Advertisement

Implications of Antibiotic Resistance in Potential Agents of Bioterrorism

  • Linda M. Weigel
  • Stephen A. Morse
Part of the Infectious Disease book series (ID)

One of the latest challenges to global public health is the deliberate dissemination of a biological agent via a number of different routes, including air, water, food, and infected vectors, to affect the health of humans. U.S. Congress began to address this challenge by providing funding to the Centers for Disease Control and Prevention (CDC) to enhance the ability of the nation’s epidemiology and laboratory systems to respond to the deliberate release of a biological agent (1). A Strategic National Stockpile (SNS, formerly called the National Pharmaceutical Stockpile) was also established to provide large quantities of essential medical materiel to states and communities during such an emergency. The SNS contains antibiotics as well as chemical antidotes, antitoxins, life-support medications, intravenous administration kits, airway maintenance supplies, and medical/surgical items (2). The broad–spectrum antibiotics in the SNS play an important role in providing postexposure prophylaxis and treatment for individuals exposed to or infected with a bacterial agent as a result of a deliberate release. The antibiotics in the SNS were selected, in part, for their effectiveness on the basis of the current data for antimicrobial susceptibility of each bacterial species. However, revelations during the last decade suggested that in the former Soviet Union, a priority of the offensive biological weapons program was the development of recombinant organisms that were resistant to common therapies (3–5). With the increased potential for deliberate dispersal of antimicrobial–resistant pathogens, determining the antimicrobial susceptibility of suspected agents of bioterrorism has become essential for selection and distribution of effective prophylactic or therapeutic treatments. The objective of this chapter is to examine issues concerning antimicrobial susceptibility testing and antimicrobial resistance in selected bacterial agents that have been identifi ed for public health preparedness efforts.

Keywords

Antimicrobial Susceptibility Antimicrob Agent Polymerase Chain Reac Bacillus Anthracis Fusaric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khan AS, Morse S, Lillibridge S. Public-health preparedness for biological terrorism in the USA. Lancet 2000;356(9236):1179–1182PubMedCrossRefGoogle Scholar
  2. 2.
    Strikas RA, Sinclair MF, Morse SA. Centers for Disease Control and Prevention's bioterrorism preparedness program. In: Pilch RF, Zilinskas RA, eds. Encyclopedia of Bioterrorism Defense. Hoboken, NJ: Wiley-Liss; 2005Google Scholar
  3. 3.
    Alibek K, Handleman S. Biohazard. New York: Random House; 1999Google Scholar
  4. 4.
    Lindler LE, Choffnes E, Korch GW. Definition and overview of emerging threats. In: Lindler LE, Lebeda FJ, Korch GW, eds. Biological Weapons Defense: Infectious Diseases and Counterbioterrorism. Totowa, NJ: Humana; 2005Google Scholar
  5. 5.
    Ainscough M. Next generation bioweapons: Genetic engineering and biowarfare. In: Davis J, Schneider B, eds. The Gathering Biological Warfare Storm, 2nd edn. Maxwell Air Force Base, AL: USAF Counterproliferation Center; 2002:253–288Google Scholar
  6. 6.
    Carus WS. Bioterrorism and Biocrimes: The Illicit Use of Biological Agents Since 1900. Amsterdam: Fredonia books; 2002Google Scholar
  7. 7.
    Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM. Public health assessment of potential biological terrorism agents. Emerg Infect Dis 2002;8(2):225–230PubMedGoogle Scholar
  8. 8.
    Orent W. Plague: The Mysterious Past and Terrifying Future of the World's Most Dangerous Disease. New York: Free Press; 2004Google Scholar
  9. 9.
    Turnbull PCB. Anthrax history, disease, and ecology. In: Koehler TM, ed. Anthrax, Current Topics in Microbiology and Immunology. Berlin: Springer-Verlag; 2002Google Scholar
  10. 10.
    Suffin SC, Carnes WH, Kaufmann AF. Inhalation anthrax in a home craftsman. Hum Pathol 1978;9(5):594–597PubMedCrossRefGoogle Scholar
  11. 11.
    Srinivasan A, Kraus CN, DeShazer D, et al. Glanders in a military research microbiologist. N Engl J Med 2001;345(4):256–258PubMedCrossRefGoogle Scholar
  12. 12.
    Miller J, Engelberg S, Broad W. Germs: Biological Weapons and America's Secret War. New York: Simon & Schuster; 2001Google Scholar
  13. 13.
    Kolavic SA, Kimura A, Simons SL, Slutsker L, Barth S, Haley CE. An outbreak of Shigella dysenteriae type 2 among laboratory workers due to intentional food contamination. JAMA 1997;278(5):396–398PubMedCrossRefGoogle Scholar
  14. 14.
    Moran GJ. Threats in bioterrorism. II: CDC category B and C agents. Emerg Med Clin North Am 2002;20(2):311–330PubMedCrossRefGoogle Scholar
  15. 15.
    Kaufman AF, Meltzer MI, Schmid GP. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable. Emerg Infect Dis 1997;3:83–94CrossRefGoogle Scholar
  16. 16.
    Morse S, Kellogg RB, Perry S, et al. Detecting biothreat agents: the Laboratory Response Network. ASM News 2003;69:433–437Google Scholar
  17. 17.
