Skip to main content

Effects of Intermittent Hypoxia on Neurological Function

  • Chapter
Brain Hypoxia and Ischemia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Sleep-disordered breathing is a frequent condition across the age spectrum in the clinical setting, and is characterized by recurring episodes of hypoxia during sleep, as well as by disruption of sleep integrity. It has become clear that this highly prevalent condition leads to substantial morbidities primarily affecting the central nervous and cardiovascular systems and is also associated with marked alterations in respiratory patterning. Substantial advances have occurred in the last decade on our understanding of the pathophysiological role played intermittent hypoxia in these altered phenotypes. In this chapter, the current conceptual frameworks on the mechanisms underlying the consequences of episodic hypoxemia during sleep will be reviewed, with particular attention to cognitive deficits and altered neural control of breathing. When appropriate, differences in the response patterns as dictated by developmental stages at which intermittent hypoxia occurs will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabhakar NR. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol 2001; 90:1986– 1994.

    Article  CAS  PubMed  Google Scholar 

  2. McGuire M, Zhang Y, White DP, Ling L. Effect of hypoxic episode number and severity on ventilatory long-term facilitation in awake rats. J Appl Physiol 2002; 93:2155– 2161.

    PubMed  Google Scholar 

  3. Prabhakar NR, Kline DD. Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt Med Biol 2002; 3:195– 204.

    Article  PubMed  Google Scholar 

  4. Waters KA, Gozal D. Responses to hypoxia during early development. Respir Physiol Neurobiol 2003; 136:115– 129.

    Article  CAS  PubMed  Google Scholar 

  5. Decary A, Rouleau I, Montplaisir J. Cognitive deficits associated with sleep apnea syndrome: a proposed neuropsychological test battery. Sleep 2000; 23:369– 381.

    CAS  PubMed  Google Scholar 

  6. Punjabi NM, Polotsky VY. Disorders of glucose metabolism in sleep apnea. J Appl Physiol 2005; 99:1998– 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev 2005; 9:211– 224.

    Article  PubMed  Google Scholar 

  8. Kales A, Caldwell AB, Cadieux RJ, et al. Severe obstructive sleep apnea. II. Associated psychopathology and psychosocial consequences. J Chronic Dis 1985; 38:427– 434.

    Article  CAS  PubMed  Google Scholar 

  9. Roehrs T, Merrion M, Pedrosi B, et al. Neuropsychological function in obstructive sleep apnea syndrome (OSAS) compared to chronic obstructive pulmonary disease (COPD). Sleep 1995; 18:382– 388.

    CAS  PubMed  Google Scholar 

  10. Beebe DW, Gozal D. Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res 2002; 11:1– 16.

    Article  PubMed  Google Scholar 

  11. Beebe DW, Groesz L, Wells C, et al. The neuropsychological effects of obstructive sleep apnea: a meta-analysis of norm-referenced and case-controlled data. Sleep 2003; 26:298– 307.

    PubMed  Google Scholar 

  12. Ayalon L, Peterson S. Functional central nervous system imaging in the investigation of obstructive sleep apnea. Curr Opin Pulmon Med 2007; 13:479– 483.

    Article  Google Scholar 

  13. Robbins J, Redline S, Ervin A, Walsleben JA, Ding J, Nieto FJ. Associations of sleep-disordered breathing and cerebral changes on MRI. J Clin Sleep Med 2005; 1:159– 165.

    PubMed  Google Scholar 

  14. Zimmerman ME, Aloia MS. A review of neuroimaging in obstructive sleep apnea. J Clin Sleep Med 2006; 2:461– 471.

    PubMed  Google Scholar 

  15. Tonon C, Vetrugno R, Lodi R, Gallassi R, Provini F, Iotti S, Plazzi G, Montagna P, Lugaresi E, Barbiroli B. Proton magnetic resonance spectroscopy study of brain metabolism in obstructive sleep apnoea syndrome before and after continuous positive airway pressure treatment. Sleep 2007; 30:305– 311.

    PubMed  Google Scholar 

  16. Halbower AC, Degaonkar M, Barker PB, Earley CJ, Marcus CL, Smith PL, Prahme MC, Mahone EM. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med 2006; 3:e301.

    Article  PubMed  Google Scholar 

  17. Ficker JH, Feistel H, Moller C, et al. Changes in regional CNS perfusion in obstructive sleep apnea syndrome: initial SPECT studies with injected nocturnal 99mTc-HMPAO. Pneumologie 1997; 51(9):926– 930.

    CAS  PubMed  Google Scholar 

  18. Kamba M, Suto Y, Ohta Y, et al. Cerebral metabolism in sleep apnea. Evaluation by magnetic resonance spectroscopy. Am J Respir Crit Care Med 1997; 156(1):296– 298.

    CAS  PubMed  Google Scholar 

  19. Kamba M, Inoue Y, Higami S, et al. Cerebral metabolic impairment in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change. J Neurol Neurosurg Psychiatry 2001; 71(3):334– 339.

    Article  CAS  PubMed  Google Scholar 

  20. Macey PM, Henderson LA, Macey KE. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 2002; 166(10):1382– 1387.

    Article  PubMed  Google Scholar 

  21. Alchanatis M, Deligiorgis N, Zias N, et al. Frontal brain lobe impairment in obstructive sleep apnoea: a proton MR spectroscopy study. Eur Respir J 2004; 24(6):980– 986.

    Article  CAS  PubMed  Google Scholar 

  22. Bartlett DJ, Rae C, Thompson CH. Hippocampal area metabolites relate to severity and cognitive function in obstructive sleep apnea. Sleep Med 2004; 5(6):593– 596.

