Drug Resistance Assays for Mycobacterium tuberculosis

  • Leonid Heifets
  • Gerard Cangelosi
Part of the Infectious Disease book series (ID)

The introduction of antimicrobial therapy of tuberculosis during the second half of the last century was a turning point in the millennium-old history of this disease. However, the problem of drug resistance emerged, and with it, two levels of concern. First, such resistance not only poses a public health threat to successful control of TB epidemics, but it also complicates the approach to treatment of individual patients. In previous reviews we have addressed the history of research and evolution of views based on these studies regarding the usefulness of drug susceptibility testing (1, 2). Historically, most skepticism regarding the need for drug susceptibility testing was related to the period before introduction of rifampin (RMP) and pyrazinamide (PZA). It often referred to the inability of laboratories to provide test results rapidly enough for the information to be used to adjust treatment regimens in a timely manner. In 1990, the American Thoracic Society (ATS) and the CDC published the following statement, “Given the low prevalence of drug-resistant Mycobacterium tuberculosis (MTBC) in most parts of the United States, the cost of routine testing of all initial isolates is diffi cult to justify” (3).


Mycobacterium Tuberculosis Drug Susceptibility Polymerase Chain Reac Drug Susceptibility Testing rpoB Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heifets, L. (1991) Drug susceptibility tests in the management of chemotherapy of tuberculosis, in: Drug Susceptibility in the Chemotherapy of Mycobacterial Infections (Heifets, L.B., ed.), CRC Press, Boca Raton, FL, pp. 89–121.Google Scholar
  2. 2.
    Heifets, L.B., Cangelosi, G.A. (1999) Drug susceptibility testing of Mycobacterium tuberculosis: a neglected problem at the turn of the century. Int. J. Tuberc. Lung Dis. 3(7), 564–581.PubMedGoogle Scholar
  3. 3.
    American Thoracic Society. (1990) Diagnostic standards and classification of tuberculosis. Am. Rev. Respir. Dis. 142(3), 725–735.Google Scholar
  4. 4.
    Tenover, F.C., Crawford, J.T., Heubner, R.E., Geiter, I.J., Horsburg, C.R., Good, R.C. (1993) The resurgence of tuberculosis: is your laboratory ready? J. Clin. Microbiol. 31, 767–770.PubMedGoogle Scholar
  5. 5.
    Behr, M.A., Warren, S.A., Salamon, H., et al. (1999) Transmission of M. tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 353, 444–449.PubMedCrossRefGoogle Scholar
  6. 6.
    Gupta, R. Espinal, M.A., Raviglione, M.C. (2004) Tuberculosis as a major global health problem in 21st century, in: Tuberculosis and Other Mycobacterial Infections (Heifets, L., ed.), Semin. Respir. Crit. Care Med. 25(3), 245–253.Google Scholar
  7. 7.
    World Health Organization. (March 24, 1997) TB Treatment Observer. WHO, Geneva.Google Scholar
  8. 8.
    Farmer, P., Bayona, J., Becerra, M., et al. (1998) The dilemma of MDR-TB in the global era. Int. J. Tuberc. Lung Dis. 2, 869–876.PubMedGoogle Scholar
  9. 9.
    Pablos-Mendez, A., Raviglione, M.C., Laszlo, A., et al. (1998) Global surveillance for antituberculosis drugs resistance 1994–1997. N. Engl. J. Med. 338, 1641–1649.PubMedCrossRefGoogle Scholar
  10. 10.
    Espinal, M.A., Laszlo, A., Simonsen, L., et al. (2001) Global trends in resistance to antituberculosis drugs. N. Engl. J. Med. 344, 1294–1303.PubMedCrossRefGoogle Scholar
  11. 11.
    World Health Organization. (1998) Atituberculosis Drug Resistance in the World. The WHO/IUTLD Global Project on Antituberculosis Drug Resistance Surveillancein 1994–1997. WHO, Geneva.Google Scholar
  12. 12.
    World Health Organization. (2002) An Expanded DOTS Framework for Effective Tuberculosis Control. WHO/CDS/TB/2002, 297. WHO, Geneva.Google Scholar
  13. 13.
    World Health Organization. (2005) Global Tuberculosis Control: Surveillance, Planning, Financing. WHO/HTM/TB/2005, 349. WHO, Geneva.Google Scholar
  14. 14.