    Gilchrist MJR. A national laboratory network for bioterrorism: Evolution from a prototype network of laboratories performing routine surveillance. Mil Med 2000;165(Suppl 2):28–31PubMedGoogle Scholar
  18. 18.
    Jernigan JA, Stephens DS, Ashford DA, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001;7(6):933–944PubMedGoogle Scholar
  19. 19.
    Hsu VP, Lukacs SL, Handzel T, et al. Opening a Bacillus anthra-cis-containing envelope, Capitol Hill, Washington, D.C.: the public health response. Emerg Infect Dis 2002;8(10):1039–1043PubMedGoogle Scholar
  20. 20.
    Shepard CW, Soriano-Gabarro M, Zell ER, et al. Antimicrobial postexposure prophylaxis for anthrax: adverse events and adherence. Emerg Infect Dis 2002;8(10):1124–1132PubMedGoogle Scholar
  21. 21.
    Torok TJ, Tauxe RV, Wise RP, et al. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA 1997;278(5):389–395PubMedCrossRefGoogle Scholar
  22. 22.
    Feldman KA, Enscore RE, Lathrop SL, et al. An outbreak of primary pneumonic tularemia on Martha's Vineyard. N Engl J Med 2001;345(22):1601–1606PubMedCrossRefGoogle Scholar
  23. 23.
    Imported plague — New York City, 2002. MMWR Morbid Mortal Wkly Rep 2003;52:725–728Google Scholar
  24. 24.
    Inhalation anthrax associated with dried animal hides: Pennsylvania and New York City, 2006. MMWR Morb Mortal Wkly Rep 2006;55:280–282Google Scholar
  25. 25.
    Treadwell TA, Koo D, Kuker K, Khan AS. Epidemiologic clues to bioterrorism. Public Health Rep 2003;118(2):92–98PubMedGoogle Scholar
  26. 26.
    Tenover FC. Antimicrobial susceptibility testing of bacterial agents of bioterrorism: strategies and considerations. In: White DG, Alekshun MN, McDermott PF, eds. Frontiers in Antimicrobial Resistance: A Tribute to Stuart B. Levy. Washington, DC: ASM Press; 2005Google Scholar
  27. 27.
    Athamna A, Athamna M, Abu-Rashed N, Medlej B, Bast DJ, Rubinstein E. Selection of Bacillus anthracis isolates resistant to antibiotics. J Antimicrob Chemother 2004;54(2):424–428PubMedCrossRefGoogle Scholar
  28. 28.
    Price LB, Vogler A, Pearson T, Busch JD, Schupp JM, Keim P. In vitro selection and characterization of Bacillus anthracis mutants with high-level resistance to ciprofloxacin. Antimicrob Agents Chemother 2003;47(7):2362–2365PubMedCrossRefGoogle Scholar
  29. 29.
    Biotechnology Research in an Age of Terrorism. Washington, DC: The National Academies Press; 2004Google Scholar
  30. 30.
    Agerso Y, Jensen LB, Givskov M, Roberts MC. The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS Microbiol Lett 2002;214(2):251–256PubMedCrossRefGoogle Scholar
  31. 31.
    Brook I, Elliott TB, Pryor HI, II, et al. In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolo-nes. Int J Antimicrob Agents 2001;18(6):559–562PubMedCrossRefGoogle Scholar
  32. 32.
    Grohs P, Podglajen I, Gutmann L. Activities of different fluoroqui-nolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations. Antimicrob Agents Chemother 2004;48(8):3024–3027PubMedCrossRefGoogle Scholar
  33. 33.
    Mohammed MJ, Marston CK, Popovic T, Weyant RS, Tenover FC. Antimicrobial susceptibility testing of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and Etest agar gradient diffusion methods. J Clin Microbiol 2002;40(6):1902–1907PubMedCrossRefGoogle Scholar
  34. 34.
    Acar JF, Goldstein FW. Disk susceptibility test. In: Lorian V, ed. Antibiotics in Laboratory Medicine, 4th ed. Baltimore, MD: Williams & Wilkins; 1996:1–51Google Scholar
  35. 35.
    Wilkinson GR. Pharmacokinetics: the dynamics of drugs absorption, distribution and elimination. In: Hardman JG, Limbird LL, eds. The Pharmacological Basis of Therapeutics. New York: McGraw Hill Medical Publishing Division; 2001:3–30Google Scholar
  36. 36.
    Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am 2003;17(3):615–634PubMedCrossRefGoogle Scholar
  37. 37.
    Mandell GL, Coleman E. Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 2001;45(6):1794–1798PubMedCrossRefGoogle Scholar
  38. 38.
    Martin JR, Johnson P, Miller MF. Uptake, accumulation, and egress of erythromycin by tissue culture cells of human origin. Antimicrob Agents Chemother 1985;27(3):314–319PubMedGoogle Scholar
  39. 39.
    Miller MF, Martin JR, Johnson P, Ulrich JT, Rdzok EJ, Billing P. Erythromycin uptake and accumulation by human polymorphonu-clear leukocytes and efficacy of erythromycin in killing ingested Legionella pneumophila. J Infect Dis 1984;149(5):714–718PubMedGoogle Scholar
  40. 40.
    Tyteca D, Van Der Smissen P, Van Bambeke F, et al. Azithromycin, a lysosomotropic antibiotic, impairs fluid-phase pinocytosis in cultured fibroblasts. Eur J Cell Biol 2001;80(7):466–478PubMedCrossRefGoogle Scholar
  41. 41.