    Article  PubMed  Google Scholar 

  23. Thomas RJ, Rosen BR, Stern CD, et al. Functional imaging of working memory in obstructive sleep-disordered breathing. J Appl Physiol 2005; 98(6):2226– 2234.

    Article  PubMed  Google Scholar 

  24. Ayalon L, Ancoli-Israel S, Klemfuss Z, et al. Increased brain activation during verbal learning in obstructive sleep apnea. Neuroimage 2006; 31(4):1817– 1825.

    Article  PubMed  Google Scholar 

  25. Davies CW, Crosby JH, Mullins RL, et al. Case control study of cerebrovascular damage defined by magnetic resonance imaging in patients with OSA and normal matched control subjects. Sleep 2001; 24(6):715– 720.

    CAS  PubMed  Google Scholar 

  26. Gilman S, Chervin RD, Koeppe RA, et al. Obstructive sleep apnea is related to a thalamic cholinergic deficit in MSA. Neurology 2003; 61(1):35– 39.

    CAS  PubMed  Google Scholar 

  27. O'Donoghue FJ, Briellmann RS, Rochford PD, et al. Cerebral structural changes in severe obstructive sleep apnea. Am J Respir Crit Care Med 2005; 171(10):1185– 1190.

    Article  PubMed  Google Scholar 

  28. Nowak M, Kornhuber J, Meyrer R. Daytime impairment and neurodegeneration in OSAS. Sleep 2006; 29(12):1521– 1530.

    PubMed  Google Scholar 

  29. Morrell MJ, Twigg G. Neural consequences of sleep disordered breathing: the role of intermittent hypoxia. Adv Exp Med Biol 2006; 588:75– 88.

    Article  PubMed  Google Scholar 

  30. Minoguchi K, Yokoe T, Tazaki T, et al. Silent brain infarction and platelet activation in obstructive sleep apnea. Am J Respir Crit Care Med 2007; 175(6):612– 617.

    Article  PubMed  Google Scholar 

  31. Gozal D. Sleep-disordered breathing and school performance in children. Pediatrics 1998; 102:616– 620.

    Article  CAS  PubMed  Google Scholar 

  32. Beebe DW. Neurobehavioral morbidity associated with disordered breathing during sleep in children: a comprehensive review. Sleep 2006; 29(9):1115– 1134.

    PubMed  Google Scholar 

  33. Gozal D. Morbidity of obstructive sleep apnea in children: facts and theory. Sleep Breath 2001; 5(1):35– 42.

    Article  CAS  PubMed  Google Scholar 

  34. O'Brien LM, Mervis CB, Holbrook CR, et al. Neurobehavioral correlates of sleep-disordered breathing in children. J Sleep Res 2004; 13(2):165– 172.

    Article  PubMed  Google Scholar 

  35. Bass JL, Corwin M, Gozal D, et al. The effect of chronic or intermittent hypoxia on cognition in childhood: a review of the evidence. Pediatrics 2004; 114(3):805– 816.

    Article  PubMed  Google Scholar 

  36. Urschitz MS, Wolff J, Sokollik C, et al. Nocturnal arterial oxygen saturation and academic performance in a community sample of children. Pediatrics 2005; 115(2):e204– e209.

    Article  PubMed  Google Scholar 

  37. Gozal D, Pope DW Jr. Snoring during early childhood and academic performance at ages thirteen to fourteen years. Pediatrics 2001; 107(6):1394– 1399.

    Article  CAS  PubMed  Google Scholar 

  38. Halbower AC, Degaonkar M, Barker PB, et al. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med 2006; 3(8):e301.

    Article  PubMed  Google Scholar 

  39. Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci 2001; 21(7):2442– 2450.

    CAS  PubMed  Google Scholar 

  40. Decker MJ, Hue GE, Caudle WM, et al. Episodic neonatal hypoxia evokes executive dysfunction and regionally specific alterations in markers of dopamine signaling. Neuroscience 2003; 117(2):417– 425.

    Article  CAS  PubMed  Google Scholar 

  41. Row BW, Kheirandish L, Neville JJ, et al. Impaired spatial learning and hyperactivity in developing rats exposed to intermittent hypoxia. Pediatr Res 2002; 52(3):449– 453.

    PubMed  Google Scholar 

  42. Row BW, Liu R, Xu W, et al. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 2003; 167(11):1548– 1553.

    Article  PubMed  Google Scholar 

  43. Payne RS, Goldbart A, Gozal D, et al. Effect of intermittent hypoxia on long-term potentiation in rat hippocampal slices. Brain Res 2004; 1029(2):195– 199.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao P, Xue J, Gu XQ, Haddad GG, Xia Y. Intermittent hypoxia modulates Na; channel expression in developing mouse brain. Int J Dev Neurosci 2005; 23(4):327– 333.

    Article  CAS  PubMed  Google Scholar 

  45. Douglas RM, Miyasaka N, Takahashi K, Latuszek-Barrantes A, Haddad GG, Hetherington HP. Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1254– R1259.

    CAS  PubMed  Google Scholar 

  46. Gu XQ, Haddad GG. Maturation of neuronal excitability in hippocampal neurons of mice chronically exposed to cyclic hypoxia. Am J Physiol Cell Physiol 2003; 284:C1156– C1163.

    CAS  PubMed  Google Scholar 

  47. Douglas RM, Xue J, Chen JY, Haddad CG, Alper SL, Haddad GG. Chronic intermittent hypoxia decreases the expression of Na/H exchangers and HCO3-dependent transporters in mouse CNS. J Appl Physiol 2003; 95:292– 299.

