Advertisement

Resistance in Streptococcus pneumoniae

  • Lesley McGee
  • Keith P. Klugman
Part of the Infectious Disease book series (ID)

Streptococcus pneumoniae (the pneumococcus) has been an important human pathogen for over 100 years and continues to cause a wide variety of infections, ranging from mild infections to serious lower respiratory infections, as well as life-threatening invasive infections such as meningitis. It is the most common bacterial cause of acute otitis media and pneumonia and an important cause of childhood mortality. The World Health Organization estimates that more than 1.6 million people die every year from pneumococcal infections – primarily pneumonia and meningitis – including more that 800,000 children under 5 years of age (1). As well as affecting the young, S. pneumoniae is an important cause of morbidity and mortality in the elderly; it is the most common etiological agent of community-acquired pneumonia, often resulting in hospitalization of previously healthy individuals.

Keywords

Streptococcus Pneumoniae Acute Otitis Medium Antimicrob Agent Conjugate Vaccine Pneumococcal Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WHO. Pneumococcal vaccines. Wkly Epidemiol Record 2003; 14:110–119Google Scholar
  2. 2.
    Castanheira M, Gales AC, Mendes RE, Jones RN, Sader HS. Antimicrobial susceptibility of Streptococcus pneumoniae in Latin America: results from five years of the SENTRY Antimicrobial Surveillance Program. Clin Microbiol Infect 2004; 10:645–651PubMedCrossRefGoogle Scholar
  3. 3.
    Reinert RR, Reinert S, van der Linden M, Cil MY, Al-Lahham A, Appelbaum P. Antimicrobial susceptibility of Streptococcus pneu-moniae in eight European countries from 2001 to 2003. Antimicrob Agents Chemother 2005; 49:2903–2913PubMedCrossRefGoogle Scholar
  4. 4.
    McGee L, McDougal L, Zhou J, et al. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol 2001; 39:2565–2571PubMedCrossRefGoogle Scholar
  5. 5.
    Zenni MK, Cheatham SH, Thompson JM, et al. Streptococcus pneumoniae colonization in the young child: association with otitis media and resistance to penicillin. J Pediatr 1995; 127:533–537PubMedCrossRefGoogle Scholar
  6. 6.
    Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis 2005; 5:83–93PubMedGoogle Scholar
  7. 7.
    Klugman KP, Friedland IR. Antibiotic-resistant pneumococci in pediatric disease. Microb Drug Resist 1995; 1:5–8PubMedCrossRefGoogle Scholar
  8. 8.
    Bronzwaer S, Cars O, Buchholz U, et al. A European Study on the relationship between antimicrobial use and antimicrobial resistance. Emerg Infect Dis 2002; 8:278–282PubMedCrossRefGoogle Scholar
  9. 9.
    Arason VA, Kristinsson KG, Sigurdsson JA, Stefansdottir G, Molstad S, Gudmundsson S. Do antimicrobials increase the carriage rate of penicillin resistant pneumococci in children? Cross sectional prevalence study. Br Med J 1996; 313:387–391Google Scholar
  10. 10.
    Levine OS, Farley M, Harrison LH, Lefkowitz L, McGeer A, Schwartz B. Risk factors for invasive pneumococcal disease in children: a population-based case-control study in North America. Pediatrics 1999; 103:E28PubMedCrossRefGoogle Scholar
  11. 11.
    Samore MH, Magill MK, Alder SC, et al. High rates of multiple antibiotic resistance in Streptococcus pneumoniae from healthy children living in isolated rural communities: association with cephalosporin use and intrafamilial transmission. Pediatrics 2001; 108:856–865PubMedCrossRefGoogle Scholar
  12. 12.
    Vanderkooi OG, Low DE, Green K, Powis JE, McGeer A, Toronto Invasive Bacterial Disease Network. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis 2005; 40:1288–1297PubMedCrossRefGoogle Scholar
  13. 13.
    Dias R. Emergence of invasive erythromycin-resistant Streptococcus pneumoniae strains in Portugal: contribution and phylogenetic relatedness of serotype 14. J Antimicrob Chemother 2004; 54:1035–1039PubMedCrossRefGoogle Scholar
  14. 14.
    Feikin DR, Dowell SF, Nwanyanwu OC, et al. Increased carriage of trimethoprim/sulfamethoxazole-resistant Streptococcus pneumoniae in Malawian children after treatment for malaria with sulfadoxine/pyrimethamine. J Infect Dis 2000; 181:1501–1505PubMedCrossRefGoogle Scholar
  15. 15.
    Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. N Engl J Med 1999; 341:233–239Google Scholar
  16. 16.
    Ho PL, Tse WS, Tsang KW, et al. Risk factors for acquisition of levofloxacin-resistant Streptococcus pneumoniae: a case-control study. Clinical Infect Dis 2001; 32:701–707CrossRefGoogle Scholar
  17. 17.
    Kupronis BA, Richards CL, Whitney CG, Active Bacterial Core Surveillance Team. Invasive pneumococcal disease in older adults residing in long-term care facilities and in the community. J Am Geriatr Soc 2003; 51:1520–1525PubMedCrossRefGoogle Scholar
  18. 18.
    Schrag SJ, Pena C, Fernandez J, et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 2001; 286:49–56PubMedCrossRefGoogle Scholar
  19. 19.
    Bedos JP, Chevret S, Chastang C, Geslin P, Regnier B. Epidemiological features of and risk factors for infection by Streptococcus pneumoniae strains with diminished susceptibility to penicillin: findings of a French survey. Clin Infect Dis 1996; 22:63–72PubMedGoogle Scholar
  20. 20.
    Jacobs MR, Koornhof HJ, Robins-Browne RM, et al. Emergence of multiply resistant pneumococci. N Engl J Med 1978; 299:735–740PubMedGoogle Scholar
  21. 21.
    Crewe-Brown HH, Karstaedt AS, Saunders GL, et al. Streptococcus pneumoniae blood culture isolates from patients with and without human immunodeficiency virus infection: alterations in penicillin susceptibilities and in serogroups or serotypes. Clin Infect Dis 1997; 25:1165–1172PubMedCrossRefGoogle Scholar
  22. 22.
