Mycobacteria: Tuberculosis

  • Francis A. Drobniewski
  • Yanina Balabanova
Part of the Infectious Disease book series (ID)

There were 9 million new tuberculosis (TB) cases (and approximately 2 million TB deaths) in 2004, of which 3.9 million (62/100,000) were highly infectious, i.e. the bacteria of the Mycobacterium tuberculosis complex, which cause TB, and could be seen in preparations of expectorated sputum under the microscope (“pulmonary sputum smear-positive” cases). Patients with infectious tuberculosis (pulmonary and laryngeal) are the main sources of transmission of the disease and therefore they are the key targets in the international effort to combat tuberculosis in the world. Their timely diagnosis and prompt treatment has two purposes: cure which is of individual benefi t to the patient and by rendering infectious cases non-infectious, reduction in the spread of further infection. Nonpulmonary cases are usually not infectious to others. Of the new cases of TB detected in 2005, at least 741,000 cases were in adults co-infected with the human immunodefi ciency virus (HIV) (1).


Mycobacterium Tuberculosis Antimicrob Agent Drug Susceptibility Testing MDRTB Case Mycobacterium Growth Indicator Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO. Global tuberculosis control: surveillance, planning, financing. Report, Geneva: World Health Organization, 2006 (WHO/ HTM/TB/2006.362).Google Scholar
  2. 2.
    Drobniewski F, Balabanova Y, Ruddy M, et al. Rifampin- and multidrug-resistant tuberculosis in Russian civilians and prison inmates: dominance of the Beijing strain family. Emerg Infect Dis 2002;8(11):1320–6.PubMedGoogle Scholar
  3. 3.
    Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 1999;282(7):677–86.PubMedCrossRefGoogle Scholar
  4. 4.
    WHO/IUALTD. Global project on anti-tuberculosis drug surveillance in the world. Report no. 3, Geneva: World Health Organization, 2004 (WHO/HTM/TB/2004.343).Google Scholar
  5. 5.
    Drobniewski F, Balabanova Y, Nikolayevsky V, et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA 2005;293(22):2726–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Toungoussova OS, Sandven P, Mariandyshev AO, Nizovtseva NI, Bjune G, Caugant DA. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast, Russia. J Clin Microbiol 2002;40(6):1930–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Vareldzis BP, Grosset J, de Kantor I, et al. Drug-resistant tuberculosis: laboratory issues. World Health Organization recommendations. Tuber Lung Dis 1994;75:1–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwoebel V, Lambregts-van Weezenbeek CS, Moro ML, et al. Standardization of antituberculosis drug resistance surveillance in Europe. Recommendations of a World Health Organization (WHO) and International Union Against Tuberculosis and Lung Disease (IUATLD) Working Group. Eur Respir J 2000;16(2): 364–71.PubMedGoogle Scholar
  9. 9.
    WHO. Global project on anti-tuberculosis drug surveillance in the world. Report no. 2: prevalence and trends. Geneva: World Health Organisation, 2000.Google Scholar
  10. 10.
    WHO/IUALTD. Anti-tuberculosis drug resistance in the world. The WHO/IUALTD Global Project on anti-tuberculosis drug resistance surveillance. Geneva: World Health Organization, 1997.Google Scholar
  11. 11.
    Dye C, Espinal MA, Watt CJ, Mbiaga C, Williams BG. Worldwide incidence of multidrug-resistant tuberculosis. J Infect Dis 2002;185(8):1197–202.PubMedCrossRefGoogle Scholar
  12. 12.
    Irish C, Herbert J, Bennett D, et al. Database study of antibiotic resistant tuberculosis in the United Kingdom, 1994–6. BMJ 1999;318(7182):497–8.PubMedGoogle Scholar
  13. 13.