    CAS  PubMed  Google Scholar 

  48. Row BW, Kheirandish L, Cheng Y, et al. Impaired spatial working memory and altered choline acetyltransferase (CHAT) immunoreactivity and nicotinic receptor binding in rats exposed to intermittent hypoxia during sleep. Behav Brain Res 2007; 177(2):308– 314.

    Article  CAS  PubMed  Google Scholar 

  49. Hambrecht VS, Vlisides PE, Row BW, et al. Cholinergic and opioid activation of G proteins in rat hippocampus: modulation by hypoxia. Hippocampus 2007; 17(10):934– 942.

    Article  CAS  PubMed  Google Scholar 

  50. Veasey SC, Davis CW, Fenik P, et al. Long-term intermittent hypoxia in mice: protracted hyper-somnolence with oxidative injury to sleep-wake brain regions. Sleep 2004; 27(2):194– 201.

    PubMed  Google Scholar 

  51. Pae EK, Chien P, Harper RM. Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett 2005; 375:123– 128.

    Article  CAS  PubMed  Google Scholar 

  52. Ramanathan L, Gozal D, Siegel JM. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem 2005; 93(1):47– 52.

    Article  CAS  PubMed  Google Scholar 

  53. Decker MJ, Jones KA, Solomon IG, et al. Reduced extracellular dopamine and increased responsiveness to novelty: neurochemical and behavioral sequelae of intermittent hypoxia. Sleep 2005; 28(2):169– 176.

    PubMed  Google Scholar 

  54. Kheirandish L, Gozal D, Pequignot JM, et al. Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr Res 2005; 58(3):594– 599.

    Article  PubMed  Google Scholar 

  55. Simonova Z, Sterbova K, Brozek G, et al. Postnatal hypobaric hypoxia in rats impairs water maze learning and the morphology of neurones and macroglia in cortex and hippocampus. Behav Brain Res 2003; 141(2):195– 205.

    Article  PubMed  Google Scholar 

  56. Nyakas C, Buwalda B, Kramers RJ, et al. Postnatal development of hippocampal and neocor-tical cholinergic and serotonergic innervation in rat: effects of nitrite-induced prenatal hypoxia and nimodipine treatment. Neuroscience 1994; 59(3):541– 559.

    Article  CAS  PubMed  Google Scholar 

  57. Nyakas C, Buwalda B, Luiten PG. Hypoxia and brain development. Prog Neurobiol 1996; 49(1):1– 51.

    CAS  PubMed  Google Scholar 

  58. Nyakas C, Markel E, Schuurman T, et al. Impaired learning and abnormal open-field behaviours of rats after early postnatal anoxia and the beneficial effect of the calcium antagonist nimodipine. Eur J Neurosci 1991; 3(2):168– 174.

    Article  PubMed  Google Scholar 

  59. Gozal E, Gozal D, Pierce WM, et al. Proteomic analysis of CA1 and CA3 regions of rat hippocampus and differential susceptibility to intermittent hypoxia. J Neurochem 2002; 83(2):331– 345.

    Article  CAS  PubMed  Google Scholar 

  60. Klein JB, Gozal D, Pierce WM, Thongboonkerd V, Scherzer JA, Sachleben LR, Guo SZ, Cai J, Gozal E. Proteomic identification of a novel protein regulated in CA1 and CA3 hippocam-pal regions during intermittent hypoxia. Respir Physiol Neurobiol 2003; 136(2– 3):91– 103.

    Article  CAS  PubMed  Google Scholar 

  61. Klein JB, Barati MT, Wu R, et al. Akt-mediated valosin-containing protein 97 phosphory-lation regulates its association with ubiquitinated proteins. J Biol Chem 2005; 280(36): 31870– 31881.

    Article  CAS  PubMed  Google Scholar 

  62. Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer' s disease: identification of a cellular activation mechanism. Exp Neurol 2001; 171(1):29– 45.

    Article  CAS  PubMed  Google Scholar 

  63. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 2001; 17(6):436– 443.

    Article  CAS  PubMed  Google Scholar 

  64. Douglas RM, Miyasaka N, Takahashi K, et al. Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus. Am J Physiol Regul Integr Comp Physiol 2007; 292(3):R1254– R1259.

    CAS  PubMed  Google Scholar 

  65. Kanaan A, Farahani R, Douglas RM, et al. Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination. Am J Physiol Regul Integr Comp Physiol 2006; 290(4):R1105– R1114.

    CAS  PubMed  Google Scholar 

  66. Gozal E, Sachleben LR Jr, Rane MJ, et al. Mild sustained and intermittent hypoxia induce apoptosis in PC-12 cells via different mechanisms. Am J Physiol Cell Physiol 2005; 288(3): C535– C542.

    Article  CAS  PubMed  Google Scholar 

  67. Gu XQ, Haddad GG. Decreased neuronal excitability in hippocampal neurons of mice exposed to cyclic hypoxia. J Appl Physiol 2001; 91(3):1245– 1250.

    CAS  PubMed  Google Scholar 

  68. Pichiule P, Chavez JC, Boero J, et al. Chronic hypoxia induces modification of the N-methyl-D-aspartate receptor in rat brain. Neurosci Lett 1996; 218(2):83– 86.

    Article  CAS  PubMed  Google Scholar 

  69. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992; 42(4): 733– 738.

    CAS  PubMed  Google Scholar 

  70. Goldbart A, Row BW, Kheirandish L, et al. Intermittent hypoxic exposure during light phase induces changes in cAMP response element binding protein activity in the rat CA1 hippocampal region: water maze performance correlates. Neuroscience 2003; 122(3): 585– 590.