    Madhi SA, Petersen K, Madhi A, Wasas A, Klugman KP. Impact of human immunodeficiency virus type 1 on the disease spectrum of Streptococcus pneumoniae in South African children. Pediatr Infect Dis J 2000; 19:1141–1147PubMedCrossRefGoogle Scholar
  23. 23.
    Jordano Q, Falco V, Almirante B, et al. Invasive pneumococcal disease in patients infected with HIV: still a threat in the era of highly active antiretroviral therapy. Clin Infect Dis 2004; 38:1623–1628PubMedCrossRefGoogle Scholar
  24. 24.
    Buie KA, Klugman KP, von Gottberg A, et al. Gender as a risk factor for both antibiotic resistance and infection with pediatric serogroups/serotypes, in HIV-infected and — uninfected adults with pneumococcal bacteremia. J Infect Dis 2004; 189:1996–2000PubMedCrossRefGoogle Scholar
  25. 25.
    Munoz R, Coffey TJ, Daniels M, et al. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae. J Infect Dis 1991; 164:302–306PubMedGoogle Scholar
  26. 26.
    Coffey TJ, Dowson CG, Daniels M, et al. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosyn-thetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol 1991; 5:2255–2260PubMedCrossRefGoogle Scholar
  27. 27.
    Hanage WP, Kaijalainen TH, Syrjä nen RK, et al. Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect Immun 2005; 73:431–435PubMedCrossRefGoogle Scholar
  28. 28.
    Vela MC, Fonseca N, Di Fabio JL, Castaneda E. Presence of international multiresistant clones of Streptococcus pneumoniae in Colombia. Microb Drug Resist 2001; 7:153–164PubMedCrossRefGoogle Scholar
  29. 29.
    Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis 2003; 187:1424–1432PubMedCrossRefGoogle Scholar
  30. 30.
    Gertz Jr RE, McEllistrem MC, Boxrud DJ, et al. Clonal distribution of invasive pneumococcal isolates from children and selected adults in the United States prior to 7-valent conjugate vaccine introduction. J Clin Microbiol 2003; 41:4194–4216PubMedCrossRefGoogle Scholar
  31. 31.
    McGee L, Klugman KP, Wasas A, Capper T, Brink A. Serotype 19F multiresistant pneumococcal clone harboring two erythromy-cin resistance determinants (erm(B) and mef(A)) in South Africa. Antimicrob Agents Chemother 2001; 45:1595–1598PubMedCrossRefGoogle Scholar
  32. 32.
    Farrell DJ, Jenkins SG, Brown SD, Patel M, Lavin BS, Klugman KP. Emergence and spread of Streptococcus pneumoniae with erm(B) and mef(A) resistance. Emerg Infect Dis 2005; 11:851–858PubMedGoogle Scholar
  33. 33.
    Ko KS, Song JH. Evolution of erythromycin-resistant Streptococcus pneumoniae from Asian countries that contains erm(B) and mef(A) genes. J Infect Dis 2004; 190:739–747PubMedCrossRefGoogle Scholar
  34. 34.
    Pletz MWR, McGee L, Jorgensen JH, et al. Levofloxacin-resistant invasive Streptococcus pneumoniae in the United States: evidence for clonal spread and impact of the pneumococcal conjugate vaccine. Antimicrob Agents Chemother 2004; 48:3491–3497PubMedCrossRefGoogle Scholar
  35. 35.
    Richter SS, Heilmann KP, Beekmann SE, Miller NJ, Rice CL, Doern GV. The molecular epidemiology of Streptococcus pneu-moniae with quinolone resistance mutations. Clin Infect Dis 2005; 40:225–235PubMedCrossRefGoogle Scholar
  36. 36.
    Schrag SJ, McGee L, Whitney CG, et al. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob Agents Chemother 2004; 48:3016–3023PubMedCrossRefGoogle Scholar
  37. 37.
    McGee L, Goldsmith CE, Klugman KP. Fluoroquinolone resistance among clinical isolates of Streptococcus pneumoniae belonging to international multiresistant clones. J Antimicrob Chemother 2002; 49:173–176PubMedCrossRefGoogle Scholar
  38. 38.
    Edson DC, Glick T, Massey LD. Susceptibility testing practices for Streptococcus pneumoniae: results of a proficiency testing survey of clinical laboratories. Diagn Microbiol Infect Dis 2006; 55:225–230PubMedCrossRefGoogle Scholar
  39. 39.
    Metan G, Zarakolu P, Unal S. Rapid detection of antibacterial resistance in emerging Gram-positive cocci. J Hosp Infect 2005; 61:93–99PubMedCrossRefGoogle Scholar
  40. 40.
    du Plessis M, Smith AM, Klugman KP. Rapid detection of penicillin-resistant Streptococcus pneumoniae in cerebrospinal fluid by a seminested-PCR strategy. J Clin Microbiol 1998; 36:453–457PubMedGoogle Scholar
  41. 41.
    du Plessis M, Smith AM, Klugman KP. Application of pbp1A PCR in identification of penicillin-resistant Streptococcus pneumoniae. J Clin Microbiol 1999; 37:628–632PubMedGoogle Scholar
  42. 42.
    Zettler EW, Scheibe RM, Dias CA, et al. Determination of penicillin resistance in Streptococcus pneumoniae isolates from southern Brazil by PCR. Int J Infect Dis 2006; 10:110–115PubMedCrossRefGoogle Scholar
  43. 43.
    Kearns AM, Graham C, Burdess D, Heatherington J, Freeman R. Rapid real-time PCR for determination of penicillin susceptibility in pneumococcal meningitis, including culture-negative cases. J Clin Microbiol 2002; 40:682–684PubMedCrossRefGoogle Scholar
  44. 44.
    Austrian R, Gold J. Pneumococcal bacteremia with special reference to bacteremic pneumococcal pneumonia. Ann Intern Med 1964; 60:759–776PubMedGoogle Scholar
  45. 45.