    Rose AM, Watson JM, Graham C, et al. Tuberculosis at the end of the 20th century in England and Wales: results of a national survey in 1998. Thorax 2001;56(3):173–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Djuretic T, Herbert J, Drobniewski F, et al. Antibiotic resistant tuberculosis in the United Kingdom: 1993–1999. Thorax 2002;57(6):477–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Frieden TR, Fujiwara PI, Washko RM, Hamburg MA. Tuberculosis in New York City — turning the tide. N Engl J Med 1995;333:229–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Frieden TR, Sterling T, Pablos-Mendez A, Kilburn JO, Cauthen GM, Dooley SW. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 1993;328:521–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Munsiff SS, Li J, Cook S V, et al. Trends in drug-resistant Mycobacterium tuberculosis in New York City, 1991–2003. Clin Infect Dis 2006;42(12):1702–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Zignol M, Hosseini MS, Wright A, et al. Global incidence of multi-drug-resistant tuberculosis. J Infect Dis 2006;194(4):479–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Kruuner A, Hoffner SE, Sillastu H, et al. Spread of drug-resistant pulmonary tuberculosis in Estonia. J Clin Microbiol 2001;39(9):3339–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Dewan P, Sosnovskaja A, Thomsen V, et al. High prevalence of drug-resistant tuberculosis, Republic of Lithuania, 2002. Int J Tuberc Lung Dis 2005;9(2):170–4.PubMedGoogle Scholar
  21. 21.
    Leimane V, Riekstina V, Holtz TH, et al. Clinical outcome of individualised treatment of multidrug-resistant tuberculosis in Latvia: a retrospective cohort study. Lancet 2005;365(9456): 318–26.PubMedGoogle Scholar
  22. 22.
    Skenders G, Fry AM, Prokopovica I, et al. Multidrug-resistant tuberculosis detection, Latvia. Emerg Infect Dis 2005;11(9): 1461–3.PubMedGoogle Scholar
  23. 23.
    EuroTB. Molecular surveillance of multi-drug resistant tuberculosis in Europe. Report no. 3. Euro Surveill, 2004, http://www.
  24. 24.
    Dewan PK, Arguin PM, Kiryanova H, et al. Risk factors for death during tuberculosis treatment in Orel, Russia. Int J Tuberc Lung Dis 2004;8(5):598–602.PubMedGoogle Scholar
  25. 25.
    Mokrousov I, Otten T, Vyazovaya A, et al. PCR-based methodology for detecting multidrug-resistant strains of Mycobacterium tuberculosis Beijing family circulating in Russia. Eur J Clin Microbiol Infect Dis 2003;22(6):342–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Ruddy M, Balabanova Y, Graham C, et al. Rates of drug resistance and risk factor analysis in civilian and prison patients with tuberculosis in Samara Region, Russia. Thorax 2005;60(2):130–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Kubica T, Agzamova R, Wright A, et al. The Beijing genotype is a major cause of drug-resistant tuberculosis in Kazakhstan. Int J Tuberc Lung Dis 2005;9(6):646–53.PubMedGoogle Scholar
  28. 28.
    Balabanova Y, Drobniewski F, Fedorin I, et al. The Directly Observed Therapy Short-Course (DOTS) strategy in Samara Oblast, Russian Federation. Respir Res 2006;7:44.PubMedCrossRefGoogle Scholar
  29. 29.
    Coninx R, Pfyffer GE, Mathieu C, et al. Drug resistant tuberculosis in prisons in Azerbaijan: case study. BMJ 1998;316(7142):1423–5.PubMedGoogle Scholar
  30. 30.
    Toungoussova OS, Nizovtseva NI, Mariandyshev AO, Caugant DA, Sandven P, Bjune G. Impact of drug-resistant Mycobacterium tuberculosis on treatment outcome of culture-positive cases of tuberculosis in the Archangel oblast, Russia, in 1999. Eur J Clin Microbiol Infect Dis 2004;23(3):174–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Espinal MA, Kim SJ, Suarez PG, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA 2000;283(19):2537–45.PubMedCrossRefGoogle Scholar
  32. 32.
    CDC. Primary multidrug-resistant tuberculosis — Ivanovo Oblast, Russia, 1999. MMWR Morb Mortal Wkly Rep 1999;48(30):661–4.Google Scholar
  33. 33.
    Drobniewski FA, Balabanova YM. The diagnosis and management of multiple-drug-resistant-tuberculosis at the beginning of the new millenium. Int J Infect Dis 2002;6(Suppl 1):S21–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Kherosheva T, Thorpe LE, Kiryanova E, et al. Encouraging outcomes in the first year of a TB control demonstration program: Orel Oblast, Russia. Int J Tuberc Lung Dis 2003;7(11):1045–51.PubMedGoogle Scholar
  35. 35.