    Article  CAS  PubMed  Google Scholar 

  71. Goldbart A, Cheng ZJ, Brittian KR, et al. Intermittent hypoxia induces time-dependent changes in the protein kinase B signaling pathway in the hippocampal CA1 region of the rat. Neurobiol Dis 2003; 14(3):440– 446.

    Article  CAS  PubMed  Google Scholar 

  72. Klein JB, Barati MT, Wu R, Gozal D, Sachleben LR Jr, Kausar H, Trent JO, Gozal E, Rane MJ. Akt-mediated valosin-containing protein 97 phosphorylation regulates its association with ubiquitinated proteins. J Biol Chem 2005; 280(36):31870– 31881.

    Article  CAS  PubMed  Google Scholar 

  73. Sanfilippo-Cohn B, Lai S, Zhan G, et al. Sex differences in susceptibility to oxidative injury and sleepiness from intermittent hypoxia. Sleep 2006; 29(2):152– 159.

    PubMed  Google Scholar 

  74. Zhan G, Fenik P, Pratico D, et al. Inducible nitric oxide synthase in long-term intermittent hypoxia: hypersomnolence and brain injury. Am J Respir Crit Care Med 2005; 171(12): 1414– 1420.

    Article  PubMed  Google Scholar 

  75. Zhan G, Serrano F, Fenik P, et al. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am J Respir Crit Care Med 2005; 172(7): 921– 929.

    Article  PubMed  Google Scholar 

  76. Ramanathan L, Gozal D, Siegel JM. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem 2005; 93(1):47– 52.

    Article  CAS  PubMed  Google Scholar 

  77. Gozal E, Row BW, Schurr A, et al. Developmental differences in cortical and hippocampal vulnerability to intermittent hypoxia in the rat. Neurosci Lett 2001; 305(3):197– 201.

    Article  CAS  PubMed  Google Scholar 

  78. Gray PH, Tudehope DI, Masel JP, et al. Perinatal hypoxic-ischaemic brain injury: prediction of outcome. Dev Med Child Neurol 1993; 35(11):965– 973.

    Article  CAS  PubMed  Google Scholar 

  79. du Plessis AJ, Johnston MV. Hypoxic-ischemic brain injury in the newborn. Cellular mechanisms and potential strategies for neuroprotection. Clin Perinatol 1997; 24(3):627– 654.

    CAS  Google Scholar 

  80. Tuor UI, Del Bigio MR, Chumas PD. Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification. Cerebrovasc Brain Metab Rev 1996; 8(2):159– 193.

    CAS  PubMed  Google Scholar 

  81. Zappitelli M, Pinto T, Grizenko N. Pre-, peri-, and postnatal trauma in subjects with attention-deficit hyperactivity disorder. Can J Psychiatry 2001; 46(6):542– 548.

    CAS  PubMed  Google Scholar 

  82. Lou HC. Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 1996; 85(11):1266– 1271.

    Article  CAS  PubMed  Google Scholar 

  83. Krageloh-Mann I, Toft P, Lunding J, et al. Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr 1999; 88(8):897– 908.

    Article  CAS  PubMed  Google Scholar 

  84. Towfighi J, Mauger D, Vannucci RC, et al. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 1997; 100(2):149– 160.

    Article  CAS  PubMed  Google Scholar 

  85. Vannucci RC, Vannucci SJ. A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 1997; 835:234– 249.

    Article  CAS  PubMed  Google Scholar 

  86. Miyashita Y. Cognitive memory: cellular and network machineries and their top– down control. Science 2004; 306:435– 440.

    Article  CAS  PubMed  Google Scholar 

  87. Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 2004; 28(7):771– 784.

    Article  CAS  PubMed  Google Scholar 

  88. Gozal D, Row BW, Kheirandish L, et al. Increased susceptibility to intermittent hypoxia in aging rats: changes in proteasomal activity, neuronal apoptosis and spatial function. J Neurochem 2003; 86(6):545– 552.

    Article  CAS  Google Scholar 

  89. Lavie L. Obstructive sleep apnoea syndrome – an oxidative stress disorder. Sleep Med Rev 2003; 7(1):35– 51.

    Article  PubMed  Google Scholar 

  90. Xu W, Chi L, Row BW, et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 2004; 126(2):313– 323.

    Article  CAS  PubMed  Google Scholar 

  91. Li J, Savransky V, Nanayakkara A, et al. Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol 2007; 102(2):557– 563.

    Article  CAS  PubMed  Google Scholar 

  92. Shan X, Chi L, Ke Y, Luo C, Qian SY, St Clair D, Gozal D, Liu R. Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxi-dative damage. Neurobiol Dis 2007; 28(2):206– 215.

    Article  CAS  PubMed  Google Scholar 

  93. Li RC, Row BW, Gozal E, et al. Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat. Am J Respir Crit Care Med 2003; 168(4):469– 475.

    Article  PubMed  Google Scholar 

  94. Heales SJ, Lam AA, Duncan AJ, et al. Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem Res 2004; 29(3):513– 519.

    Article  CAS  PubMed  Google Scholar 

  95. Duncan AJ, Heales SJ. Nitric oxide and neurological disorders. Mol Aspects Med 2005; 26(1– 2):67– 96.

    Article  CAS  PubMed  Google Scholar 

  96. Halliwell B. Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 2006; 31(9):509– 515.

    Article  CAS  PubMed  Google Scholar 

  97. Li RC, Row BW, Kheirandish L, et al. Nitric oxide synthase and intermittent hypoxia-induced spatial learning deficits in the rat. Neurobiol Dis 2004; 17(1):44– 53.

    Article  CAS  PubMed  Google Scholar 

  98. Row BW, Kheirandish L, Li RC, et al. Platelet-activating factor receptor-deficient mice are protected from experimental sleep apnea-induced learning deficits. J Neurochem 2004; 89(1):189– 196.

