, Reed RJ, Ryan MAK. Military hospitalizations among deployed US service members following anthrax vaccination, 1998–2001. Hum Vaccin 2006; 2:54–59PubMedGoogle Scholar
  109. 109.
    Centers for Disease Control and Prevention. Bioterrorism alleging use of anthrax and interim guidelines for management — United States, 1998. Morb Mort Weekly Rep (MMWr) 1999; 48:69–74Google Scholar
  110. 110.
    Centers for Disease Control and Prevention. Update: investigation of anthrax-associated with intentional exposure and interim public health guidelines, October 2001. Morb Mort Weekly Rep (MMWR) 2001; 50:889–893Google Scholar
  111. 111.
    Centers for Disease Control and Prevention. Updated recommendations for antimicrobial prophylaxis among asymptomatic pregnant women after exposure to Bacillus anthracis. Morb Mort Wkly Rep (MMWR) 2001; 50:960Google Scholar
  112. 112.
    Centers for Disease Control and Prevention. (2001) Update: investigation of bioterrorism-related anthrax and adverse events from antimicrobial prophylaxis. Morb. Mort Wkly Rep (MMWR) 2001; 50:973–976Google Scholar
  113. 113.
    Centers for Disease Control and Prevention. Update: adverse events associated with anthrax prophylaxis among post employees — New Jersey, New York City, and the District of Columbia Metropolitan area, 2001. Morb Mort Weekly Rep (MMWR) 2001; 50:1031–1034Google Scholar
  114. 114.
    Centers for Disease Control and Prevention. Update: adverse events associated with anthrax prophylaxis among post employees — New Jersey, New York City, and the District of Columbia Metropolitan area, 2001. Morb Mort Weekly Rep (MMWR) 2001; 50:1051–1054Google Scholar
  115. 115.
    Shepard CW, Soriano-Gabarro M, Zell ER, et al. Antimicrobial postexposure prophylaxis for anthrax: adverse events and adherence. Emerg Infect Dis 2002; 8:1124–1132PubMedGoogle Scholar
  116. 116.
    Tierney BC, Martin SW, Franzke LH, et al. Serious adverse events among participants in the Centers for Disease Control and Prevention' s anthrax vaccine and antimicrobial availability program for persons at risk for bioterrorism-related inhalation anthrax. Clin Infect Dis 2003; 37:905–911PubMedCrossRefGoogle Scholar
  117. 117.
    Martin SW, Tierney BC, Aranas A, et al. An overview of adverse events reported by participants in CDC' s anthrax vaccine and antimicrobial availability program. Pharmacoepidemol Drug Saf 2005; 14:393–401CrossRefGoogle Scholar
  118. 118.
    Jorgensen JH, Hindler JF. New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin Infect Dis 2007; 44:280–286PubMedCrossRefGoogle Scholar
  119. 119.
    Clinical and Laboratory Standards Institute Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline. CLIS document M45-A, CLIS, 2006, Wayne, PAGoogle Scholar
  120. 120.
    Andrews JM, Wise R. Susceptibility testing of Bacillus species. J Antimicrob Chemother 2002; 49:1039–1046CrossRefGoogle Scholar
  121. 121.
    Weber DJ, Saviteer SM, Rutala WA, Thomann CA. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents. Antimicrob Agents Chemother 1988; 32:642–645PubMedGoogle Scholar
  122. 122.
    Turnbull PCB, Sirianni NM, LeBron CI, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the Etest. J Clin Microbiol 2004; 42:3626–3634PubMedCrossRefGoogle Scholar
  123. 123.
    Banerjee C, Bustamante CI, Wharton R, Talley E, Wade JC. Bacillus infections in patients with cancer. Arch Intern Med 1988; 148:1769–1774PubMedCrossRefGoogle Scholar
  124. 124.
    Wong MT, Dolan MJ. Significant infections due to Bacillus species following abrasions associated with motor vehicle-related trauma. Clin Infect Dis 1992; 15:855–857PubMedGoogle Scholar
  125. 125.
    Krause A, Freeman R, Sisson PR, Murphy OM. Infection with Bacillus cereus after close-range gunshot injuries. J Trauma 1996; 41:546–548PubMedCrossRefGoogle Scholar
  126. 126.
    Kunimoto DK, Das T, Sharma S, et al. Microbiologic spectrum and susceptibility of isolates: part II. Posttraumatic endophthalmitis. Am J Ophthalmol 1999; 128:242–244PubMedCrossRefGoogle Scholar
  127. 127.