    Balabanova Y, Ruddy M, Hubb J, et al. Multidrug-resistant tuberculosis in Russia: clinical characteristics, analysis of second-line drug resistance and development of standardized therapy. Eur J Clin Microbiol Infect Dis 2005;24(2):136–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Canetti G, Fox W, Khomenko AG, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 1969;41:21–43.PubMedGoogle Scholar
  37. 37.
    Canetti G, Froman S, Grosset J, et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ 1963;29:565–78.PubMedGoogle Scholar
  38. 38.
    Drobniewski FA, Hoffner S, Rusch-Gerdes S, Skenders G, Thomsen V. Recommended standards for modern tuberculosis laboratory services in Europe. Eur Respir J 2006;28(5):903–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Gingeras TR, Ghandour G, Wang E, et al. Simultaneous genotyp-ing and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res 1998;8(5):435–48.PubMedGoogle Scholar
  40. 40.
    Saiki RK, Walsh PS, Levenson CH, Erlich HA. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucle-otide probes. Proc Natl Acad Sci U S A 1989;86(16):6230–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Watterson SA, Wilson SM, Yates MD, Drobniewski FA. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 1998;36(7):1969–73.PubMedGoogle Scholar
  42. 42.
    De Beenhouwer H, Lhiang Z, Jannes G, et al. Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis 1995;76(5):425–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Drobniewski FA, Watterson SA, Wilson SM, Harris GS. A clinical, microbiological and economic analysis of a national service for the rapid molecular diagnosis of tuberculosis and rifampicin resistance in Mycobacterium tuberculosis. J Med Microbiol 2000;49(3):271–8.PubMedGoogle Scholar
  44. 44.
    Mokrousov I, Filliol I, Legrand E, et al. Molecular characterization of multiple-drug-resistant Mycobacterium tuberculosis isolates from northwestern Russia and analysis of rifampin resistance using RNA/ RNA mismatch analysis as compared to the line probe assay and sequencing of the rpoB gene. Res Microbiol 2002;153(4):213–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Nikolayevsky V, Brown T, Balabanova Y, Ruddy M, Fedorin I, Drobniewski F. Detection of mutations associated with isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates from Samara Region, Russian Federation. J Clin Microbiol 2004;42(10):4498–502.PubMedCrossRefGoogle Scholar
  46. 46.
    Troesch A, Nguyen H, Miyada CG, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 1999;37(1):49–55.PubMedGoogle Scholar
  47. 47.
    Eltringham IJ, Drobniewski FA, Mangan JA, Butcher PD, Wilson SM. Evaluation of reverse transcription-PCR and a bac-teriophage-based assay for rapid phenotypic detection of rifampin resistance in clinical isolates of Mycobacterium tuberculosis. J Clin Microbiol 1999;37(11):3524–7.PubMedGoogle Scholar
  48. 48.
    El-Hajj HH, Marras SA, Tyagi S, Kramer FR, Alland D. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J Clin Microbiol 2001;39(11): 4131–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Piatek AS, Tyagi S, Pol AC, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 1998;16(4):359–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Riska PF, Jacobs WR, Jr. The use of luciferase-reporter phage for antibiotic-susceptibility testing of mycobacteria. Methods Mol Biol 1998;101:431–55.PubMedGoogle Scholar
  51. 51.
    Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med 1997;3(4):465–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Albert H, Trollip AP, Mole RJ, Hatch SJ, Blumberg L. Rapid indication of multidrug-resistant tuberculosis from liquid cultures using FASTPlaqueTB-RIF, a manual phage-based test. Int J Tuberc Lung Dis 2002;6:523–8.PubMedGoogle Scholar
  53. 53.
    Sam IC, Drobniewski F, More P, Kemp M, Brown T. Mycobacterium tuberculosis and rifampin resistance, United Kingdom. Emerg Infect Dis 2006;12(5):752–9.PubMedGoogle Scholar
  54. 54.