    Article  CAS  PubMed  Google Scholar 

  99. Ozaki M, Haga S, Zhang HQ, et al. Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1. Cell Death Differ 2003; 10(5):508– 515.

    Article  CAS  PubMed  Google Scholar 

  100. Li JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 2004; 287(5): R1014– R1030.

    CAS  PubMed  Google Scholar 

  101. Adibhatla RM, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxida-tion in cerebral ischemia. Free Radic Biol Med 2006; 40(3):376– 387.

    Article  CAS  Google Scholar 

  102. Wang Q, Tompkins KD, Simonyi A, et al. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 2006; 1090(1):182– 189.

    Article  CAS  PubMed  Google Scholar 

  103. Kheirandish L, Row BW, Li RC, et al. Apolipoprotein E-deficient mice exhibit increased vulnerability to intermittent hypoxia-induced spatial learning deficits. Sleep 2005; 28(11): 1412– 1417.

    PubMed  Google Scholar 

  104. Williams GV, Castner SA. Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 2006; 139(1):263– 276.

    Article  CAS  PubMed  Google Scholar 

  105. Mill J, Caspi A, Williams BS, et al. Prediction of heterogeneity in intelligence and adult prognosis by genetic polymorphisms in the dopamine system among children with attention-deficit/hyperactivity disorder: evidence from 2 birth cohorts. Arch Gen Psychiatry 2006; 63(4):462– 469.

    Article  CAS  PubMed  Google Scholar 

  106. Mill J, Fisher N, Curran S, et al. Polymorphisms in the dopamine D4 receptor gene and attention-deficit hyperactivity disorder. Neuroreport 2003; 14(11):1463– 1466.

    Article  CAS  PubMed  Google Scholar 

  107. Viggiano D, Ruocco LA, Arcieri S, et al. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder. Neural Plast 2004; 11(1– 2):133– 149.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang K, Tarazi FI, Baldessarini RJ. Role of dopamine D(4) receptors in motor hyperac-tivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology 2001; 25(5):624– 632.

    Article  CAS  PubMed  Google Scholar 

  109. Viggiano D, Vallone D, Sadile A. Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast 2004; 11(1– 2):97– 114.

    Article  CAS  PubMed  Google Scholar 

  110. Avale ME, Falzone TL, Gelman DM, et al. The dopamine D4 receptor is essential for hyper-activity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry 2004; 9(7):718– 726.

    CAS  PubMed  Google Scholar 

  111. Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004; 190 (Suppl 1):S8– S21.

    Article  CAS  PubMed  Google Scholar 

  112. Becker JB. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 1999; 64(4):803– 812.

    Article  CAS  PubMed  Google Scholar 

  113. Andersen SL, Teicher MH. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 2000; 24(1):137– 141.

    Article  CAS  PubMed  Google Scholar 

  114. Row BW. Intermittent hypoxia and behavior: is dopamine to blame? Sleep 2005; 28(2): 165– 167.

    PubMed  Google Scholar 

  115. Li R, Bao G, el-Mallakh RS, et al. Effects of chronic episodic hypoxia on monoamine metabolism and motor activity. Physiol Behav 1996; 60(4):1071– 1076.

    Article  CAS  PubMed  Google Scholar 

  116. Taheri S, Mignot E. The genetics of sleep disorders. Lancet Neurol 2002; 1(4):242– 250.

    Article  CAS  PubMed  Google Scholar 

  117. Palmer LJ, Redline S. Genomic approaches to understanding obstructive sleep apnea. Respir Physiol Neurobiol 2003; 135(2– 3):187– 205.

    Article  CAS  PubMed  Google Scholar 

  118. Partinen M, Kaprio J, Koskenvuo M, et al. Genetic and environmental determination of human sleep. Sleep 1983; 6(3):179– 185.

    CAS  PubMed  Google Scholar 

  119. Partinen M, Telakivi T. Epidemiology of obstructive sleep apnea syndrome. Sleep 1992; 15(6 Suppl):S1– S4.

    CAS  PubMed  Google Scholar 

  120. Kadotani H, Kadotani T, Young T, et al. Association between apolipoprotein E epsilon4 and sleep-disordered breathing in adults. JAMA 2001; 285(22):2888– 2890.

    Article  CAS  PubMed  Google Scholar 

  121. O'Hara R, Schroder CM, Kraemer HC, et al. Nocturnal sleep apnea/hypopnea is associated with lower memory performance in APOE epsilon4 carriers. Neurology 2005; 65(4): 642– 644.

    Article  PubMed  CAS  Google Scholar 

  122. Gozal D, Sans Capdevila O, Kheirandish-Gozal L, et al. Apolipoprotein E e4 allele, neuro-cognitive dysfunction, and obstructive sleep apnea in school-aged children. Neurology 2007; 69(3):243– 249.

    Article  PubMed  Google Scholar 

  123. Bliwise DL. Sleep apnea, APOE4 and Alzheimer' s disease 20 years and counting? J Psychosom Res 2002; 53(1):539– 546.

    Article  PubMed  Google Scholar 

  124. Mohammed AH, Henriksson BG, Soderstrom S, et al. Environmental influences on the central nervous system and their implications for the aging rat. Behav Brain Res 1993; 57(2):183– 191.

    Article  CAS  PubMed  Google Scholar 

  125. Snowdon DA, Kemper SJ, Mortimer JA, et al. Linguistic ability in early life and cognitive function and Alzheimer' s disease in late life. Findings from the Nun Study. JAMA 1996; 275(7):528– 532.