    Kislak JW, Razavi LM, Daly AK, Finland M. Susceptibility of pneu-mococci to nine antibiotics. Am J Med Sci 1965; 250:261–268PubMedGoogle Scholar
  46. 46.
    Hansman D, Bullen MM. A resistant pneumococcus. Lancet 1967; 1:264–265CrossRefGoogle Scholar
  47. 47.
    Hansman D, Glasgow H, Sturt J, Devitt HL, Douglas R. Increased resistance to penicillin of pneumococci isolated from man. N Engl J Med 1971; 284:175–177PubMedGoogle Scholar
  48. 48.
    Naraqi S, Kirkpatrick GP, Kabins S. Relapsing pneumococcal meningitis: isolation of an organism with decreased susceptibility to penicillin G. J Pediatr 1974; 85:671–673PubMedCrossRefGoogle Scholar
  49. 49.
    Appelbaum PC, Bhamjee A, Scragg JN, Hallett AF, Bowen AJ, Cooper RC. Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet 1977; 2:995–997PubMedCrossRefGoogle Scholar
  50. 50.
    Felmingham D. Evolving resistance patterns in community-acquired respiratory tract pathogens: first results from the PROTEKT global surveillance study. Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin. J Infect Dis 2002; 44:3–10Google Scholar
  51. 51.
    Jacobs MR, Felmingham D, Appelbaum PC, Grüneberg RN, the Alexander Project Group. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother 2003; 52:229–246PubMedCrossRefGoogle Scholar
  52. 52.
    Hakenbeck R, Ellerbrok H, Briese T, Handwerger S, Tomasz A. Penicillin-binding proteins of penicillin-susceptible and -resistant pneumococci: immunological relatedness of altered proteins and changes in peptides carrying the β -lactam binding site. Antimicrob Agents Chemother 1986; 30:553–558PubMedGoogle Scholar
  53. 53.
    Kell CM, Sharma UK, Dowson CG, Town C, Balganesh TS, Spratt BG. Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiol Lett 1993; 106:171–175PubMedCrossRefGoogle Scholar
  54. 54.
    Smith AM, Feldman C, Massidda O, McCarthy K, Ndiweni D, Klugman KP. Altered PBP2A and its role in the development of penicillin, cefotaxime and ceftriaxone resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother 2005; 49:2002–2007PubMedCrossRefGoogle Scholar
  55. 55.
    Reichmann P, Koning A, Marton A, Hakenbeck R. Penicillin-binding proteins as resistance determinants in clinical isolates of Streptococcus pneumoniae. Microb Drug Resist 1996; 2:177–181PubMedCrossRefGoogle Scholar
  56. 56.
    Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of β -lactam antibiotics. Antimicrob Agents Chemother 1996; 40:829–834PubMedGoogle Scholar
  57. 57.
    Dowson CG, Johnson AP, Cercenado E, George RC. Genetics of oxacillin resistance in clinical isolates of Streptococcus pneu-moniae that are oxacillin resistant and penicillin susceptible. Antimicrob Agents Chemother 1994; 38:49–53PubMedGoogle Scholar
  58. 58.
    Munoz R, Dowson CG, Daniels M, et al. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol Microbiol 1992; 6:2461–2465PubMedGoogle Scholar
  59. 59.
    Coffey TJ, Daniels M, McDougal LK, Dowson CG, Tenover FC, Spratt BG. Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cepha-losporins. Antimicrob Agents Chemother 1995; 39:1306–1313PubMedGoogle Scholar
  60. 60.
    Smith AM, Klugman KP. Alterations in MurM, a cell wall muropeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45:2393–2396PubMedCrossRefGoogle Scholar
  61. 61.
    Vanhoof R, Brouillard J, Damee S, et al. High prevalence of penicillin resistance and comparative in vitro activity of various antibiotics in clinical isolates of Streptococcus pneumoniae isolated in the Province of Hainaut during winter 2004. Acta Clin Belg 2005; 60:345–349PubMedGoogle Scholar
  62. 62.
    Cafini F, del Campo R, Alou L, et al. Alterations of the penicillin-binding proteins and murM alleles of clinical Streptococcus pneu-moniae isolates with high-level resistance to amoxicillin in Spain. J Antimicrob Chemother 2006; 57:224–229PubMedCrossRefGoogle Scholar
  63. 63.
    Butler DL, Gagnon RC, Miller LA, Poupard JA, Felmingham D, Gruneberg RN. Differences between the activity of penicillin, amoxycillin, and co-amoxyclav against 5,252 Streptococcus pneumoniae isolates tested in the Alexander Project 1992–1996. J Antimicrob Chemother 1999; 43:777–782PubMedCrossRefGoogle Scholar
  64. 64.
    Doit C, Loukil C, Fitoussi F, Geslin P, Bingen E. Emergence in France of multiple clones of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin. Antimicrob Agents Chemother 1999; 43:1480–1483PubMedGoogle Scholar
  65. 65.
    Kosowska K, Jacobs MR, Bajaksouzian S, Koeth L, Appelbaum PC. Alterations of penicillin-binding proteins 1A, 2X and 2B in Streptococcus pneumoniae isolates with amoxicillin MICs are higher than penicillin MICs. Antimicrob Agents Chemother 2004; 48:4020–4022PubMedCrossRefGoogle Scholar
  66. 66.
    Du Plessis M, Bingen E, Klugman KP. Analysis of penicillin-binding protein genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to amoxicillin. Antimicrob Agents Chemother 2002; 46:2349–2357CrossRefGoogle Scholar
  67. 67.
    Gasc AM, Kauc L, Barraillé P, Sicard M, Goodgal S. Gene localization, size, and physical map of the chromosome of Streptococcus pneumoniae. J Bacteriol 1991; 173:7361–7367PubMedGoogle Scholar
  68. 68.
    Smith AM, Botha RF, Koornhof HJ, Klugman KP. Emergence of a pneumococcal clone with cephalosporin resistance and penicillin susceptiblity. Antimicrob Agents Chemother 2001; 45:2648–2650PubMedCrossRefGoogle Scholar
  69. 69.