    Caws M, Drobniewski FA. Molecular techniques in the diagnosis of Mycobacterium tuberculosis and the detection of drug resistance. Ann N Y Acad Sci 2001;953:138–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Drobniewski FA. Diagnosing multidrug resistant tuberculosis in Britain. Clinical suspicion should drive rapid diagnosis. BMJ 1998;317(7168):1263–4.PubMedGoogle Scholar
  56. 56.
    Walters SB, Hanna BA. Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol 1996;34(6):1565–7.PubMedGoogle Scholar
  57. 57.
    Pfyffer GE, Welscher HM, Kissling P, et al. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol 1997;35(2):364–8.PubMedGoogle Scholar
  58. 58.
    Reisner BS, Gatson AM, Woods GL. Evaluation of mycobacteria growth indicator tubes for susceptibility testing of Mycobacterium tuberculosis to isoniazid and rifampicin. Diagn Microbiol Infect Dis 1995;22:325–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Scarparo C, Ricordi P, Ruggiero G, Piccoli P. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB method. J Clin Microbiol 2004;42(3):1109–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Tortoli E, Benedetti M, Fontanelli A, Simonetti MT. Evaluation of automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major antitubercu-lous drugs: comparison with the radiometric BACTEC 460TB method and the agar plate method of proportion. J Clin Microbiol 2002;40(2):607–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Huang TS, Tu HZ, Lee SS, Huang WK, Liu YC. Antimicrobial susceptibility testing of Mycobacterium tuberculosis to first-line drugs: comparisons of the MGIT 960 and BACTEC 460 systems. Ann Clin Lab Sci 2002;32(2):142–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Adjers-Koskela K, Katila ML. Susceptibility testing with the manual mycobacteria growth indicator tube (MGIT) and the MGIT system provides rapid and reliable verification of multidrug-resistant tuberculosis. J Clin Microbiol 2003;41(3):1235–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Ardito F, Posteraro B, Sanguinetti M, Zanetti S, Fadda G. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2001;39(12):4440–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Bemer P, Palicova F, Rusch-Gerdes S, Drugeon HB, Pfyffer GE. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 2002;40(1): 150–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Kruuner A, Yates M, Drobniewski F. Critical concentration setting and evaluation of MGIT 960 antimicrobial susceptibility testing to first- and second line antimicrobial drugs with clinical drug resistant strains of Mycobacteirum tuberculosis. J Clin Microbiol 2006;44(3):811–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Yagui M, Perales MT, Asencios L, et al. Timely diagnosis of MDR-TB under program conditions: is rapid drug susceptibility testing sufficient? Int J Tuberc Lung Dis 2006;10(8):838–43.PubMedGoogle Scholar
  67. 67.
    Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994;263:227–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Finken M, Kirschner P, Meier A, Wrede A, Bottger EC. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 1993;9(6):1239–46.PubMedCrossRefGoogle Scholar
  69. 69.
    Heym B, Honore N, Truffot-Perrot C, et al. Implications of multi-drug resistance for the future of short course chemotherapy of tuberculosis: a molecular study. Lancet 1994;344:293–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Heym B, Alzari PM, Honore N, Cole ST. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoni-azid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995;15(2):235–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Kapur V, Li LL, Hamrick MR, et al. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 1995;119(2):131–8.PubMedGoogle Scholar
  72. 72.
    Zhang Y, Heym B, Allen B, Yung D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992;358:591–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994;38(4):773–80.PubMedGoogle Scholar
  74. 74.
    Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993;341(8846):647–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Williams DL, Waguespack C, Eisenach K, et al. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 1994;38(10):2380–6.PubMedGoogle Scholar
  76. 76.
    Baker L, Brown T, Maiden MC, Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 2004;10(9):1568–77.PubMedGoogle Scholar
  77. 77.