    Article  CAS  PubMed  Google Scholar 

  126. Torasdotter M, Metsis M, Henriksson BG, et al. Environmental enrichment results in higher levels of nerve growth factor mRNA in the rat visual cortex and hippocampus. Behav Brain Res 1998; 93(1– 2):83– 90.

    Article  CAS  PubMed  Google Scholar 

  127. Young D, Lawlor PA, Leone P, et al. Environmental enrichment inhibits spontaneous apop-tosis, prevents seizures and is neuroprotective. Nat Med 1999; 5(4):448– 453.

    Article  CAS  PubMed  Google Scholar 

  128. Kempermann G, Gast D, Gage FH. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 2002; 52(2):135– 143.

    Article  PubMed  Google Scholar 

  129. Kheirandish L, Gozal D. Neurocognitive dysfunction in children with sleep disorders. Dev Sci 2006; 9:388– 399.

    Article  PubMed  Google Scholar 

  130. Gozal D, Kheirandish L. Oxidant stress and inflammation in the snoring child: confluent pathways to upper airway pathogenesis and end-organ morbidity. Sleep Med Rev 2006; 10(2):83– 96.

    Article  PubMed  Google Scholar 

  131. Goldbart AD, Row BW, Kheirandish-Gozal L, et al. High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia. Brain Res 2006; 1090(1):190– 196.

    Article  CAS  PubMed  Google Scholar 

  132. Row BW, Goldbart A, Gozal E, et al. Spatial pre-training attenuates hippocampal impairments in rats exposed to intermittent hypoxia. Neurosci Lett 2003; 339(1):67– 71.

    Article  CAS  PubMed  Google Scholar 

  133. Gozal D, Row BW, Gozal E, et al. Temporal aspects of spatial task performance during intermittent hypoxia in the rat: evidence for neurogenesis. Eur J Neurosci 2003; 18(8): 2335– 2342.

    Article  PubMed  Google Scholar 

  134. Dwinell MR, Powell FL. Chronic hypoxia enhances the phrenic nerve response to arterial chemoreceptor stimulation in anesthetized rats. J Appl Physiol 1999; 87(2):817– 823.

    CAS  PubMed  Google Scholar 

  135. Aaron EA, Powell FL. Effect of chronic hypoxia on hypoxic ventilatory response in awake rats. J Appl Physiol 1993; 74(4):1635– 1640.

    CAS  PubMed  Google Scholar 

  136. Gamboa A, Leon-Velarde F, Rivera-Ch M, et al. Selected contribution: acute and sustained ventilatory responses to hypoxia in high-altitude natives living at sea level. J Appl Physiol 2003; 94(3):1255– 1262.

    PubMed  Google Scholar 

  137. Leon-Velarde F, Gamboa A, Rivera-Ch M, Palacios JA, Robbins PA. Selected contribution: peripheral chemoreflex function in high-altitude natives and patients with chronic mountain sickness. J Appl Physiol 2003; 94(3):1269– 1278.

    PubMed  Google Scholar 

  138. Alea OA, Czapla MA, Lasky JA, Simakajornboon N, Gozal E, Gozal D. PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat. Am J Physiol Regul Integr Comp Physiol 2000; 279(5):R1625– R1633.

    CAS  PubMed  Google Scholar 

  139. Eden GJ, Hanson MA. Effects of chronic hypoxia from birth on the ventilatory response to acute hypoxia in the newborn rat. J Physiol 1987; 392:11– 19.

    CAS  PubMed  Google Scholar 

  140. Frappell PB, Mortola JP. Hamsters vs. rats: metabolic and ventilatory response to development in chronic hypoxia. J Appl Physiol 1994; 77(6):2748– 2752.

    CAS  PubMed  Google Scholar 

  141. Mortola JP, Morgan CA, Virgona V. Respiratory adaptation to chronic hypoxia in newborn rats. J Appl Physiol 1986; 61(4):1329– 1336.

    CAS  PubMed  Google Scholar 

  142. Sladek M, Parker RA, Grogaard JB, Sundell HW. Long-lasting effect of prolonged hypox-emia after birth on the immediate ventilatory response to changes in arterial partial pressure of oxygen in young lambs. Pediatr Res 1993; 34(6):821– 828.

    CAS  PubMed  Google Scholar 

  143. Sterni LM, Bamford OS, Wasicko MJ, Carroll JL. Chronic hypoxia abolished the postnatal increase in carotid body type I cell sensitivity to hypoxia. Am J Physiol 1999; 277(3, Part 1): L645– L652.

    CAS  PubMed  Google Scholar 

  144. Jackson A, Nurse C. Plasticity in cultured carotid body chemoreceptors: environmental modulation of GAP-43 and neurofilament. J Neurobiol 1995; 26(4):485– 496.

    Article  CAS  PubMed  Google Scholar 

  145. Bavis RW, Olson EB Jr, Vidruk EH, Fuller DD, Mitchell GS. Developmental plasticity of the hypoxic ventilatory response in rats induced by neonatal hypoxia. J Physiol 2004; 557(Part 2):645– 660.

    Article  CAS  PubMed  Google Scholar 

  146. Bisgard GE. The role of arterial chemoreceptors in ventilatory acclimatization to hypoxia. Adv Exp Med Biol 1994; 360:109– 122.

    CAS  PubMed  Google Scholar 

  147. Olson EB Jr, Dempsey JA. Rat as a model for humanlike ventilatory adaptation to chronic hypoxia. J Appl Physiol 1978; 44(5):763– 769.

    CAS  PubMed  Google Scholar 

  148. Dempsey JA, Forster H V, doPico GA. Ventilatory acclimatization to moderate hypoxemia in man. The role of spinal fluid (H+ ). J Clin Invest 1974; 53(4):1091– 1100.