    McDougal LK, Rasheed JK, Biddle JW, Tenover FC. Identification of multiple clones of extended-spectrum cephalosporin-resistant Streptococcus pneumoniae isolates in the United States. Antimicrob Agents Chemother 1995; 39:2282–2288PubMedGoogle Scholar
  70. 70.
    Felmingham D, Reinert RR, Hirakata Y, Rodloff A. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide telithromycin. J Antimicrob Chemother 2002; 50(Suppl Sl):25–37PubMedGoogle Scholar
  71. 71.
    Klugman KP, Lonks JR. Hidden epidemic of macrolide-resistant pneumococci. Emerg Infect Dis 2005; 11:802–807PubMedGoogle Scholar
  72. 72.
    File Jr TM, Tan JS. International guidelines for the treatment of community-acquired pneumonia in adults: the role of macrolides. Drugs 2003; 63:181–205PubMedCrossRefGoogle Scholar
  73. 73.
    Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995; 39:577–585PubMedGoogle Scholar
  74. 74.
    Syrogiannopoulos GA, Grivea IN, Tait-Kamradt A, et al. Identification of an erm(A) erythromycin resistance methylase gene in Streptococcus pneumoniae isolated in Greece. Antimicrob Agents Chemother 2001; 45:342–344PubMedCrossRefGoogle Scholar
  75. 75.
    Farrell DJ, Douthwaite S, Morrissey I, et al. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneu-moniae from the PROTEKT 1999–2000 study. Antimicrob Agents Chemother 2003; 47:1777–1783PubMedCrossRefGoogle Scholar
  76. 76.
    Doktor SZ, Shortridge VD, Beyer JM, Flamm RK. Epidemiology of macrolide and/or lincosamide resistant Streptococcus pneumo-niae clinical isolates with ribosomal mutations. Diagn Microbiol Infect Dis 2004; 49:47–52PubMedCrossRefGoogle Scholar
  77. 77.
    Davies TA, Bush K, Sahm D, Evangelista A. Predominance of 23S rRNA mutants among non-erm, non-mef macrolide-resistant clinical isolates of Streptococcus pneumoniae collected in the United States in 1999–2000. Antimicrob Agents Chemother 2005; 49:3031–3033PubMedCrossRefGoogle Scholar
  78. 78.
    Farrell DJ, Jenkins SG. Distribution across the USA of mac-rolide resistance and macrolide resistance mechanisms among Streptococcus pneumoniae isolates collected from patients with respiratory tract infections: PROTEKT US 2001–2002. J Antimicrob Chemother 2004; 54(Suppl S1):17–22CrossRefGoogle Scholar
  79. 79.
    Clancy J, Petitpas J, Dib Hajj F, et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol 1996; 22:867–879PubMedCrossRefGoogle Scholar
  80. 80.
    Tait-Kamradt A, Clancy J, Cronan M, et al. mefE is necessary for the erythromycin-resistant M phenotype in Streptococcus pneumo-niae. Antimicrob Agents Chemother 1997; 41:2251–2255PubMedGoogle Scholar
  81. 81.
    Roberts MC, Sutcliffe P, Courvalin P, Bogo Jensen L, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin V resistance determinants. Antimicrob Agents Chemother 1999; 43:2823–2830PubMedGoogle Scholar
  82. 82.
    Klaassen CHW, Mouton JW. Molecular detection of the macrolide efflux gene: to discriminate or not to discriminate between mef(A) and mef(E). Antimicrob Agents Chemother 2005; 9:1271–1278CrossRefGoogle Scholar
  83. 83.
    Klomberg DM, de Valk HA, Mouton JW, Klaassen CH. Rapid and reliable real-time PCR assay for detection of the macrolide efflux gene and subsequent discrimination between its distinct subclasses mef(A) and mef(E). J Microbiol Methods 2005; 60:269–273PubMedCrossRefGoogle Scholar
  84. 84.
    Gay K, Stephens DS. Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae. J Infect Dis 2001; 184:56–65PubMedCrossRefGoogle Scholar
  85. 85.
    Del Grosso M, Iannelli F, Messina C, et al. Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J Clin Microbiol 2002; 40:774–778CrossRefGoogle Scholar
  86. 86.
    Santagati M, Iannelli F, Oggioni MR, Stefani S, Pozzi G. Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob Agents Chemother 2000; 44:2585–2587PubMedCrossRefGoogle Scholar
  87. 87.
    Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wooton JC. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 1990; 4:1207–1214PubMedCrossRefGoogle Scholar
  88. 88.
    Corso A, Severina EP, Petruk VF Mauriz YR, Tomasz A. Molecular characterization of penicillin-resistant Streptococcus pneumoniae isolates causing respiratory disease in the United States. Microb Drug Resist 1998; 4:325–337PubMedCrossRefGoogle Scholar
  89. 89.
    Fuller JD, Low DE. A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolones resistance. Clin Infect Dis 2005; 41:1181–21CrossRefGoogle Scholar
  90. 90.
    Powis J, McGeer A, Green K, et al. In vitro antimicrobial susceptibilities of Streptococcus pneumoniae clinical isolates obtained in Canada in 2002. Antimicrob Agents Chemother 2004; 48:3305–3311PubMedCrossRefGoogle Scholar
  91. 91.
    Song JH, Jung SI, Ko KS, et al. High prevalence of antimicrobial resistance among clinical Streptococcus pneumoniae isolates in Asia (an ANSORP study). Antimicrob Agents Chemother 2004; 48:2101–2107PubMedCrossRefGoogle Scholar
  92. 92.
    Perez-Trallero E, Fernandez-Mazarrasa C, Garcia-Rey C, et al. Antimicrobial susceptibilities of 1,684 Streptococcus pneu-moniae and 2,039 Streptococcus pyogenes isolates and their ecological relationships: results of a 1-year (1998–1999) multi-center surveillance study in Spain. Antimicrob Agents Chemother 2001; 45:3334–3340PubMedCrossRefGoogle Scholar
  93. 93.