    Herrera L, Jimenez S, Valverde A, Garcia-Aranda MA, Saez-Nieto JA. Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996–2001). Description of new mutations in the rpoB gene and review of the literature. Int J Antimicrob Agents 2003;21(5):403–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Heep M, Brandstatter B, Rieger U, et al. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 2001;39(1):107–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Somoskovi A, Song Q, Mester J, et al. Use of molecular methods to identify the Mycobacterium tuberculosis complex (MTBC) and other mycobacterial species and to detect rifampin resistance in MTBC isolates following growth detection with the BACTEC MGIT 960 system. J Clin Microbiol 2003;41(7):2822–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Parsons LM, Salfinger M, Clobridge A, et al. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob Agents Chemother 2005;49(6):2218–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Baker LV, Brown TJ, Maxwell O, et al. Molecular analysis of isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC-46A polymorphism. Antimicrob Agents Chemother 2005;49(4):1455–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Brown TJ, Herrera-Leon L, Anthony RM, Drobniewski FA. The use of macroarrays for the identification of MDR Mycobacterium tuberculosis. J Microbiol Methods 2006;65(2):294–300.PubMedCrossRefGoogle Scholar
  83. 83.
    Hellyer TJ, DesJardin LE, Hehman GL, Cave MD, Eisenach KD. Quantitative analysis of mRNA as a marker for viability of Mycobacterium tuberculosis. J Clin Microbiol 1999;37(2):290–5.PubMedGoogle Scholar
  84. 84.
    Jacobs WR, Jr., Barletta RG, Udani R, et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993;260(5109):819–22.PubMedCrossRefGoogle Scholar
  85. 85.
    Hale YM, Pfyffer GE, Salfinger M. Laboratory diagnosis of myco-bacterial infections: new tools and lessons learned. Clin Infect Dis 2001;33(6):834–46.PubMedCrossRefGoogle Scholar
  86. 86.
    Parsons LM, Somoskovi A, Urbanczik R, Salfinger M. Laboratory diagnostic aspects of drug resistant tuberculosis. Front Biosci 2004;9:2086–105.PubMedCrossRefGoogle Scholar
  87. 87.
    WHO. Guidelines for drug susceptibility testing of second-line drugs for Mycobacterium tuberculosis. Geneva: World Health Organization, 2001.Google Scholar
  88. 88.
    Kim SJ, Espinal MA, Abe C, et al. Is second-line anti-tuberculosis drug susceptibility testing reliable? Int J Tuberc Lung Dis 2004;8(9):1157–8.PubMedGoogle Scholar
  89. 89.
    Pfyffer GE, Bonato DA, Ebrahimzadeh A, et al. Multicenter laboratory validation of susceptibility testing of Mycobacterium tuberculosis against classical second-line and newer antimicrobial drugs by using the radiometric BACTEC 460 technique and the proportion method with solid media. J Clin Microbiol 1999;37(10):3179–86.PubMedGoogle Scholar
  90. 90.
    Rusch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol 2006;44(3):688–92.PubMedCrossRefGoogle Scholar
  91. 91.
    Sirgel FA, Fourie PB, Donald PR, et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med 2005;172(1):128–35.PubMedCrossRefGoogle Scholar
  92. 92.
    Gosling RD, Heifets L, Gillespie SH. A multicentre comparison of a novel surrogate marker for determining the specific potency of anti-tuberculosis drugs. J Antimicrob Chemother 2003;52(3):473–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Hu Y, Coates AR, Mitchison DA. Sterilizing activities of fluoroqui-nolones against rifampin-tolerant populations of Mycobac terium tuberculosis. Antimicrob Agents Chemother 2003;47(2):653–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Johansen IS, Larsen AR, Sandven P, et al. Drug susceptibility testing of Mycobacterium tuberculosis to fluoroquinolones: first experience with a quality control panel in the Nordic-Baltic collaboration. Int J Tuberc Lung Dis 2003;7(9):899–902.PubMedGoogle Scholar
  95. 95.
    Combs DL, O'Brien RJ, Geiter LJ. USPHS tuberculosis short-course chemotherapy study trial 21: effectiveness, toxicity, and acceptability. The report of final results. Ann Intern Med 1990;112:397–406.PubMedGoogle Scholar
  96. 96.
    Jindani A, Nunn AJ, Enarson DA. Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet 2004;364(9441):1244–51.PubMedCrossRefGoogle Scholar
  97. 97.
    East African/British Medical Research Councils. Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet 1972;1(7760):1079–85.Google Scholar
  98. 98.