    Canetti, G., Froman, S., Grosset, J., et al. (1963) Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 29, 565–578.PubMedGoogle Scholar
  15. 15.
    Canetti, G., Fox, W., Khomenko, A., Mahler, H.T., Menon, M.K., Mitchison, D.A., Rist, M., Smelev, M.A. (1969) Advances in techniques of testing mycobacterial drug sensitivity and the use of sensitivity tests in tuberculosis control programs. Bull. World. Health Organ. 41, 21–43.PubMedGoogle Scholar
  16. 16.
    Telenti, A. (1997) Genetics of drug resistance in tuberculosis, in: Tuberculosis (Iseman, M., Huitt, G., eds.), Clin. Chest Med. 18, 55–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Takiff, H.E. (2000) The molecular mechanisms of drug resistance, in M. tuberculosis, in: Multi-drug Resistant Tuberculosis (Bastian, I., Portaels, F., eds.), Kluwer, Dordrecht, the Netherlands, pp.77–114.Google Scholar
  18. 18.
    David, H.L. (1971) Fundamentals of Drug Susceptibility Testing in Tuberculosis. HEW Publication No. 00-2165. CDC, Atlanta, GA.Google Scholar
  19. 19.
    Kent, P.T., Kubica, G.P. (1985) Public Health Mycobacteriology. A Guide for the Level III Laboratory. CDC, Atlanta, GA.Google Scholar
  20. 20.
    Heifets, L., Sanchez, T. (2003/2005) New Agar Medium for Mycobacteria (HSTB). [US Patent No. 6,579,694 B2 and 6,951,733 B2].Google Scholar
  21. 21.
    Heifets, L. (2000) Conventional methods for antimicrobial susceptibility testing of M. tuberculosis, in: Multidrug-Resistant Tuberculosis (Bastian, I., Portaels, F., eds.), Kluwer, Dordrecht, the Netherlands, pp. 133–143.Google Scholar
  22. 22.
    Madison, B.M., Siddiqi, S.H., Heifets, L., et al. (2004) Identification of a Mycobacterium tuberculosis strain with stable, low-level resistance to isoniazid. J. Clin. Microbiol. 42(3), 1294–1295.PubMedCrossRefGoogle Scholar
  23. 23.
    Siddiqi, S.H., Libonati, J.P., Middlebrook, G. (1981) Evaluation of a rapid radiometric method for drug susceptibility testing of M. tuberculosis. J. Clin. Microbiol. 13, 908–912.PubMedGoogle Scholar
  24. 24.
    Roberts, G.D., Goodman, N.L., Heifets L., et al. (1983) Evaluation of the BACTEC radiometric method for recovery mycobacteria and drug susceptibility testing of M. tuberculosis acid-fast smear-positive specimens. J. Clin. Microbiol. 18, 689–696.PubMedGoogle Scholar
  25. 25.
    Siddiqi, S.H., Hawkins, J.E., Laszlo, A. (1985) Interlaboratory drug susceptibility testing of M. tuberculosis by radiometric and two conventional methods. J. Clin. Microbiol. 22, 919–923.PubMedGoogle Scholar
  26. 26.
    Heifets, L.B. (1986) Rapid automated method (BACTEC system) in clinical mycobacteriology. Semin. Respir. Infect. 1, 242–249.PubMedGoogle Scholar
  27. 27.
    Bemer, P., Bodmer, T., Munzinger, J., Perrin, M., Vincent, V., Drugeon, H. (2004) Multicenter evaluation of the MB/BacT system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 42, 1030–1034.PubMedCrossRefGoogle Scholar
  28. 28.
    Tortoli, E., Mattei, R., Savarino, A., Bartolini, L., Beer, J. (2000) Comparison of Mycobacterium tuberculosis susceptibility testing performed with BACTEC 460 TB (Becton Dickinson) and MB/ BacT (Organon Teknika) systems. Diagn. Microbiol. Infect. Dis. 38, 83–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Heifets, L. (2002) Susceptibility testing of M. tuberculosis to pyrazinamide. J. Med. Microbiol. 51(1), 11–12.PubMedGoogle Scholar
  30. 30.