    Anderson R, Van Rensburg CE, Joone G, Lukey PT. An in-vitro comparison of the intraphagocytic bioactivity of erythromycin and roxithromycin. J Antimicrob Chemother 1987;20 Suppl B:57–68PubMedGoogle Scholar
  42. 42.
    Ohkuma S, Poole B. Fluorescence probe measurement of the intra-lysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 1978;75(7):3327–3331PubMedCrossRefGoogle Scholar
  43. 43.
    de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol 1974;23(18):2495–2531PubMedCrossRefGoogle Scholar
  44. 44.
    Easmon CS, Crane JP. Uptake of ciprofloxacin by macrophages. J Clin Pathol 1985;38(4):442–444PubMedCrossRefGoogle Scholar
  45. 45.
    Carlier MB, Scorneaux B, Zenebergh A, Desnottes JF, Tulkens PM. Cellular uptake, localization and activity of fluoroquinolones in uninfected and infected macrophages. J Antimicrob Chemother 1990;26 Suppl B:27–39PubMedGoogle Scholar
  46. 46.
    Garcia I, Pascual A, Ballesta S, Perea EJ. Uptake and intracellular activity of ofloxacin isomers in human phagocytic and non-phago-cytic cells. Int J Antimicrob Agents 2000;15(3):201–205PubMedCrossRefGoogle Scholar
  47. 47.
    Bonventre PF, Hayes R, Imhoff J. Autoradiographic evidence for the impermeability of mouse peritoneal macrophages to tritiated streptomycin. J Bacteriol 1967;93(1):445–450PubMedGoogle Scholar
  48. 48.
    Van der Auwera P, Matsumoto T, Husson M. Intraphagocytic penetration of antibiotics. J Antimicrob Chemother 1988;22(2):185–192PubMedCrossRefGoogle Scholar
  49. 49.
    Hand WL, King-Thompson NL, Steinberg TH. Interactions of antibiotics and phagocytes. J Antimicrob Chemother 1983;12 Suppl C:1–11PubMedGoogle Scholar
  50. 50.
    Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother 2001;45(11):2977–2986PubMedCrossRefGoogle Scholar
  51. 51.
    Najar I, Oberti J, Teyssier J, Caravano R. Kinetics of the uptake of rifampicin and tetracycline into mouse macrophages. In vitro study of the early stages. Pathol Biol (Paris) 1984;32(2):85–89Google Scholar
  52. 52.
    Berneis K, Boguth W. Distribution of sulfonamides and sul-fonamide potentiators between red blood cells, proteins and aqueous phases of the blood of different species. Chemotherapy 1976;22(6):390–409PubMedCrossRefGoogle Scholar
  53. 53.
    Pallister CJ, Lewis RJ. Effects of antimicrobial drugs on human neutrophil—microbe interactions. Br J Biomed Sci 2000;57(1): 19–27PubMedGoogle Scholar
  54. 54.
    Solera J, Martinez-Alfaro E, Espinosa A. Recognition and optimum treatment of brucellosis. Drugs 1997;53(2):245–256PubMedCrossRefGoogle Scholar
  55. 55.
    Perry RD, Fetherston JD. Yersinia pestis — etiologic agent of plague. Clin Microbiol Rev 1997;10(1):35–66PubMedGoogle Scholar
  56. 56.
    Enderlin G, Morales L, Jacobs RF, Cross JT. Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin Infect Dis 1994;19(1):42–47PubMedGoogle Scholar
  57. 57.
    Meyers BR. Tuberculous meningitis. Med Clin North Am 1982;66(3):755–762PubMedGoogle Scholar
  58. 58.
    Morse SA, Budowle B. Microbial forensics: application to bio-terrorism preparedness and response. Infect Dis Clin North Am 2006;20(2):455–73, xiPubMedCrossRefGoogle Scholar
  59. 59.
    Mikesell P, Ivins BE, Ristroph JD, Dreier TM. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun 1983;39(1):371–376PubMedGoogle Scholar
  60. 60.
    Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE. Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 1985;49(2):291–297PubMedGoogle Scholar
  61. 61.
    CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2006Google Scholar
  62. 62.
    Doganay M, Aydin N. Antimicrobial susceptibility of Bacillus anthracis. Scand J Infect Dis 1991;23(3):333–335PubMedCrossRefGoogle Scholar
  63. 63.
    Coker PR, Smith KL, Hugh-Jones ME. Antimicrobial susceptibilities of diverse Bacillus anthracis isolates. Antimicrob Agents Chemother 2002;46(12):3843–3845PubMedCrossRefGoogle Scholar
  64. 64.
    Cavallo JD, Ramisse F, Girardet M, Vaissaire J, Mock M, Hernandez E. Antibiotic susceptibilities of 96 isolates of Bacillus anthracis isolated in France between 1994 and 2000. Antimicrob Agents Chemother 2002;46(7):2307–2309PubMedCrossRefGoogle Scholar
  65. 65.
    Turnbull PC, Sirianni NM, LeBron CI, et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thur-ingiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the Etest. J Clin Microbiol 2004;42(8):3626–3634PubMedCrossRefGoogle Scholar
  66. 66.