    British Thoracic and Tuberculosis Association. Controlled trial of short-course chemotherapy in pulmonary tuberculosis. Lancet 1976;2(7995):1102–4.Google Scholar
  99. 99.
    Drobniewski F. Drug resistant tuberculosis in adults and its treatment. J R Coll Physicians Lond 1998;32(4):314–8.PubMedGoogle Scholar
  100. 100.
    British Thoracic Society JTC. Control and Prevention of Tuberculosis in the United Kingdom: Code of Practice 2000. Thorax 2000;55(11):887–901.CrossRefGoogle Scholar
  101. 101.
    Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet 2003;362(9387):887–99.PubMedCrossRefGoogle Scholar
  102. 102.
    WHO. Global Tuberculosis Programme: treatment of tuberculosis — guidelines for national programmes, 2nd edn. Geneva: World Health Organization, 1997.Google Scholar
  103. 103.
    NICE. Clinical Guideline N33. Tuberculosis: clinical diagnosis and management of tuberculosis, and measures for its prevention and control. National Institute for Health and Clinical Excellence, London, 2006,
  104. 104.
    British Thoracic Society, Ormerod P, Campbell I, et al. Chemotherapy and management of tuberculosis in the United Kingdom: recommendations 1998. Thorax 1998;53:536–48.CrossRefGoogle Scholar
  105. 105.
    Coninx R, Mathieu C, Debacker M, et al. First-line tuberculosis therapy and drug-resistant Mycobacterium tuberculosis in prisons. Lancet 1999;353:969–73.PubMedCrossRefGoogle Scholar
  106. 106.
    Migliori GB, Espinal M, Danilova ID, Punga VV, Grzemska M, Raviglione MC. Frequency of recurrence among MDR-tB cases ‘successfully’ treated with standardised short-course chemotherapy. Int J Tuberc Lung Dis 2002;6(10):858–64.PubMedGoogle Scholar
  107. 107.
    Grzybowski S. Tuberculosis and its prevention. St Louis, MO: Warren H Green, Inc, 1983.Google Scholar
  108. 108.
    British Thoracic Society. Control and prevention of tuberculosis in the United Kingdom: Code of Practice 1994. Joint Tuberculosis Committee of the British Thoracic Society. Thorax 1994;49(12):1193–200.CrossRefGoogle Scholar
  109. 109.
    WHO. Treatment of tuberculosis: guidelines for national programmes. Geneva: World Health Organization, 1997.Google Scholar
  110. 110.
    Goble M, Iseman MD, Madsen LA. Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampicin. N Engl J Med 1993;328:527–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Mitnick C, Bayona J, Palacios E, et al. Community-based therapy for multidrug-resistant tuberculosis in Lima, Peru. N Engl J Med 2003;348(2):119–28.PubMedCrossRefGoogle Scholar
  112. 112.
    Park SK, Kim CT, Song SD. Outcome of chemotherapy in 107 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. Int J Tuberc Lung Dis 1998;2:877–84.PubMedGoogle Scholar
  113. 113.
    Park MM, Davis AL, Schluger NW, Cohen H, Rom WN. Outcome of MDR-TB patients, 1983–1993. Prolonged survival with appropriate therapy. Am J Respir Crit Care Med 1996;153: 317–24.PubMedGoogle Scholar
  114. 114.
    Drobniewski F, Eltringham I, Graham C, Magee JG, Smith EG, Watt B. A national study of clinical and laboratory factors affecting the survival of patients with multiple drug resistant tuberculosis in the UK. Thorax 2002;57(9):810–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Chan ED, Laurel V, Strand MJ, et al. Treatment and outcome analysis of 205 patients with multidrug-resistant tuberculosis. Am J Respir Crit Care Med 2004;169:1103–09.PubMedCrossRefGoogle Scholar
  116. 116.
    Hutchison DC, Drobniewski FA, Milburn HJ. Management of multiple drug-resistant tuberculosis. Respir Med 2003;97(1):65–70.PubMedCrossRefGoogle Scholar
  117. 117.