    Canton R, Morosini M, Enright MC, Morrissey I. Worldwide incidence, molecular epidemiology and mutations implicated in fluoroquinolone-resistant Streptococcus pneumoniae: data from the global PROTEKT surveillance programme. J Antimicrob Chemother 2003; 52:944–952PubMedCrossRefGoogle Scholar
  94. 94.
    Ho PL, Que TL, Chiu SS, et al. Fluoroquinolone and other antimicrobial resistance in invasive pneumococci, Hong Kong, 1995–2001. Emerg Infect Dis 2004; 10:1250–1257PubMedGoogle Scholar
  95. 95.
    Pan XS, Ambler J, Mehtar S, Fisher LM. Involvement of topoisomer-ase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother 1996; 40:2321–2326PubMedGoogle Scholar
  96. 96.
    Bast DJ, Low DE, Duncan CL, et al. Fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae: contributions of type II topoisomerase mutations and efflux to levels of resistance. Antimicrob Agents Chemother 2000; 44:3049–3054PubMedCrossRefGoogle Scholar
  97. 97.
    Lim S, Bast D, McGeer A, de Azavedo J, Low DE. Antimicrobial susceptibility breakpoints and first-step parC mutations in Streptococcus pneumoniae: redefining fluoroquinolones resistance. Emerg Infect Dis 2003; 9:833–837PubMedGoogle Scholar
  98. 98.
    Li X, Zhao X, Drlica K. Selection of Streptococcus pneumoniae mutants having reduced susceptibility to moxifloxacin and levo-floxacin. Antimicrob Agents Chemother 2002; 46:522–524PubMedCrossRefGoogle Scholar
  99. 99.
    Gillespie SH, Voelker LL, Ambler JE, Traini C, Dickens A. Fluoroquinolone resistance in Streptococcus pneumoniae: evidence that gyrA mutations arise at a lower rate and that mutation in gyrA or parC predisposes to further mutation. Microb Drug Resist 2003; 9:17–24PubMedCrossRefGoogle Scholar
  100. 100.
    Perichon B, Tankovic J, Courvalin P. Characterization of a mutation in the pare gene that confers fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41:1166–1167PubMedGoogle Scholar
  101. 101.
    Pletz MW, Shergill AP, McGee L, et al. Prevalence of first-step mutants among levofloxacin-susceptible invasive isolates of Streptococcus pneumoniae in the United States. Antimicrob Agents Chemother 2006; 50:1561–1563PubMedCrossRefGoogle Scholar
  102. 102.
    Schurek KN, Adam HJ, Siemens CG, Hoban CJ, Hoban DJ, Zhanel GG. Are fluoroquinolone-susceptible isolates of Streptococcus pneumoniae really susceptible? A comparison of resistance mechanisms in Canadian isolates from 1997 and 2003. J Antimicrob Chemother 2005; 56:769–772PubMedCrossRefGoogle Scholar
  103. 103.
    Doern GV, Richter SS, Miller A, et al. Antimicrobial resistance among Streptococcus pneumoniae in the United States: have we begun to turn the corner on resistance to certain antimicrobial classes? Clin Infect Dis 2005;41:139–148PubMedCrossRefGoogle Scholar
  104. 104.
    Davies TA, Yee YC, Goldschmidt R, Bush K, Sahm DF, Evangelista A. Infrequent occurrence of single mutations in topoisomerase IV and DNA gyrase genes among US levo-floxacin-susceptible clinical isolates of Streptococcus pneumo-niae from nine institutions (1999–2003). J Antimicrob Chemother 2006; 57:437–442PubMedCrossRefGoogle Scholar
  105. 105.
    Davies TA, Evangelista A, Pfleger S, Bush K, Sahm DF, Goldschmidt R. Prevalence of single mutations in topoisomerase type II genes among levofloxacin-susceptible clinical strains of Streptococcus pneumoniae isolated in the United States in 1992 to 1996 and 1999 to 2000. Antimicrob Agents Chemother 2002; 46:119–124PubMedCrossRefGoogle Scholar
  106. 106.
    Zeller V, Janoir C, Kitzis MD, Gutmann L, Moreau NJ. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41:1973–1978PubMedGoogle Scholar
  107. 107.
    Balsalobre L, Ferrandiz MJ, Linares J, Tubau F, de la Campa AG. Viridans group streptococci are donors in horizontal transfer of toposiomerase IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother 2003; 47:2072–2081PubMedCrossRefGoogle Scholar
  108. 108.
    Bast DJ, de Azavedo JC, Tam TY, et al. Interspecies recombination contributes minimally to fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45:2631–2634PubMedCrossRefGoogle Scholar
  109. 109.
    Pletz MWR, McGee L, Beall B, Whitney CG, Klugman KP. Interspecies recombination in type II topoisomerase genes is not a major cause of fluoroquinolones resistance in invasive Streptococcus pneumoniae isolates in the United States. Antimicrob Agents Chemother 2005; 49:779–780PubMedCrossRefGoogle Scholar
  110. 110.
    Farrell DJ, Felmingham D. The PROTEKT global study (year 4) demonstrates a continued lack of resistance development to telithromycin in Streptococcus pneumoniae. J Antimicrob Chemother 2005; 56:795–797PubMedCrossRefGoogle Scholar
  111. 111.
    Bingen E, Doit C, Loukil C, et al. Activity of telithromycin against penicillin-resistant Streptococcus pneumoniae isolates recovered from French children with invasive and noninvasive infections. Antimicrob Agents Chemother 2003; 47:2345–2347PubMedCrossRefGoogle Scholar
  112. 112.
    Rantala M, Huikko S, Huovinen P, Jalava J. Prevalence and molecular genetics of macrolide resistance among Streptococcus pneumoniae isolates collected in Finland in 2002. Antimicrob Agents Chemother 2005; 49:4180–4184PubMedCrossRefGoogle Scholar
  113. 113.
    Hisanaga T, Hoban DG, Zhanel GG. Mechanisms of resistance to telithromycin in Streptococcus pneumoniae. J Antimicrob Chemother 2005; 56:447–450PubMedCrossRefGoogle Scholar
  114. 114.
