Skip to main content

Brain Ischemia and Neuronal Excitability

  • Chapter
  • 996 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Selective neuronal death in certain brain regions has long been recognized as a consequence of transient cerebral ischemia; however, its mechanisms remain unclear. Growing evidence indicates that an increase in neuronal excitability may contribute to this process. Both excitatory synaptic inputs and voltage-dependent potassium currents are important for regulating neuronal excitability. Recent studies demonstrate that the activities of excitatory synaptic inputs and potassium channels are differentially altered in ischemia-sensitive and ischemia-resistant neurons after ischemic insults. It is suggested that a suppression of excitatory neurotransmission or an enhancement of voltage-dependent potassium currents may protect neurons against cerebral ischemia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthe-tized rat. Stroke 1979;10:267–72.

    CAS  PubMed  Google Scholar 

  2. Francis A, Pulsinelli W. The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res 1982;243:271–8.

    Article  CAS  PubMed  Google Scholar 

  3. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990;13:171–82.

    Article  CAS  PubMed  Google Scholar 

  4. Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 1986;19:105–11.

    Article  CAS  PubMed  Google Scholar 

  5. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984;43:1369–74.

    Article  CAS  PubMed  Google Scholar 

  6. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 1988;51:1455–64.

    Article  CAS  PubMed  Google Scholar 

  7. Gervitz LM, Lutherer LO, Davies DG, Pirch JH, Fowler JC. Adenosine induces initial hypoxic-ischemic depression of synaptic transmission in the rat hippocampus in vivo. Am J Physiol Regul Integr Comp Physiol 2001;280:R639–R645.

    CAS  PubMed  Google Scholar 

  8. Sugahara M, Asai S, Zhao H, et al. Extracellular glutamate changes in rat striatum during ischemia determined by a novel dialysis electrode and conventional microdialysis. Neurochem Int 2001;39:65–73.

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka E, Yasumoto S, Hattori G, Niiyama S, Matsuyama S, Higashi H. Mechanisms underlying the depression of evoked fast EPSCs following in vitro ischemia in rat hippocampal CA1 neurons. J Neurophysiol 2001;86:1095–103.

    CAS  PubMed  Google Scholar 

  10. Gao TM, Pulsinelli WA, Xu ZC. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo. Neuroscience 1998;87:371–83.

    Article  CAS  PubMed  Google Scholar 

  11. Urban L, Neill KH, Crain BJ, Nadler JV, Somjen GG. Postischemic synaptic physiology in area CA1 of the gerbil hippocampus studied in vitro. J Neurosci 1989;9:3966–75.

    CAS  PubMed  Google Scholar 

  12. Gao TM, Howard EM, Xu ZC. Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo. J Neurophysiol 1998;80:2860–9.

    CAS  PubMed  Google Scholar 

  13. Pang ZP, Deng P, Ruan YW, Xu ZC. Depression of fast excitatory synaptic transmission in large aspiny neurons of the neostriatum after transient forebrain ischemia. J Neurosci 2002;22:10948–57.

    CAS  PubMed  Google Scholar 

  14. Zhang Y, Deng P, Li Y, Xu ZC. Enhancement of excitatory synaptic transmission in spiny neurons after transient forebrain ischemia. J Neurophysiol 2006;95:1537–44.

    Article  PubMed  Google Scholar 

  15. Gajendiran M, Ling G Y, Pang Z, Xu ZC. Differential changes of synaptic transmission in spiny neurons of rat neostriatum following transient forebrain ischemia. Neuroscience 2001;105:139–52.

    Article  CAS  PubMed  Google Scholar 

  16. Calabresi P, Saulle E, Centonze D, Pisani A, Marfia GA, Bernardi G. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. Brain 2002;125:844–60.

    Article  PubMed  Google Scholar 

  17. Xu ZC. Neurophysiological changes of spiny neurons in rat neostriatum after transient fore-brain ischemia: an in vivo intracellular recording and staining study. Neuroscience 1995;67: 823–36.