    Tahaoglu K, Torun T, Sevim T, et al. The treatment of multidrug-resistant tuberculosis in Turkey. N Engl J Med 2001;345:170–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Yew WW, Chan CK, Leung CC, et al. Comparative roles of levofloxacin and ofloxacin in the treatment of multidrug-resistant tuberculosis: preliminary results of a retrospective study from Hong Kong. Chest 2003;124(4):1476–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Chiang CY, Enarson DA, Yu MC, et al. Outcome of pulmonary multidrug-resistant tuberculosis: a six year follow-up study. Eur Respir J 2006;28:980–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Kim HJ, Kang CH, Kim YT, et al. Prognostic factors for surgical resection in patients with multidrug-resistant tuberculosis. Eur Respir J 2006;28:576–80.PubMedCrossRefGoogle Scholar
  121. 121.
    Kam KM, Yip CW, Cheung TL, Tang HS, Leung OC, Chan MY. Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility. Microb Drug Resist 2006;12(1):7–11.PubMedCrossRefGoogle Scholar
  122. 122.
    Ginsburg AS, Sun R, Calamita H, Scott CP, Bishai WR, Grosset JH. Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin mono-therapy in a mouse model. Antimicrob Agents Chemother 2005;49(9):3977–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Miyazaki E, Miyazaki M, Chen JM, Chaisson RE, Bishai WR. Moxifloxacin (BAY12—8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob Agents Chemother 1999;43(1):85–9.PubMedGoogle Scholar
  124. 124.
    Gosling RD, Uiso LO, Sam NE, et al. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am J Respir Crit Care Med 2003;168(11):1342–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Johnson JL, Hadad DJ, Boom WH, et al. Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis 2006;10(6):605–12.PubMedGoogle Scholar
  126. 126.
    Nuermberger EL, Yoshimatsu T, Tyagi S, et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med 2004;170(10):1131–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Fattorini L, Tan D, Iona E, et al. Activities of moxifloxacin alone and in combination with other antimicrobial agents against multi-drug-resistant Mycobacterium tuberculosis infection in BALB/c mice. Antimicrob Agents Chemother 2003;47(1):360–2.PubMedCrossRefGoogle Scholar
  128. 128.
    Suarez PG, Floyd K, Portacarrero J, et al. Feasibility and cost-effectiveness of standardised second-line drug treatment for chronic tuberculosis patients: a national cohort study in Peru. Lancet 2002;359:1980–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Daikos GL, Cleary T, Rodriguez A, Fischl MA. Multidrug-resistant tuberculous meningitis in patients with AIDS. Int J Tuberc Lung Dis 2003;7(4):394–8.PubMedGoogle Scholar
  130. 130.
    Thwaites GE, Lan NT, Dung NH, et al. Effect of antituberculosis drug resistance on response to treatment and outcome in adults with tuberculous meningitis. J Infect Dis 2005;192(1):79–88.PubMedCrossRefGoogle Scholar
  131. 131.
    Turett GS, Telzak EE, Torian LV, et al. Improved outcomes for patients with multidrug-resistant tuberculosis. Clin Infect Dis 1995;21:1238–44.PubMedGoogle Scholar
  132. 132.
    Tomioka H. Adjunctive immunotherapy of mycobacterial infections. Curr Pharm Des 2004;10(26):3297–312.PubMedCrossRefGoogle Scholar
  133. 133.
    Stanford J, Stanford C, Grange J. Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis. Front Biosci 2004;9:1701–19.PubMedCrossRefGoogle Scholar
  134. 134.
    Johnson JL, Nunn AJ, Fourie PB, et al. Effect of Mycobacterium vaccae (SRL172) immunotherapy on radiographic healing in tuberculosis. Int J Tuberc Lung Dis 2004;8(11):1348–54.PubMedGoogle Scholar
  135. 135.
    Dlugovitzky D, Fiorenza G, Farroni M, Bogue C, Stanford C, Stanford J. Immunological consequences of three doses of heat-killed Mycobacterium vaccae in the immunotherapy of tuberculosis. Respir Med 2006;100(6):1079–87.PubMedCrossRefGoogle Scholar
  136. 136.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993;178(6):2249–54.PubMedCrossRefGoogle Scholar
  137. 137.