    Meka VG, Gold HS. Antimicrobial resistance to linezolid. Clin Infect Dis 2004; 39:1010–1015PubMedCrossRefGoogle Scholar
  115. 115.
    Farrell DJ, Morrissey I, Bakker S, Buckridge S, Felmingham D. In vitro activities of telithromycin, linezolid, and quinupris-tin–dalfopristin against Streptococcus pneumoniae with mac-rolide resistance due to ribosomal mutations. Antimicrob Agents Chemother 2004; 48:3169–3171PubMedCrossRefGoogle Scholar
  116. 116.
    Draghi DC, Sheehan DJ, Hogan P, Sahm DF. In vitro activity of linezolid against key Gram-positive organisms isolated in the United States: Results of the LEADER 2004 surveillance program. Antimicrob Agents Chemother 2005; 49:5024–5032PubMedCrossRefGoogle Scholar
  117. 117.
    Wolter N, Smith AM, Farrell DJ, et al. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother 2005; 49:3554–3557PubMedCrossRefGoogle Scholar
  118. 118.
    Jones RN, Farrell DJ, Morrissey I. Quinupristin— dalfopristin resistance in Streptococcus pneumoniae: novel L22 ribosomal protein mutation in two clinical isolates from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2003; 47:2696–2698PubMedCrossRefGoogle Scholar
  119. 119.
    Schmitz FJ, Perdikouli M, Beeck A, Verhoef J, Fluit AC. Molecular surveillance of macrolide, tetracycline and quinolone resistance mechanisms in 1191 clinical European Streptococcus pneumoniae isolates. Int J Antimicrob Agents 2001; 18:433–436PubMedCrossRefGoogle Scholar
  120. 120.
    Jones ME, Blosser-Middleton RS, Thornsberry C, Karlowsky JA, Sahm DF. The activity of levofloxacin and other antimicrobials against clinical isolates of Streptococcus pneumoniae collected worldwide during 1999–2002. Diagn Microbiol Infect Dis 2003; 47:579–586PubMedCrossRefGoogle Scholar
  121. 121.
    Burdett V, Inamine J, Rajagopalan S. Heterogeneity of tetra-cycline resistance determinants in Streptococcus. J. Bacteriol 1982; 149:995–1004PubMedGoogle Scholar
  122. 122.
    Widdowson CA, Klugman KP, Hanslo D. Identification of the tet-racycline resistance gene, tet(O), in Streptococcus pneumoniae. Antimicrob Agents Chemother 1996; 40:2891–2893PubMedGoogle Scholar
  123. 123.
    Luna VA, Roberts MC. The presence of the tetO gene in a variety of tetracycline-resistant Streptococcus pneumoniae serotypes from Washington State. J Antimicrob Chemother 1998; 42:613–619PubMedCrossRefGoogle Scholar
  124. 124.
    McDougal LK, Tenover FC, Lee LN, et al. Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3782) in erythromycin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42:2312–2318PubMedGoogle Scholar
  125. 125.
    Oggioni MR, Dowson CG, Smith JM, Provvedi R, Pozzi G. The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid 1996; 35:156–163PubMedCrossRefGoogle Scholar
  126. 126.
    Doherty N, Trzcinski K, Pickerill P, Zawadzki P, Dowson CG. Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother 2000; 44:2979–2984PubMedCrossRefGoogle Scholar
  127. 127.
    Dzierzanowska-Fangrat K, Semczuk K, Gorska P, et al. Evidence for tetracycline resistance determinant tet(M) allele replacement in a Streptococcus pneumoniae population of limited geographical origin. Int J Antimicrob Agents 2006; 27:159–164PubMedCrossRefGoogle Scholar
  128. 128.
    Bradley JS, Scheld WM. The challenge of penicillin-resistant Streptococcus pneumoniae meningitis: current antibiotic therapy in the 1990s. Clin Infect Dis 1997; 24(Suppl 2):S213–S221PubMedGoogle Scholar
  129. 129.
    Chambers H. Methicillin-resistant staphylococci. Clin Microbiol Rev 1988; 1:173–186PubMedGoogle Scholar
  130. 130.
    Deal W, Sanders E. Efficacy of rifampicin in treatment of menin-gococcal carriers. N Engl J Med 1969; 281:641–645PubMedGoogle Scholar
  131. 131.
    Band J, Fraser D, Ajello G. Prevention of Haemophilus influen-zae type b disease. JAMA 1984; 251:2381–2386PubMedCrossRefGoogle Scholar
  132. 132.
    Doern GV, Brueggemann A, Holley HP Jr, Rauch AM. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother 1996; 40:1208–1213PubMedGoogle Scholar
  133. 133.
    Marchese A, Mannelli S, Tonoli E, Gorlero F, Toni M, Schito GC. Prevalence of antimicrobial resistance in Streptococcus pneumo-niae circulating in Italy: results of the Italian Epidemiological Observatory Survey (1997–1999). Microb Drug Resist 2001; 7:277–287PubMedCrossRefGoogle Scholar
  134. 134.
    Padayachee T, Klugman KP. Molecular basis of rifampin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43:2361–2365PubMedGoogle Scholar
  135. 135.
    Ferrandiz MJ, Ardanuy C, Linares J, et al. New mutations and horizontal transfer of rpoB among rifampin-resistant Streptococcus pneumoniae from four Spanish hospitals. Antimicrob Agents Chemother 2005; 49:2237–2245PubMedCrossRefGoogle Scholar
  136. 136.
    Dang-Van A, Tiraby G, Acar JF, Shaw WV, Bonanchaud DH. Chloramphenicol resistance in Streptococcus pneumoniae: enzymatic acetylation and possible plasmid linkage. Antimicrob Agents Chemother 1978; 13:557–583Google Scholar
  137. 137.
    Ayoubi P, Kilic AO, Vijayakumar MN. Tn5253, the pneumococ-cal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol 1991; 173:1617–1622PubMedGoogle Scholar
  138. 138.
    Pepper K, de Cespedes G, Horaud T. Heterogeneity of chromosomal genes encoding chloramphenicol resistance in streptococci. Plasmid 1988; 19:71–74PubMedCrossRefGoogle Scholar
  139. 139.