    Bradaric N, Punda-Polic V. Cutaneous anthrax due to penicillin-resistant Bacillus anthracis transmitted by an insect bite. Lancet 1992;340(8814):306–307PubMedCrossRefGoogle Scholar
  67. 67.
    Lalitha MK, Thomas MK. Penicillin resistance in Bacillus anthra-cis. Lancet 1997;349(9064):1522PubMedCrossRefGoogle Scholar
  68. 68.
    McSwiggan DA, Hussain KK, Taylor IO. A fatal case of cutaneous anthrax. J Hyg (Lond) 1974;73(1):151–156Google Scholar
  69. 69.
    Chen Y, Tenover FC, Koehler TM. Beta-lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother 2004;48(12):4873–4877PubMedCrossRefGoogle Scholar
  70. 70.
    Materon IC, Queenan AM, Koehler TM, Bush K, Palzkill T. Biochemical characterization of beta-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother 2003;47(6):2040–2042PubMedCrossRefGoogle Scholar
  71. 71.
    Kim HS, Choi EC, Kim BK. A macrolide-lincosamide-streptogramin B resistance determinant from Bacillus anthracis 590: cloning and expression of ermJ. J Gen Microbiol 1993;139(3):601–607PubMedGoogle Scholar
  72. 72.
    Barrow EW, Bourne PC, Barrow WW. Functional cloning of Bacillus anthracis dihydrofolate reductase and confirmation of natural resistance to trimethoprim. Antimicrob Agents Chemother 2004;48(12):4643–4649PubMedCrossRefGoogle Scholar
  73. 73.
    Navashin SM, Fomina IP, Buravtseva NP, Nikitin AV, Ivanitskaya LP. Combined action of rifampicin and peptidoglycan in experimental anthracic infection [Abstract 115]. In: 18th International Congress on Chemotherapy. Stockholm: American Society of Microbiology Press; 1993Google Scholar
  74. 74.
    Saile E, Koehler TM. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 2006;72(5):3168–3174PubMedCrossRefGoogle Scholar
  75. 75.
    D'Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science 2006;311(5759):374–377PubMedCrossRefGoogle Scholar
  76. 76.
    Choe CH, Bouhaouala SS, Brook I, Elliot TB, Knudson GB. In vitro development of resistance to ofloxacin and doxycycline in Bacillus anthracis Sterne. Antimicrob Agents Chemother 2000;44(6):1766PubMedCrossRefGoogle Scholar
  77. 77.
    Bast DJ, Athamna A, Duncan CL, et al. Type II topoisomer-ase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance. J Antimicrob Chemother 2004;54(1): 90–94PubMedCrossRefGoogle Scholar
  78. 78.
    Hooper DC. Mechanisms of Quinolone Resistance. In: Hooper DC, Rubinstein E, eds. Quinolone Antimicrobial Agents, 3rd ed. Washington, DC: ASM Press; 2003:41–67Google Scholar
  79. 79.
    Pomerantsev AP, Shishkova NA, Marinin LI. [Comparison of therapeutic effects of antibiotics of the tetracycline group in the treatment of anthrax caused by a strain inheriting tet-gene of plas-mid pBC16]. Antibiot Khimioter 1992;37(4):31–34PubMedGoogle Scholar
  80. 80.
    Ruhfel RE, Robillard NJ, Thorne CB. Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringien-sis. J Bacteriol 1984;157(3):708–711PubMedGoogle Scholar
  81. 81.
    Pomerantsev AP, Staritsyn NA. [Behavior of heterologous recom-binant plasmid pCET in cells of Bacillus anthracis]. Genetika 1996;32(4):500–509PubMedGoogle Scholar
  82. 82.
    Testa RT, Petersen PJ, Jacobus NV, Sum PE, Lee VJ, Tally FP. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother 1993;37(11):2270–2277PubMedGoogle Scholar
  83. 83.
    Ivins BE, Welkos SL, Knudson GB, Leblanc DJ. Transposon Tn916 mutagenesis in Bacillus anthracis. Infect Immun 1988;56(1):176–181PubMedGoogle Scholar
  84. 84.
    Koehler TM. Bacillus anthracis genetics and virulence gene regulation. In: Koehler TM, ed. Anthrax. Berlin: Springer; 2002:144–161Google Scholar
  85. 85.
    Stepanov AV, Marinin LI, Pomerantsev AP, Staritsin NA. Development of novel vaccines against anthrax in man. J Biotechnol 1996;44(1–3):155–160PubMedCrossRefGoogle Scholar
  86. 86.
    Pomerantsev AP, Sukovatova LV, Marinin LI. [Characterization of a Rif-R population of Bacillus anthracis]. Antibiot Khimioter 1993;38(8–9):34–38PubMedGoogle Scholar
  87. 87.
    Pomerantsev AP, Sitaraman R, Galloway CR, Kivovich V, Leppla SH. Genome engineering in Bacillus anthracis using Cre recombi-nase. Infect Immun 2006;74(1):682–693PubMedCrossRefGoogle Scholar
  88. 88.
    Gutman LT. Yersinia. In: Joklik WK, Willett HP, Amos DB, Wilfert CM, eds. Zinsser Microbiology, 19th ed. Norwalk, CN: Appleton & Lange; 1988:493–501Google Scholar
  89. 89.
    Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Gage KL. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci USA 2006;103(42):15380–15385PubMedCrossRefGoogle Scholar
  90. 90.