    Pfyffer, G.E., Bonato, D.A., Ebrahimzade, A., et al. (1999) Multicenter laboratory validation of susceptibility testing of M. tuberculosis against second-line and newer antimicrobial drugs by using the radiometric Bactec-460 technique and the proportion method with solid media. J. Clin. Microbiol. 37(10), 3179–3186.PubMedGoogle Scholar
  31. 31.
    Krüüner, A., Yates, M.D., Drobniewski, F.A. (2006) Evaluation of MGIT 960-bases antimicrobial testing and determination of critical concentrations of first- and second-line antimicrobial drugs with drug-resistant clinical strains of M. tuberculosis. J. Clin. Microbiol. 44(3), 811–818.PubMedCrossRefGoogle Scholar
  32. 32.
    National Committee for Clinical Laboratory Standards. (2003) Susceptibility Testing of Mycobacteria, Nocardia, and Other Aerobic Actinomycetes. Approved Standard M24-A. NCCLS, Wayne, PA.Google Scholar
  33. 33.
    Mitchison, D.A. (1998) Standardisation of sensitivity tests (letter) Int. J. Tuberc. Lung Dis. 2, 69.PubMedGoogle Scholar
  34. 34.
    Piersimoni, C., Olivieri, A., Benacchio, L., Scarparo, C. (2006) Current perspectives on drug susceptibility testing of M. tuber- culosis complex: the automated nonradiometric systems. J. Clin. Microbiol. 44(1), 20–28.PubMedCrossRefGoogle Scholar
  35. 35.
    Palomino, J.C. (2005) Nonconventional and new methods in the diagnosis of tuberculosis: feasibility and applicability in the field. Eur. Respir. J. 26, 339–350.PubMedCrossRefGoogle Scholar
  36. 36.
    Jain, K.K. (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 3, 153–161.PubMedCrossRefGoogle Scholar
  37. 37.
    Rattan, A., Kalia, A., Ahmad, N. (1998) Multi-drug resistant tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4, 195–209.PubMedCrossRefGoogle Scholar
  38. 38.
    Somoskovi, A., Parsons, L., Salfinger, M. (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res. 2, 164–168.PubMedCrossRefGoogle Scholar
  39. 39.
    Chaves, F., Alonso-Sanz, M., Rebollo, M.J., Tercero, J.C., Jiminez, M.S., Noriega, A.R. (2000) rpoB mutations as an epidemiological marker of rifampin-resistant M. tuberculosis. Int. J. Tuberc. Lung Dis. 4, 765–770.PubMedGoogle Scholar
  40. 40.
    Garcia, L., Alonso-Sanz, M., Rebollo, M.J., Tercero, J.C., Chaves, F. (2001) Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates in Spain and their rapid detection by PCR-enzyme-linked immunosorbent assay. J. Clin. Microbiol. 39, 1813–1818.PubMedCrossRefGoogle Scholar
  41. 41.
    Telenti, A., Honore, N., Bernasconi, C., March, J., Ortega, A., Heym, B., et al. (1997) Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J. Clin. Microbiol. 35, 719–723.PubMedGoogle Scholar
  42. 42.
    Watterson, S.A., Wilson, S.M., Yates, M.D., Drobniewski, F.A. (1998) Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 36, 1969–1973.PubMedGoogle Scholar
  43. 43.
    Rossau, R., Traore, H., De Beenhouwer, H., Mijs, W., Jannes, G., De Rijk, P., et al. (1997) Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob. Agents Chemother. 41, 2093–2098.PubMedGoogle Scholar
  44. 44.
    Somoskovi, A., Song, Q., Mester, J., Tanner, C., Hale, Y.M., Parsons, L.M., et al. (2003) Use of molecular methods to identify the Mycobacterium tuberculosis complex (MTBC) and other Mycobacterial species and to detect rifampin resistance in MTBC isolates following growth detection with the BACTEC MGIT 960 system. J. Clin. Microbiol. 41, 2822–2826.PubMedCrossRefGoogle Scholar
  45. 45.
    Bartfai, Z., Somoskovi, A., Kodmon, C., Szabo, N., Puskas, E., Kosztolanyi, L., et al. (2001) Molecular characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay. J. Clin. Microbiol. 39, 3736–3739.PubMedCrossRefGoogle Scholar
  46. 46.