    Widdowson CA, Adrian PV, Klugman KP. Acquisition of chlo-ramphenicol resistance by the linearization and integration of the entire staphylococcal plasmid pC194 into the chromosome of Streptococcus pneumoniae. Antimicrob Agents Chemother 2000; 44:393–395PubMedCrossRefGoogle Scholar
  140. 140.
    Jones ME, Blosser-Middleton RS, Critchley IA, Karlowsky JA, Thornsberry C, Sahm DF. In vitro susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis: a European multicenter study during 2000–2001. Clin Microbiol Infect 2003; 9:590–599PubMedCrossRefGoogle Scholar
  141. 141.
    Johnson DM, Stilwell MG, Fritsche TR, Jones RN. Emergence of multidrug-resistant Streptococcus pneumoniae: report from the SENTRY Antimicrobial Surveillance Program (1999–2003). Diagn Microbiol Infect Dis 2006; 56:69–74PubMedCrossRefGoogle Scholar
  142. 142.
    Adrian PV, Klugman KP. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumo-niae. Antimicrob Agents Chemother 1997; 41:2406–2413PubMedGoogle Scholar
  143. 143.
    Maskell JP, Sefton AM, Hall LM. Multiple mutations modulate the function of dihydrofolate reductase in trimethoprim-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45:1104–1108PubMedCrossRefGoogle Scholar
  144. 144.
    Lopez P, Espinosa M, Greenberg B, Lacks S. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol 1987; 169:4320–4326PubMedGoogle Scholar
  145. 145.
    Maskell JP, Sefton AM, Hall LM. Mechanism of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41:2121–2126PubMedGoogle Scholar
  146. 146.
    Padayachee T, Klugman KP. Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim— sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43:2225–2230PubMedGoogle Scholar
  147. 147.
    Moore HF, Chesney AM. A study of ethylhydrocuprein (optochin) in the treatment of acute lobar pneumonia. Arch Intern Med 1917; 19:611–82Google Scholar
  148. 148.
    Borek AP, Dressel DC, Hussong J, Peterson LR. Evolving clinical problems with Streptococcus pneumoniae: increasing resistance to antimicrobial agents, and failure of traditional optochin identification in Chicago, Illinois, between 1993 and 1996. Diagn Microbiol Infect Dis 1997; 29:209–214PubMedCrossRefGoogle Scholar
  149. 149.
    Pikis A, Campos JM, Rodriguez WJ, Keith JM. Optochin resistance in Streptococcus pneumoniae: mechanism, significance, and clinical implications. J Infect Dis 2001; 184:582–590PubMedCrossRefGoogle Scholar
  150. 150.
    Fenoll A, Muñ oz R, Garcí a E, de la Campa AG. Molecular basis of the optochin-sensitive phenotype of pneumococcus: characterization of the genes encoding the F 0 complex of the Streptococcus pneumoniae and Streptococcus oralis H+-ATPases. Mol Microbiol 1994; 12:587–98PubMedCrossRefGoogle Scholar
  151. 151.
    Feldman C, Kallenbach JM, Miller SD, Thorburn JR, Koornhof HJ. Community-acquired pneumonia due to penicillin-resistant pneu-mococci. N Engl J Med 1985; 313:615–617PubMedCrossRefGoogle Scholar
  152. 152.
    Pallares R, Gudiol F, Linares J, et al. Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med 1987; 317:18–22PubMedGoogle Scholar
  153. 153.
    Bryan CS, Talwani R, Stinson MS. Penicillin dosing for pneumo-coccal pneumonia. Chest 1997; 112:1657–1664PubMedCrossRefGoogle Scholar
  154. 154.
    Kaplan SL, Mason Jr EO, Barson WJ, et al. Outcome of invasive infections outside the central nervous system caused by Streptococcus pneumoniae isolates nonsusceptible to ceftriazone in children treated with beta-lactam antibiotics. Pediatr Infect Dis J 2001; 20:392–396PubMedCrossRefGoogle Scholar
  155. 155.
    Pallares R, Capdevila O, Linares J, et al. The effect of cepha-losporin resistance on mortality in adult patients with non-meningeal systemic pneumococcal infections. Am J Med 2002; 113:120–126PubMedCrossRefGoogle Scholar
  156. 156.
    Yu VL, Chiou CC, Feldman C, et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis 2003; 37:230–237PubMedCrossRefGoogle Scholar
  157. 157.
    Daum RS, Nachman JP, Leitch CD, Tenover FC. Nosocomial epiglottitis associated with penicillin- and cephalosporin-resistant Streptococcus pneumoniae bacteremia. J Clin Microbiol 1994; 32:246–248PubMedGoogle Scholar
  158. 158.
    Dagan R, Leibovitz E, Fliss DM, et al. Bacteriologic efficacies of oral azithromycin and oral cefaclor in treatment of acute otitis media in infants and young children. Antimicrob Agents Chemother 2000; 44:43–50PubMedCrossRefGoogle Scholar
  159. 159.
    Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis 2002; 2:593–604PubMedCrossRefGoogle Scholar
  160. 160.
    Dagan R, Hoberman A, Johnson C, et al. Bacteriologic and clinical efficacy of high dose amoxicillin/clavulanate in children with acute otitis media. Pediatr Infect Dis J 2001; 20:829–837PubMedCrossRefGoogle Scholar
  161. 161.
    Brook I, Gooch WMI et al. Medical management of acute bacterial sinusitis. Recommendations of a clinical advisory committee on pediatric and adult sinusitis. Ann Otol Rhinol Laryngol 2000; 109:2–20Google Scholar
  162. 162.
    Friedland IR, Klugman KP. Failure of chloramphenicol therapy in penicillin-resistant pneumococcal meningitis. Lancet 1992; 339:405–408PubMedCrossRefGoogle Scholar
  163. 163.
    Bradley JS, Connor JD. Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J 1991; 10:871–873PubMedCrossRefGoogle Scholar
  164. 164.