    Butler T. Yersinia infections: centennial of the discovery of the plague bacillus. Clin Infect Dis 1994;19(4):655–661PubMedGoogle Scholar
  91. 91.
    Bonacorsi SP, Scavizzi MR, Guiyoule A, Amouroux JH, Carniel E. Assessment of a fluoroquinolone, three beta-lactams, two aminogly-cosides, and a cycline in treatment of murine Yersinia pestis infection. Antimicrob Agents Chemother 1994;38(3):481–486PubMedGoogle Scholar
  92. 92.
    Smith MD, Vinh DX, Nguyen TT, Wain J, Thung D, White NJ. In vitro antimicrobial susceptibilities of strains of Yersinia pestis. Antimicrob Agents Chemother 1995;39(9):2153–2154PubMedGoogle Scholar
  93. 93.
    Frean JA, Arntzen L, Capper T, Bryskier A, Klugman KP. In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from a southern African plague focus. Antimicrob Agents Chemother 1996;40(11):2646–2647PubMedGoogle Scholar
  94. 94.
    Wong JD, Barash JR, Sandfort RF, Janda JM. Susceptibilities of Yersinia pestis strains to 12 antimicrobial agents. Antimicrob Agents Chemother 2000;44(7):1995–1996PubMedCrossRefGoogle Scholar
  95. 95.
    Frean J, Klugman KP, Arntzen L, Bukofzer S. Susceptibility of Yersinia pestis to novel and conventional antimicrobial agents. J Antimicrob Chemother 2003;52(2):294–296PubMedCrossRefGoogle Scholar
  96. 96.
    Boulanger LL, Ettestad P, Fogarty JD, Dennis DT, Romig D, Mertz G. Gentamicin and tetracyclines for the treatment of human plague: review of 75 cases in New Mexico, 1985–1999. Clin Infect Dis 2004;38:663–669PubMedCrossRefGoogle Scholar
  97. 97.
    Galimand M, Guiyoule A, Gerbaud G, et al. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 1997;337(10):677–680PubMedCrossRefGoogle Scholar
  98. 98.
    Guiyoule A, Gerbaud G, Buchrieser C, et al. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 2001;7(1):43–48PubMedCrossRefGoogle Scholar
  99. 99.
    Kravchenko AN, Mishan'kin BN, Ryzhkov V, et al. [Trimethoprim resistance — a differential trait of strains of Yersinia pestis from a variety of voles]. Mikrobiol Zh 1990;52(4):84–88PubMedGoogle Scholar
  100. 100.
    Lindler LE, Fan W, Jahan N. Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler. J Clin Microbiol 2001;39(10):3649–3655PubMedCrossRefGoogle Scholar
  101. 101.
    Ryzhko I V, Samokhodkina ED, Tsuraeva RI, Shcherbaniuk AI, Pasiukov V V. [Experimental evaluation of prospects for the use of beta-lactams in plague infection caused by pathogens with plasmid resistance to penicillins]. Antibiot Khimioter 1998;43(11):11–15PubMedGoogle Scholar
  102. 102.
    Ryzhko IV, Shcherbaniuk AI, Skalyga E, Tsuraeva RI, Moldavan IA. [Formation of virulent antigen-modified mutants (Fra-, Fra-Tox-) of plague bacteria resistant to rifampicin and quinolones]. Antibiot Khimioter 2003;48(4):19–23PubMedGoogle Scholar
  103. 103.
    Ryzhko I V, Shcherbaniuk AI, Samokhodkina ED, et al. [Virulence of rifampicin and quinolone resistant mutants of strains of plague microbe with Fra+ and Fra- phenotypes]. Antibiot Khimioter 1994;39(4):32–36PubMedGoogle Scholar
  104. 104.
    Ryzhko IV, Tsuraeva RI, Moldavan IA, Shcherbaniuk AI. [Efficacy of plague prophylaxis with streptomycin, tetracycline, and rifampicin in simultaneous immunization of white mice by resistant EV NRIEG strain]. Antibiot Khimioter 2004;49(1):17–21PubMedGoogle Scholar
  105. 105.
    Grebtsova NN, Lebedeva SA, Cherniavskaia AS. [Mutagenic effect during transduction of (Gm-Km)R markers of the R323 plasmid in Yersinia pestis]. Mol Gen Mikrobiol Virusol 1985(3):22–27Google Scholar
  106. 106.
    Thomas R, Johansson A, Neeson B, et al. Discrimination of human pathogenic subspecies of Francisella tularensis by using restriction fragment length polymorphism. J Clin Microbiol 2003;41(1):50–57PubMedCrossRefGoogle Scholar
  107. 107.
    Ellis J, Oyston PC, Green M, Titball RW. Tularemia. Clin Microbiol Rev 2002;15(4):631–646PubMedCrossRefGoogle Scholar
  108. 108.
    McCrumb FR. Aerosol Infection of Man with Pasteurella tula-rensis. Bacteriol Rev 1961;25(3):262–267PubMedGoogle Scholar
  109. 109.
    Johansson A, Urich SK, Chu MC, Sjostedt A, Tarnvik A. In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand J Infect Dis 2002;34(5):327–330PubMedCrossRefGoogle Scholar
  110. 110.
    Ikaheimo I, Syrjala H, Karhukorpi J, Schildt R, Koskela M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J Antimicrob Chemother 2000;46(2):287–290PubMedCrossRefGoogle Scholar
  111. 111.