    Johansen, I.S., Lundgren, B., Sosnovskaja, A., Thomsen, V.O. (2003) Direct detection of multidrug-resistant Mycobacterium tuberculosis in clinical specimens in low- and high-incidence countries by line probe assay. J. Clin. Microbiol. 41, 4454–4456.PubMedCrossRefGoogle Scholar
  47. 47.
    Viveiros, M., Leandro, C., Rodrigues, L., Almeida, J., Bettencourt, R., Couto, I., et al. (2005) Direct application of the INNO-LiPA Rif.TB line-probe assay for rapid identification of Mycobacterium tuberculosis complex strains and detection of rifampin resistance in 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis. J. Clin. Microbiol. 43, 4880–4884.PubMedCrossRefGoogle Scholar
  48. 48.
    El Hajj, H.H., Marras, S.A.E., Tyagi, S., Kramer, F.R., Alland, D. (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J. Clin. Microbiol. 39, 4131–4137.PubMedCrossRefGoogle Scholar
  49. 49.
    Vernet, G., Jay, C., Rodriguez, M., Troesch, A. (2004) Species differentiation and antibiotic susceptibility testing with DNA microarrays. J. Appl. Microbiol. 96, 59–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Edwards, K.J., Metherell, L.A., Yates, M., Saunders, N.A. (2001) Detection of rpoB mutations in Mycobacterium tuberculosis by biprobe analysis. J. Clin. Microbiol. 39, 3350–3352.PubMedCrossRefGoogle Scholar
  51. 51.
    Nash, K.A., Gaytan, A., Inderlied, C.B. (1997) Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and effective RNA/RNA mismatch assay. J. Infect. Dis. 176, 533–536.PubMedCrossRefGoogle Scholar
  52. 52.
    Garcia de Viedma, D. (2003) Rapid detection of resistance in Mycobacterium tuberculosis: a review discussing molecular approaches. Clin. Microbiol. Infect. 9, 349–359.PubMedCrossRefGoogle Scholar
  53. 53.
    Davies, A.P., Billington, O.J., McHugh, T.D., Mitchison, D.A., Gillespie, S.H. (2000) Comparison of phenotypic and geno-typic methods for pyrazinamide susceptibility testing with Mycobacterium tuberculosis. J. Clin. Microbiol. 38, 3686–3688.PubMedGoogle Scholar
  54. 54.
    Sreevatsan, S., Stockbauer, K.E., Pan, X., Kreiswirth, B.N., Moghazeh, S.L., Jacobs, W.R., Jr., et al. (1997) Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother. 41, 1677–1681.PubMedGoogle Scholar
  55. 55.
    Banajee, N., Bobadilla-del-Valle, M., Riska, P.F., Bardarov, S., Jr., Small, P.M., Ponce-de-Leon, A., et al. (2003) Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J. Med. Microbiol. 52, 557–561.CrossRefGoogle Scholar
  56. 56.
    Hazbon, M.H., Guarin, N., Ferro, B.E., Rodriguez, A.L., Labrada, L.A., Tovar, R., et al. (2003) Photographic and lumino-metric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 41, 4865–4869.PubMedCrossRefGoogle Scholar
  57. 57.
    Riska, P.F., Jacobs, W.R., Jr., Bloom, B.R., McKitrick, J., Chan, J. (1997) Specific identification of Mycobacterium tuberculosis with the luciferase reporter mycobacteriophage: use of p-nitro-alpha-acetylamino-beta-hydroxy propiophenone. J. Clin. Microbiol. 35, 3225–3231.PubMedGoogle Scholar
  58. 58.
    Eltringham, I.J., Wilson, S.M., Drobniewski, F.A. (1999) Evaluation of a bacteriophage-based assay (Phage Amplified Biologically Assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 37, 3528–3532.PubMedGoogle Scholar
  59. 59.
    Park, D.J., Drobniewski, F.A., Meyer, A., Wilson, S.M. (2003) Use of a phage-based assay for phenotypic detection of mycobacteria directly from sputum. J. Clin. Microbiol. 41, 680–688.PubMedCrossRefGoogle Scholar
  60. 60.