    Klugman KP. Pneumococcal resistance to the third-generation cephalosporins: clinical, laboratory and molecular aspects. Int J Antimicrob Agents 1994; 4:63–67PubMedCrossRefGoogle Scholar
  165. 165.
    Klugman KP, Friedland IR, Bradley JS. Bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in cerebrospinal fluid of children with acute bacterial meningitis. Antimicrob Agents Chemother 1995; 39:1988–1992PubMedGoogle Scholar
  166. 166.
    Friedland IR, Klugman KP. Cerebrospinal fluid bactericidal activity against cephalosporin-resistant Streptococcus pneumoniae in children with meningitis treated with high-dosage cefotaxime. Antimicrob Agents Chemother 1997; 41:1888–1891PubMedGoogle Scholar
  167. 167.
    Musher DM, Dowell ME, Shortridge VD, et al. Emergence of macrolide resistance during treatment of pneumococcal pneumonia. N Engl J Med 2002; 346:630–631PubMedCrossRefGoogle Scholar
  168. 168.
    Lonks JR, Garau J, Gomez L, et al. Failure of macrolide antibiotic treatment in patients with bacteremia due to erythromycin-resistant Streptococcus pneumoniae. Clin Infect Dis 2002; 35:556–564PubMedCrossRefGoogle Scholar
  169. 169.
    Jacobs MR, Bajaksouzian S, Windau A, et al. Susceptibility of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis to 17 oral antimicrobial agents based on pharmacodynamic parameters: 1998–2001 U S Surveillance Study. Clin Lab Med 2004; 24:503–530PubMedCrossRefGoogle Scholar
  170. 170.
    Leiberman A, Leibovitz E, Piglansky L, et al. Bacteriologic and clinical efficacy of trimethoprim— sulfamethoxazole for treatment of acute otitis media. Pediatr Infect Dis J 2001; 20:260–264PubMedCrossRefGoogle Scholar
  171. 171.
    Davidson R, Cavalcanti R, Brunton JL, et al. Resistance to levo-floxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 2002; 346:747–750PubMedCrossRefGoogle Scholar
  172. 172.
    Anderson KB, Tan JS, File TM Jr, DiPersio JR, Willey BM, Low DE. Emergence of levofloxacin-resistant pneumococci in immu-nocompromised adults after therapy for community-acquired pneumonia. Clin Infect Dis 2003; 37:376–381PubMedCrossRefGoogle Scholar
  173. 173.
    Whitney CG, Farley MM, Hadler J, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 2003; 348:1737–1746PubMedCrossRefGoogle Scholar
  174. 174.
    CDC. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease — United States, 1998–2003. MMWR Mortal Wkly Rep 2005; 54:893–897Google Scholar
  175. 175.
    Whitney CG, Klugman KP. Vaccines as tools against resistance: the example of pneumococcal conjugate vaccine. Semin Pediatr Infect Dis 2004; 15:86–93PubMedCrossRefGoogle Scholar
  176. 176.
    Klugman KP, Madhi SA, Huebner RE, et al. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 2003; 349:1341–1348PubMedCrossRefGoogle Scholar
  177. 177.
    Black S, Shinefield H, Baxter R, et al. Postlicensure surveillance for pneumococcal invasive disease after use of heptavalent pneumococcal conjugate vaccine in Northern California Kaiser Permanente. Pediatr Infect Dis J 2004; 23:48548–9Google Scholar
  178. 178.
    Talbot TR, Poehling KA, Hartert T V, et al. Reduction in high rates of antiobiotic-nonsusceptible invasive pneumococcal disease in Tennessee following introduction of the pneumococcal conjugate vaccine. Clin Infect Dis 2004; 39:641–648PubMedCrossRefGoogle Scholar
  179. 179.
    Stephens DS. Incidence of macrolide resistance in Streptococcus pneumoniae after introduction of the pneumococcal conjugate vaccine: population-based assessment. Lancet 2005; 365:855–863PubMedCrossRefGoogle Scholar
  180. 180.
    Kyaw MH, Lynfield R, Schaffner W, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med 2006; 354:1455–1463PubMedCrossRefGoogle Scholar
  181. 181.
    Porat N, Arguedas A, Spratt BG, et al. Emergence of penicillin-nonsusceptible Streptococcus pneumoniae clones expressing serotypes not present in the antipneumococcal conjugate vaccine. J Infect Dis 2004; 190:2154–2161PubMedCrossRefGoogle Scholar
  182. 182.
    Block SL, Hedrick J, Harrison CJ, Tyler R, Smith A, Findlay R, Keegan E. Community-wide vaccination with the heptavalent pneumococcal conjugate significantly alters the microbiology of acute otitis media. Pediatr Infect Dis J 2004; 23:829–833PubMedCrossRefGoogle Scholar
  183. 183.
    Moore MR, Hyde TB, Hennessy TW, et al. Impact of a conjugate vaccine on community-wide carriage of nonsus-ceptible Streptococcus pneumoniae in Alaska. J Infect Dis 2004; 190:2031–2038PubMedCrossRefGoogle Scholar
  184. 184.
    Pelton SI, Loughlin AM, Marchant CD. Seven valent pneumo-coccal conjugate vaccine immunization in two Boston communities: changes in serotypes and antimicrobial susceptibility among Streptococcus pneumoniae isolates. Pediatr Infect Dis J 2004; 23:1015–1022PubMedCrossRefGoogle Scholar
  185. 185.
    Frazao N, Brito-Avo A, Simas C, et al. Effect of the seven-valent conjugate pneumococcal vaccine on carriage and drug resistance of Streptococcus pneumoniae in healthy children attending day-care centers in Lisbon. Pediatr Infect Dis J 2005; 24:243–252PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lesley McGee
    • 1
  • Keith P. Klugman
    • 2
  1. 1.Hubert Department of Global HealthRollins School of Public Health, Emory UniversityAtlantaUSA
  2. 2.Hubert Department of Global Health, Rollins School of Public Health, Professor, Division of Infectious Diseases, School of MedicineEmory UniversityAtlantaUSA

Personalised recommendations