    Baker CN, Hollis DG, Thornsberry C. Antimicrobial susceptibility testing of Francisella tularensis with a modified Mueller-Hinton broth. J Clin Microbiol 1985;22(2):212–215PubMedGoogle Scholar
  112. 112.
    Vasi'lev NT, Oborin VA, Vasi'lev PG, Glushkova OV, Kravets ID, Levchuk BA. [Sensitivity spectrum of Francisella tularensis to antibiotics and synthetic antibacterial drugs]. Antibiot Khimioter 1989;34(9):662–665PubMedGoogle Scholar
  113. 113.
    Cross JT, Jacobs RF. Tularemia: treatment failures with outpatient use of ceftriaxone. Clin Infect Dis 1993;17(6):976–980PubMedGoogle Scholar
  114. 114.
    LoVullo ED, Sherrill LA, Perez LL, Reader MD, Pavelka M, S., Jr. Genetic analysis of beta-lactam antibiotic resistance in Francisella tularensis. In: Tularemia Workshop: University of Rochester Medical Center; 2005Google Scholar
  115. 115.
    Pavlov VM, Mokrievich AN, Volkovoy K. Cryptic plasmid pFNL10 from Francisella novicida-like F6168: the base of plasmid vectors for Francisella tularensis. FEMS Immunol Med Microbiol 1996;13(3):253–256PubMedCrossRefGoogle Scholar
  116. 116.
    Norqvist A, Kuoppa K, Sandstrom G. Construction of a shuttle vector for use in Francisella tularensis. FEMS Immunol Med Microbiol 1996;13(3):257–260PubMedCrossRefGoogle Scholar
  117. 117.
    Maier TM, Havig A, Casey M, Nano FE, Frank DW, Zahrt TC. Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 2004;70(12):7511–7519PubMedCrossRefGoogle Scholar
  118. 118.
    Pomerantsev AP, Obuchi M, Ohara Y. Nucleotide sequence, structural organization, and functional characterization of the small recombinant plasmid pOM1 that is specific for Francisella tularensis. Plasmid 2001;46(2):86–94PubMedCrossRefGoogle Scholar
  119. 119.
    Lauriano CM, Barker JR, Nano FE, Arulanandam BP, Klose KE. Allelic exchange in Francisella tularensis using PCR products. FEMS Microbiol Lett 2003;229(2):195–202PubMedCrossRefGoogle Scholar
  120. 120.
    Thibault FM, Hernandez E, Vidal DR, Girardet M, Cavallo JD. Antibiotic susceptibility of 65 isolates of Burkholderia pseu-domallei and Burkholderia mallei to 35 antimicrobial agents. J Antimicrob Chemother 2004;54(6):1134–1138PubMedCrossRefGoogle Scholar
  121. 121.
    Heine HS, England MJ, Waag DM, Byrne WR. In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test. Antimicrob Agents Chemother 2001;45(7):2119–2121PubMedCrossRefGoogle Scholar
  122. 122.
    Kenny DJ, Russell P, Rogers D, Eley SM, Titball RW. In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob Agents Chemother 1999;43(11):2773–2775PubMedGoogle Scholar
  123. 123.
    Jenney AW, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents 2001;17(2):109–113PubMedCrossRefGoogle Scholar
  124. 124.
    Yamamoto T, Naigowit P, Dejsirilert S, et al. In vitro susceptibilities of Pseudomonas pseudomallei to 27 antimicrobial agents. Antimicrob Agents Chemother 1990;34(10):2027–2029PubMedGoogle Scholar
  125. 125.
    Smith MD, Wuthiekanun V, Walsh AL, White NJ. Susceptibility of Pseudomonas pseudomallei to some newer beta-lactam antibiotics and antibiotic combinations using time-kill studies. J Antimicrob Chemother 1994;33(1):145–149PubMedCrossRefGoogle Scholar
  126. 126.
    Ashdown LR. In vitro activities of the newer beta-lactam and qui-nolone antimicrobial agents against Pseudomonas pseudomallei. Antimicrob Agents Chemother 1988;32(9):1435–1436PubMedGoogle Scholar
  127. 127.
    Moore RA, DeShazer D, Reckseidler S, Weissman A, Woods DE. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 1999;43(3):465–470PubMedGoogle Scholar
  128. 128.
    Sookpranee T, Sookpranee M, Mellencamp MA, Preheim LC. Pseudomonas pseudomallei, a common pathogen in Thailand that is resistant to the bactericidal effects of many antibiotics. Antimicrob Agents Chemother 1991;35(3):484–489PubMedGoogle Scholar
  129. 129.
    Abaev IV, Astashkin EI, Pachkunov DM, Stagis NI, Shitov VT, Svetoch EA. [Pseudomonas mallei and Pseudomonas pseudomallei: introduction and maintenance of natural and recombinant plasmid replicons]. Mol Gen Mikrobiol Virusol 1995(1):28–36Google Scholar
  130. 130.
    Zakharenko VI, Gorelov VN, Seliutina DF, Kulakov Iu K, Nenashev AV, Skavronskaia AG. [Functional properties of the pOV13 plasmid as a vector for DNA cloning in a broad spectrum of gram negative bacteria]. Mol Gen Mikrobiol Virusol 1990(1):22–26Google Scholar
  131. 131.