    Pearson, R.E., Dickson, J.A., Hamilton, P.T., Little, M.C., Beyer, Jr., W.F. (1997) Mycobacteriophage Specific for the Mycobacterium tuberculosis Complex. Becton, Dickinson and Company. [US Patent No. 5,612,182]. Franklin Lakes, NJ, USA.Google Scholar
  61. 61.
    Redmond, W.B., Cater, J.C. (1960) A bacteroiphage specific for Mycobacterium tuberculosis, varieties hominis and bovis. Am. Rev. Respir. Dis. 82, 781–786.PubMedGoogle Scholar
  62. 62.
    Albert, H., Muzzafar, R., Mole, R.J., Trollip, A.P. (2002) Use of the FASTPlaque test for TB diagnosis in low-income countries. Int. J. Tuberc. Lung Dis. 6, 560–561.Google Scholar
  63. 63.
    Albert, H., Trollip, A., Seaman, T., Mole, R.J. (2004) Simple, phage-based (FASTPlaque) technology to determine rifampicin resistance of Mycobacterium tuberculosis directly from sputum. Int. J. Tuberc. Lung Dis. 8, 1114–1149.PubMedGoogle Scholar
  64. 64.
    Pai, M., Kalantri, S., Pascopella, L., Riley, L.W., Reingold, A.L. (2005) Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J. Infect. 51, 175–187.PubMedCrossRefGoogle Scholar
  65. 65.
    Pina-Vaz, C., Costa-de-Oliveira, S., Rodrigues, A.G. (2005) Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. J. Med. Microbiol. 54, 77–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Moore, A.V., Kirk, S.M., Callister, S.M., Mazurek, G.H., Schell, R.F. (1999) Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J. Clin. Microbiol. 37, 479–483.PubMedGoogle Scholar
  67. 67.
    Cangelosi, G.A., Brabant, W.H., Britschgi, T.B., Wallis, C.K. (1996) Detection of rifampin- and ciprofloxacin-resistant Mycobacterium tuberculosis by using species-specific assays for precursor rRNA. Antimicrob. Agents Chemother. 40, 1790–1795.PubMedGoogle Scholar
  68. 68.
    Abate, G., Aseffa, A., Selassie, A,. Goshu, S., Fekade, B., WoldeMeskal, D., et al. (2004) Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 42, 871–873.PubMedCrossRefGoogle Scholar
  69. 69.
    Caviedes, L., Delgado, J., Gilman, R.H. (2002) Tetrazolium microplate assay as a rapid and inexpensive colorimetric method for determination of antibiotic susceptibility of Mycobacterium tuberculosis. J. Clin. Microbiol. 40, 1873–1874.PubMedCrossRefGoogle Scholar
  70. 70.
    Collins, L., Franzblau, S.G. (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 41, 1004–1009.PubMedGoogle Scholar
  71. 71.
    Moore, D.A.J., Mendoza, D., Gilman, R.H., Evans, C.A.W., Hollm Delgado, M.G., Guerra, J., et al. (2004) Microscopic observation drug susceptibility assay, a rapid, reliable diagnostic test for multidrug-resistant tuberculosis suitable for use in resource-poor settings. J. Clin. Microbiol. 42, 4432–4437.PubMedCrossRefGoogle Scholar
  72. 72.
    Syre, H., Valvatne, H., Sandven, P., Grewal, H.M.S. (2006) Evaluation of the nitrate-based colorimetric method for testing the susceptibility of Mycobacterium tuberculosis to streptomycin and ethambutol in liquid cultures. J. Antimicrob. Chemother. l054.Google Scholar
  73. 73.
    Hara-Kudo, Y, Yoshino, M., Kojima, T., Ikedo, M. (2005) Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol. Lett. 253, 155–161.PubMedCrossRefGoogle Scholar
  74. 74.
    Poon, L.L.M., Wong, B.W.Y., Ma, E.H.T., Chan, K.H., Chow, L.M.C., Abeyewickreme, W., et al. (2006) Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 52, 303–306.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leonid Heifets
    • 1
  • Gerard Cangelosi
    • 2
  1. 1.Mycobacterial Reference LaboratoryNational Jewish Medical and Research CenterDenverUSA
  2. 2.Department of Global Health, Seattle Biomedical Research InstituteUniversity of WashingtonSeattleUSA

Personalised recommendations