    Article  CAS  PubMed  Google Scholar 

  149. Fatemian M, Kim DY, Poulin MJ, Robbins PA. Very mild exposure to hypoxia for 8 h can induce ventilatory acclimatization in humans. Pflugers Arch 2001; 441(6):840– 843.

    Article  CAS  PubMed  Google Scholar 

  150. Donoghue S, Fatemian M, Balanos GM, Crosby A, Liu C, O'Connor D, Talbot NP, Robbins PA. Ventilatory acclimatization in response to very small changes in PO2 in humans. J Appl Physiol 2005; 98(5):1587– 1591.

    Article  PubMed  Google Scholar 

  151. Bisgard GE. Increase in carotid body sensitivity during sustained hypoxia. Biol Signals 1995; 4(5):292– 297.

    Article  CAS  PubMed  Google Scholar 

  152. Okubo S, Mortola JP. Long-term respiratory effects of neonatal hypoxia in the rat. J Appl Physiol 1988; 64(3):952– 958.

    CAS  PubMed  Google Scholar 

  153. Okubo S, Mortola JP. Control of ventilation in adult rats hypoxic in the neonatal period. Am J Physiol 1990; 259(4, Part 2):R836– R841.

    CAS  PubMed  Google Scholar 

  154. Waters KA, Gozal D. Responses to hypoxia during early development. Respir Physiol Neurobiol 2003; 136(2– 3):115– 129.

    Article  CAS  PubMed  Google Scholar 

  155. Gozal D, Gozal E. Episodic hypoxia enhances late hypoxic ventilation in developing rat: putative role of neuronal NO synthase. Am J Physiol 1999; 276(1, Part 2):R17– R22.

    CAS  PubMed  Google Scholar 

  156. Peng YJ, Prabhakar NR. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol 2004; 96(3):1236– 1242.

    Article  PubMed  Google Scholar 

  157. McGuire M, Zhang Y, White DP, Ling L. Effect of hypoxic episode number and severity on ventilatory long-term facilitation in awake rats. J Appl Physiol 2002; 93(6): 2155– 2161.

    PubMed  Google Scholar 

  158. Fuller DD, Bach KB, Baker TL, Kinkead R, Mitchell GS. Long term facilitation of phrenic motor output. Respir Physiol 2000; 121(2– 3):135– 146.

    Article  CAS  PubMed  Google Scholar 

  159. Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity: differential actions of continuous and episodic hypoxia and hypercapnia. Respir Physiol 2001; 129(1– 2):25– 35.

    Article  CAS  PubMed  Google Scholar 

  160. Wilkerson JE, Satriotomo I, Baker-Herman TL, Watters JJ, Mitchell GS. Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia. J Neurosci 2008; 28(11):2949– 2958.

    Article  CAS  PubMed  Google Scholar 

  161. Fuller DD, Bach KB, Baker TL, Kinkead R, Mitchell GS. Long term facilitation of phrenic motor output. Respir Physiol 2000; 121(2– 3):135– 146.

    Article  CAS  PubMed  Google Scholar 

  162. Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 2004; 7(1):48– 55.

    Article  CAS  PubMed  Google Scholar 

  163. Golder FJ, Ranganathan L, Satriotomo I, Hoffman M, Lovett-Barr MR, Watters JJ, Baker-Herman TL, Mitchell GS. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation. J Neurosci 2008; 28:2033– 2042.

    Article  CAS  PubMed  Google Scholar 

  164. Mahamed S, Mitchell GS. Simulated apneas induce serotonin dependent respiratory long term facilitation in rats. J Physiol 2008; 586(8): 2171– 2181.

    Article  CAS  PubMed  Google Scholar 

  165. Macfarlane PM, Mitchell GS. Respiratory long-term facilitation following intermittent hypoxia requires reactive oxygen species formation. Neuroscience 2008; 152(1): 189– 197.

    Article  CAS  PubMed  Google Scholar 

  166. Zabka AG, Behan M, Mitchell GS. Selected contribution: time-dependent hypoxic respiratory responses in female rats are influenced by age and by the estrus cycle. J Appl Physiol 2001; 91(6):2831– 2838.

    CAS  PubMed  Google Scholar 

  167. Zabka AG, Behan M, Mitchell GS. Long term facilitation of respiratory motor output decreases with age in male rats. J Physiol 2001; 531 (Part 2):509– 514.

    Article  CAS  PubMed  Google Scholar 

  168. Reeves SR, Mitchell GS, Gozal D. Early postnatal chronic intermittent hypoxia modifies hypoxic respiratory responses and long-term phrenic facilitation in adult rats. Am J Physiol Regul Integr Comp Physiol 2006; 290(6):R1664– R1671.

    CAS  PubMed  Google Scholar 

  169. Reeves SR, Guo SZ, Brittian KR, Row BW, Gozal D. Anatomical changes in selected cardio-respiratory brainstem nuclei following early postnatal chronic intermittent hypoxia. Neurosci Lett 2006; 402:233– 237.

    Article  CAS  PubMed  Google Scholar 

  170. Olson EB Jr, Bohne CJ, Dwinell MR, et al. Ventilatory long-term facilitation in unanesthe-tized rats. J Appl Physiol 2001; 91(2):709– 716.

    PubMed  Google Scholar 

  171. Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB Jr, Mitchell GS. Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 2001; 21(14):5381– 5388.

    CAS  PubMed  Google Scholar 

  172. Morris KF, Gozal D. Persistent respiratory changes following intermittent hypoxic stimulation in cats and human beings. Respir Physiol Neurobiol 2004; 140(1):1– 8.