    Flynn JL, Goldstein MM, Triebold KJ, Sypek J, Wolf S, Bloom BR. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J Immunol 1995;155(5):2515–24.PubMedGoogle Scholar
  138. 138.
    Holland SM, Eisenstein EM, Kuhns DB, et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med 1994;330(19):1348–55.PubMedCrossRefGoogle Scholar
  139. 139.
    Cooper AM, Roberts AD, Rhoades ER, Callahan JE, Getzy DM, Orme IM. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 1995;84(3):423–32.PubMedGoogle Scholar
  140. 140.
    Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacte-rial infection. N Engl J Med 1996;335(26):1941–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Reljic R, Clark SO, Williams A, et al. Intranasal IFNgamma extends passive IgA antibody protection of mice against Mycobacterium tuberculosis lung infection. Clin Exp Immunol 2006;143(3):467–73.PubMedCrossRefGoogle Scholar
  142. 142.
    Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet 1997;349(9064):1513–5.PubMedCrossRefGoogle Scholar
  143. 143.
    Koh WJ, Kwon OJ, Suh GY, et al. Six-month therapy with aerosolized interferon-gamma for refractory multidrug-resistant pulmonary tuberculosis. J Korean Med Sci 2004;19(2):167–71.PubMedGoogle Scholar
  144. 144.
    Tramontana JM, Utaipat U, Molloy A, et al. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995;1(4):384–97.PubMedGoogle Scholar
  145. 145.
    Schoeman JF, Fieggen G, Seller N, Mendelson M, Hartzenberg B. Intractable intracranial tuberculous infection responsive to thalidomide: report of four cases. J Child Neurol 2006;21(4): 301–8.PubMedCrossRefGoogle Scholar
  146. 146.
    White VL, Moore-Gillon J. Resource implications of patients with multidrug resistant tuberculosis. Thorax 2000;55:962–3.PubMedCrossRefGoogle Scholar
  147. 147.
    Resch SC, Salomon JA, Murray M, Weinstein MC. Cost-effectiveness of treating multidrug-resistant tuberculosis. PLoS Med 2006;3(7):e241.PubMedCrossRefGoogle Scholar
  148. 148.
    Breathnach AS, de Ruiter A, Holdsworth GM, et al. An outbreak of multi-drug-resistant tuberculosis in a London teaching hospital. J Hosp Infect 1998;39(2):111–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Coronado VG, Beck-Sague CM, Hutton MD, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis among persons with human immunodeficiency virus infection in an urban hospital: epidemiologic and restriction fragment length polymorphism analysis. J Infect Dis 1993;168:1052–5.PubMedGoogle Scholar
  150. 150.
    CDC. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings. MMWR Morb Mortal Wkly Rep 2005;54:1–147.Google Scholar
  151. 151.
    Advisory Committee on Dangerous Pathogens UHaSE. The management, design and operation of microbiological containment laboratories. London: ACDP, 2001.Google Scholar
  152. 152.
    Health and Safety Executive. Health Services Advisory Committee. Safe working and the prevention of infection in clinical laboratories and similar facilities. London: Health and Safety Executive, 2003.Google Scholar
  153. 153.
    CDC. National Institutes of Health. Biosafety in microbiological and biomedical laboratories. Washington: US Government Printing Office, 1999, HHS Publication No (CDC) 99-8395 (also available at bmbltoc.htm ).
  154. 154.
    Pai M, Gokhale K, Joshi R, et al. Mycobacterium tuberculosis infection in health care workers in rural India: comparison of a whole-blood interferon gamma assay with tuberculin skin testing. JAMA 2005;293(22):2746–55.PubMedCrossRefGoogle Scholar
  155. 155.
    Balabanova Y, Nikolayevskyy V, Fedorin I, et al. Occupational exposure and rates of latent tuberculosis infection among medical staff in Samara, Russia, Abstract from 27th Annual Congress of European Society of Mycobacteriology, London, 2007, Abstract: O12 2006.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Francis A. Drobniewski
    • 1
  • Yanina Balabanova
    • 1
  1. 1.Institute of Cell and Molecular SciencesBarts and the London School of Medicine, Queen Mary CollegeLondonUK

Personalised recommendations