    Nierman WC, DeShazer D, Kim HS, et al. Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 2004;101(39):14246–14251PubMedCrossRefGoogle Scholar
  132. 132.
    Dance DA, Wuthiekanun V, Chaowagul W, Suputtamongkol Y, White NJ. Development of resistance to ceftazidime and co-amoxiclav in Pseudomonas pseudomallei. J Antimicrob Chemother 1991;28(2):321–324PubMedCrossRefGoogle Scholar
  133. 133.
    Mantur BG, Mangalgi SS, Mulimani M. Brucella melitensis-a sexually transmissible agent? Lancet 1996;347(9017):1763PubMedCrossRefGoogle Scholar
  134. 134.
    Naparstek E, Block CS, Slavin S. Transmission of brucellosis by bone marrow transplantation. Lancet 1982;1(8271):574–575PubMedCrossRefGoogle Scholar
  135. 135.
    Mortensen JE, Moore DG, Clarridge JE, Young EJ. Antimicrobial susceptibility of clinical isolates of Brucella. Diagn Microbiol Infect Dis 1986;5(2):163–169PubMedCrossRefGoogle Scholar
  136. 136.
    Bosch J, Linares J, Lopez de Goicoechea MJ, Ariza J, Cisnal MC, Martin R. In-vitro activity of ciprofloxacin, ceftriaxone and five other antimicrobial agents against 95 strains of Brucella meliten-sis. J Antimicrob Chemother 1986;17(4):459–461PubMedCrossRefGoogle Scholar
  137. 137.
    Trujillano-Martin I, Garcia-Sanchez E, Martinez IM, Fresnadillo MJ, Garcia-Sanchez JE, Garcia-Rodriguez JA. In vitro activities of six new fluoroquinolones against Brucella melitensis. Antimicrob Agents Chemother 1999;43(1):194–195PubMedGoogle Scholar
  138. 138.
    Mateu-de-Antonio EM, Martin M. In vitro efficacy of several antimicrobial combinations against Brucella canis and Brucella melitensis strains isolated from dogs. Vet Microbiol 1995;45(1):1–10PubMedCrossRefGoogle Scholar
  139. 139.
    Braibant M, Guilloteau L, Zygmunt MS. Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob Agents Chemother 2002;46(9):3050–3053PubMedCrossRefGoogle Scholar
  140. 140.
    Piddock LJ. Clinically relevant chromosomally encoded multi-drug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006;19(2):382–402PubMedCrossRefGoogle Scholar
  141. 141.
    Gorelov VN, Gubina EA, Grekova NA, Skavronskaia AG. [The possibility of creating a vaccinal strain of Brucella abortus 19-BA with multiple antibiotic resistance]. Zh Mikrobiol Epidemiol Immunobiol 1991(9):2–4Google Scholar
  142. 142.
    Raoult D, Levy P Y, Harle JR, et al. Chronic Q fever: diagnosis and follow-up. Ann N Y Acad Sci 1990;590:51–60PubMedCrossRefGoogle Scholar
  143. 143.
    Samuel JE. Developmental cycle of Coxiella burnetii. In: Brun Y V, Shimkets LJ, eds. Procaryotic Development. Washington, D.C.: ASM Press; 2000:427–440Google Scholar
  144. 144.
    Scott GH, Williams JC. Susceptibility of Coxiella burnetii to chemical disinfectants. Ann N Y Acad Sci 1990;590:291–296PubMedCrossRefGoogle Scholar
  145. 145.
    Waag DM, Thompson HA. Pathogenesis and Immunity of Coxiella Burnetii. In: Lindler L, Lebeda FJ, Korch GW, eds. Biological Weapons Defense: Infectious Diseases and Counterbioterrorism. Totowa, NJ: Humana Press; 2005:185–207Google Scholar
  146. 146.
    Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM, Jr. Biological warfare. A historical perspective. JAMA 1997;278(5):412–417PubMedCrossRefGoogle Scholar
  147. 147.
    Greenfield RA, Drevets DA, Machado LJ, Voskuhl GW, Cornea P, Bronze MS. Bacterial pathogens as biological weapons and agents of bioterrorism. Am J Med Sci 2002;323(6):299–315PubMedCrossRefGoogle Scholar
  148. 148.
    Jackson ER. Comparative efficacy of several antibiotics on experimental rickettsial infections in embryonnated eggs. Antibiot Chemother 1951;1:231–235Google Scholar
  149. 149.
    Yeaman MR, Mitscher LA, Baca OG. In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob Agents Chemother 1987;31(7):1079–1084PubMedGoogle Scholar
  150. 150.
    Zamboni DS, Mortara RA, Freymuller E, Rabinovitch M. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II. Microbes Infect 2002;4(6):591–598PubMedCrossRefGoogle Scholar
  151. 151.
    Raoult D, Torres H, Drancourt M. Shell-vial assay: evaluation of a new technique for determining antibiotic susceptibility, tested in 13 isolates of Coxiella burnetii. Antimicrob Agents Chemother 1991;35(10):2070–2077PubMedGoogle Scholar
  152. 152.
    Brennan RE, Samuel JE. Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J Clin Microbiol 2003;41(5):1869–1874PubMedCrossRefGoogle Scholar
  153. 153.