    Article  PubMed  Google Scholar 

  173. Babcock M, Shkoukani M, Aboubakr SE, Badr MS. Determinants of long-term facilitation in humans during NREM sleep. J Appl Physiol 2003; 94:53– 59.

    PubMed  Google Scholar 

  174. Babcock MA, Badr MS. Long-term facilitation of ventilation in humans during NREM sleep. Sleep 1998; 21:709– 716.

    CAS  PubMed  Google Scholar 

  175. Zabka AG, Mitchell GS, Olson EB Jr, Behan M. Selected contribution: chronic intermittent hypoxia enhances respiratory long-term facilitation in geriatric female rats. J Appl Physiol 2003; 95(6):2614– 2623.

    CAS  PubMed  Google Scholar 

  176. McGuire M, Zhang Y, White DP, Ling L. Chronic intermittent hypoxia enhances ventilatory long-term facilitation in awake rats. J Appl Physiol 2003; 95(4):1499– 1508.

    PubMed  Google Scholar 

  177. McGuire M, Ling L. Ventilatory long-term facilitation is greater in 1-month- versus 2-month-old awake rats. J Appl Physiol 2005; 98(4):1195– 1201.

    Article  PubMed  Google Scholar 

  178. Trippenbach T. Ventilatory and metabolic effects of repeated hypoxia in conscious newborn rabbits. Am J Physiol 1994; 266(5, Part 2):R1584– R1590.

    CAS  PubMed  Google Scholar 

  179. Peng YJ, Rennison J, Prabhakar NR. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol 2004; 97(5):2020– 2025.

    Article  PubMed  Google Scholar 

  180. Gozal D, Reeves SR, Row BW, Neville JJ, Guo SZ, Lipton AJ. Respiratory effects of gestational intermittent hypoxia in the developing rat. Am J Respir Crit Care Med 2003; 167(11):1540– 1547.

    Article  PubMed  Google Scholar 

  181. Waters KA, Laferriere A, Paquette J, Goodyer C, Moss IR. Curtailed respiration by repeated vs. isolated hypoxia in maturing piglets is unrelated to NTS ME or SP levels. J Appl Physiol 1997; 83(2):522– 529.

    CAS  PubMed  Google Scholar 

  182. Waters KA, Tinworth KD. Depression of ventilatory responses after daily, cyclic hypercap-nic hypoxia in piglets. J Appl Physiol 2001; 90(3):1065– 1073.

    CAS  PubMed  Google Scholar 

  183. Wickstrom HR, Berner J, Holgert H, Hokfelt T, Lagercrant H. Hypoxic response in newborn rat is attenuated by neurokinin-1 receptor blockade. Respir Physiol Neurobiol 2004; 140:19– 31.

    Article  PubMed  CAS  Google Scholar 

  184. Reeves SR, Gozal E, Guo SZ, Sachleben LR Jr, Lipton AJ, Gozal D. Effect of long-term intermittent and sustained hypoxia on hypoxic ventilatory and metabolic responses in the adult rat. J Appl Physiol 2003; 95:1767– 1774.

    PubMed  Google Scholar 

  185. Reeves SR, Gozal D. Respiratory and metabolic responses to early postnatal chronic intermittent hypoxia and sustained hypoxia in the developing rat. Pediatr Res 2006; 60:680– 686.

    Article  PubMed  Google Scholar 

  186. Kline DD, Ramirez-Navarro A, Kunze DL. Adaptive depression in synaptic transmission in the nucleus of the solitary tract after in vivo chronic intermittent hypoxia: evidence for homeo static plasticity. J Neurosci 2007; 27:4663– 4673.

    Article  CAS  PubMed  Google Scholar 

  187. Neverova NV, Saywell SA, Nashold LJ, Mitchell GS, Feldman JL. Episodic stimulation of alpha1-adrenoreceptors induces protein kinase C-dependent persistent changes in motoneu-ronal excitability. J Neurosci 2007; 27:4435– 4442.

    Article  CAS  PubMed  Google Scholar 

  188. de Paula PM, Tolstykh G, Mifflin S. Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol 2007; 292(6):R2259– R2265.

    PubMed  Google Scholar 

  189. Lovett-Barr MR, Mitchell GS, Satriotomo I, Johnson SM. Serotonin-induced in vitro long-term facilitation exhibits differential pattern sensitivity in cervical and thoracic inspiratory motor output. Neuroscience 2006; 142(3):885– 892.

    Article  CAS  PubMed  Google Scholar 

  190. Peñ a F, Ramirez JM. Hypoxia-induced changes in neuronal network properties. Mol Neurobiol 2005; 32(3):251– 283.

    Article  Google Scholar 

  191. McGuire M, Zhang Y, White DP, Ling L. Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats. J Physiol 2005; 567 (Part 2):599– 611.

    Article  CAS  PubMed  Google Scholar 

  192. Reeves SR, Gozal D. Protein kinase C activity in the nucleus tractus solitarii is critically involved in the acute hypoxic ventilatory response, but is not required for intermittent hypox-ia-induced phrenic long-term facilitation in adult rats. Exp Physiol 2007; 92(6):1057– 1066.

    Article  CAS  PubMed  Google Scholar 

  193. Reeves SR, Gozal D. Platelet-activating factor receptor modulates respiratory adaptation to long-term intermittent hypoxia in mice. Am J Physiol Regul Integr Comp Physiol 2004; 287(2):R369– R374.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gozal, D. (2009). Effects of Intermittent Hypoxia on Neurological Function. In: Haddad, G.G., Yu, S.P. (eds) Brain Hypoxia and Ischemia. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-579-8_9

Download citation

Publish with us

Policies and ethics