    Chhabra S, Kunimoto DY, Kazi L, et al. Endophthalmitis after open globe injury: microbiologic spectrum and susceptibilities of isolates. Am J Ophthalmol 2006; 142:852–854PubMedCrossRefGoogle Scholar
  128. 128.
    Handal T, Olsen I, Walker CB, Caugant DA. β -lactamase production and antimicrobial susceptibility of subgingival bacteria from refractory periodontitis. Oral Microbiol Immunol 2004; 19:303–308PubMedCrossRefGoogle Scholar
  129. 129.
    Johnson DM, Biedenbach DJ, Jones RN. Potency and antimicrobial spectrum update for piperacillin/tazobactam (2000): emphasis on its activity against resistant organism populations and generally untested species causing community-acquired respiratory tract infections. Diagn Microbiol Infect Dis 2002; 43:49–60PubMedCrossRefGoogle Scholar
  130. 130.
    Streit JM, Jones RN, Sadar HS. Daptomycin activity and spectrum: a worldwide sample of 6737 clinical Gram-positive organisms. J Antimicrob Chemother 2004; 53:669–674PubMedCrossRefGoogle Scholar
  131. 131.
    Gigantelli JW, Gomez JT, Osato MS. In vitro susceptibilities of ocular Bacillus cereus isolates to clindamycin, gentamicin, and vancomycin alone or in combination. Antimicrob Agents Chemother 1991; 35:201–202PubMedGoogle Scholar
  132. 132.
    Coonrod JD, Leadley PJ, Eickhoff TC. Antibiotic susceptibility of Bacillus species. J Infect Dis 1971; 123:102–105PubMedGoogle Scholar
  133. 133.
    Uraz G, Simsek H, Maras Y. Determination of beta-lactamase activities and antibiotic susceptibility of some Bacillus strains causing food poisoning. Drug Metabol Drug Interact 2001; 18:69–77PubMedGoogle Scholar
  134. 134.
    Centers for Disease Control and Prevention. Healthcare-Associated Infections. www.cdc.gov/ncidod/dhqp/healthDis.html. Accessed December 27, 2006
  135. 135.
    Spaulding EH. Chemical sterilization of surgical instruments. Surg Gynecol Obstet 1939; 69:738–744Google Scholar
  136. 136.
    Weber DJ, Sickbert-Bennett E, Gergen MF, Rutala WA. Efficacy of selected hand hygiene agents used to remove Bacillus atropheus (a surrogate of Bacillus anthracis) from contaminated hands. JAMA 2003; 289:1274–1277PubMedCrossRefGoogle Scholar
  137. 137.
    Centers for Disease Control and Prevention. Update: cutaneous anthrax in a laboratory worker — Texas, 2002. Morb Mort Weekly Rep (MMWR) 2002; 51:482Google Scholar
  138. 138.
    Hseuh P-R, Teng L-J, Yang P-C, Pan H-H, Ho S-W, Luh K-T. Nosocomial pseudoepidemic caused by Bacillus cereus traced to contaminated ethyl alcohol from a liquor factory. J Clin Microb 1999; 37:2280–2284Google Scholar
  139. 139.
    Brazis AR, Leslie JE, Kabler PW, Woodward RL. The inactivation of spores of Bacillus globigii and Bacillus anthracis by free available chlorine. Appl Microbiol 1958; 6:338–342PubMedGoogle Scholar
  140. 140.
    Lensing HH, Oei HL. Investigations on the sporicidal and fungicidal activity of disinfectants. Zentralbl Bakteriol Mikrobiol Hyg [b] 1985; 181:487–495Google Scholar
  141. 141.
    Russell AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 1998; 4(suppl): S57–S68Google Scholar
  142. 142.
    Whitney EAS, Beatty ME, Taylor TH, Weyant R, Sobel J, Arduino MJ, Ashford DA. Inactivation of Bacillus anthracis spores. Emerg Infect Dis 2003; 9:623–627Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David J. Weber
    • 1
    • 2
  • William A. Rutala
    • 3
    • 4
    • 5
  1. 1.UNC Health CareChapel HillUSA
  2. 2.Hospital Epidemiology and Occupational HealthUNC HospitalsChapel HillUSA
  3. 3.Hospital Epidemiology, Occupational Health and Safety ProgramUNC Health Care SystemChapel HillUSA
  4. 4.UNC School of MedicineChapel HillUSA
  5. 5.Statewide Program in Infection Control and EpidemiologyUNC School of MedicineChapel HillUSA

Personalised recommendations