    Boulos A, Rolain JM, Maurin M, Raoult D. Measurement of the antibiotic susceptibility of Coxiella burnetii using real time PCR. Int J Antimicrob Agents 2004;23(2):169–174PubMedCrossRefGoogle Scholar
  154. 154.
    Rolain JM, Maurin M, Raoult D. Bacteriostatic and bactericidal activities of moxifloxacin against Coxiella burnetii. Antimicrob Agents Chemother 2001;45(1):301–302PubMedCrossRefGoogle Scholar
  155. 155.
    Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 1999;159(2):167–173PubMedCrossRefGoogle Scholar
  156. 156.
    Maurin M, Benoliel AM, Bongrand P, Raoult D. Phagoly sosomal alkalinization and the bactericidal effect of antibiotics: the Coxiella burnetii paradigm. J Infect Dis 1992;166(5):1097–1102PubMedGoogle Scholar
  157. 157.
    Raoult D, Bres P, Drancourt M, Vestris G. In vitro susceptibilities of Coxiella burnetii, Rickettsia rickettsii, and Rickettsia conorii to the fluoroquinolone sparfloxacin. Antimicrob Agents Chemother 1991;35(1):88–91PubMedGoogle Scholar
  158. 158.
    Gikas A, Spyridaki I, Psaroulaki A, Kofterithis D, Tselentis Y. In vitro susceptibility of Coxiella burnetii to trovafloxacin in comparison with susceptibilities to pefloxacin, ciprofloxacin, ofloxacin, doxycycline, and clarithromycin. Antimicrob Agents Chemother 1998;42(10):2747–2748PubMedGoogle Scholar
  159. 159.
    Seshadri R, Paulsen IT, Eisen JA, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 2003;100(9):5455–5460PubMedCrossRefGoogle Scholar
  160. 160.
    Yeaman MR, Baca OG. Mechanisms that may account for differential antibiotic susceptibilities among Coxiella burnetii isolates. Antimicrob Agents Chemother 1991;35(5):948–954PubMedGoogle Scholar
  161. 161.
    Yeaman MR, Roman MJ, Baca OG. Antibiotic susceptibilities of two Coxiella burnetii isolates implicated in distinct clinical syndromes. Antimicrob Agents Chemother 1989;33(7):1052–1057PubMedGoogle Scholar
  162. 162.
    Musso D, Drancourt M, Osscini S, Raoult D. Sequence of quinolone resistance-determining region of gyrA gene for clinical isolates and for an in vitro-selected quinolone-resistant strain of Coxiella burnetii. Antimicrob Agents Chemother 1996;40(4):870–873PubMedGoogle Scholar
  163. 163.
    Spyridaki I, Psaroulaki A, Aransay A, Scoulica E, Tselentis Y. Diagnosis of quinolone-resistant Coxiella burnetii strains by PCR-RFLP. J Clin Lab Anal 2000;14(2):59–63PubMedCrossRefGoogle Scholar
  164. 164.
    Brezina R, Schramek S, Kazar J. Selection of chlortetracycline-resistant strain of Coxiella burnetii. Acta Virol 1975;19(6):496PubMedGoogle Scholar
  165. 165.
    Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006;19(1):165–256PubMedCrossRefGoogle Scholar
  166. 166.
    Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 2001;15(4):209–215PubMedCrossRefGoogle Scholar
  167. 167.
    Ivnitski D, O'Neil DJ, Gattuso A, Schlicht R, Calidonna M, Fisher R. Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. Biotechniques 2003;35(4):862–869PubMedGoogle Scholar
  168. 168.
    Burton JE, Oshota OJ, North E, et al. Development of a multi-pathogen oligonucleotide microarray for detection of Bacillus anthracis. Mol Cell Probes 2005;19(5):349–357PubMedCrossRefGoogle Scholar
  169. 169.
    Smith MD, Wuthiekanun V, Walsh AL, White NJ. In-vitro activity of carbapenem antibiotics against beta-lactam susceptible and resistant strains of Burkholderia pseudomallei. J Antimicrob Chemother 1996;37(3):611–615PubMedCrossRefGoogle Scholar
  170. 170.
    Baykam N, Esener H, Ergonul O, Eren S, Celikbas AK, Dokuzoguz B. In vitro antimicrobial susceptibility of Brucella species. Int J Antimicrob Agents 2004;23(4):405–407PubMedCrossRefGoogle Scholar
  171. 171.
    Akova M, Gur D, Livermore DM, Kocagoz T, Akalin HE. In vitro activities of antibiotics alone and in combination against Brucella melitensis at neutral and acidic pHs. Antimicrob Agents Chemother 1999;43(5):1298–1300PubMedGoogle Scholar
  172. 172.
    Trujillano-Martin I, Garcia-Sanchez E, Fresnadillo MJ, Garcia-Sanchez JE, Garcia-Rodriguez JA, Montes Martinez I. In vitro activities of five new antimicrobial agents against Brucella melitensis. Int J Antimicrob Agents 1999;12(2):185–186PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Linda M. Weigel
    • 1
  • Stephen A. Morse
    • 2
  1. 1.Antimicrobial Resistance Laboratory, Division of Healthcare Quality PromotionCenters for Disease Control and PreventionAtlantaUSA
  2. 2.National Center for Preparedness, Detection, and Control of Infectious DiseasesCenters for Disease Control and PreventionAtlantaUSA

Personalised recommendations