    Article  CAS  PubMed  Google Scholar 

  18. Xu ZC, Pulsinelli WA. Electrophysiological changes of CA1 pyramidal neurons following transient forebrain ischemia: an in vivo intracellular recording and staining study. J Neurophysiol 1996;76:1689–97.

    CAS  PubMed  Google Scholar 

  19. Mitani A, Namba S, Ikemune K, Yanase H, Arai T, Kataoka K. Postischemic enhancements of N-methyl-d-aspartic acid (NMDA) and non-NMDA receptor-mediated responses in hip-pocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab 1998;18:1088–98.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Liu S, Fu Y, Wang JH, Lu Y. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 2003;6:1039–47.

    Article  CAS  PubMed  Google Scholar 

  21. Takagi N, Sasakawa K, Besshoh S, Miyake-Takagi K, Takeo S. Transient ischemia enhances tyrosine phosphorylation and binding of the NMDA receptor to the Src homology 2 domain of phosphatidylinositol 3-kinase in the rat hippocampus. J Neurochem 2003;84:67–76.

    Article  CAS  PubMed  Google Scholar 

  22. Abdel-Hamid KM, Tymianski M. Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins. J Neurosci 1997;17:3538–53.

    CAS  PubMed  Google Scholar 

  23. Calabresi P, Centonze D, Pisani A, Bernardi G. Endogenous adenosine mediates the presynap-tic inhibition induced by aglycemia at corticostriatal synapses. J Neurosci 1997;17:4509–16.

    CAS  PubMed  Google Scholar 

  24. Dunwiddie T V, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001;24:31–55.

    Article  CAS  PubMed  Google Scholar 

  25. Hsu SS, Newell DW, Tucker A, Malouf AT, Winn HR. Adenosinergic modulation of CA1 neuronal tolerance to glucose deprivation in organotypic hippocampal cultures. Neurosci Lett 1994;178:189–92.

    Article  CAS  PubMed  Google Scholar 

  26. Volonte C, Amadio S, Cavaliere F, D'Ambrosi N, Vacca F, Bernardi G. Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord 2003;2:403–12.

    Article  CAS  PubMed  Google Scholar 

  27. Franke H, Gunther A, Grosche J, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 2004;63:686–99.

    CAS  PubMed  Google Scholar 

  28. Cull-Candy S, Kelly L, Farrant M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol 2006;16:288–97.

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka H, Grooms SY, Bennett MV, Zukin RS. The AMPAR subunit GluR2: still front and center-stage. Brain Res 2000;886:190–207.

    Article  CAS  PubMed  Google Scholar 

  30. Liu S, Lau L, Wei J, et al. Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 2004;43:43–55.

    Article  PubMed  Google Scholar 

  31. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 2005;102:12230–5.

    Article  CAS  PubMed  Google Scholar 

  32. Peng PL, Zhong X, Tu W, et al. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 2006;49:719–33.

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Liao M, Mielke JG, et al. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 2006;26:5309–19.

    Article  CAS  PubMed  Google Scholar 

  34. Tovar KR, Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 1999;19:4180–8.

    CAS  PubMed  Google Scholar 

  35. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002;5: 405–14.

    CAS  PubMed  Google Scholar 

  36. Liu Y, Wong TP, Aarts M, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007;27:2846–57.

    Article  CAS  PubMed  Google Scholar 

  37. von Engelhardt J, Coserea I, Pawlak V, et al. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology 2007;53:10–17.

    Article  Google Scholar 

  38. Rudy B. Diversity and ubiquity of K channels. Neuroscience 1988;25:729–49.

    Article  CAS  PubMed  Google Scholar 

  39. Chi XX, Xu ZC. Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia. J Neurophysiol 2000;84:2834–43.

    CAS  PubMed  Google Scholar 

  40. Zou B, Li Y, Deng P, Xu ZC. Alterations of potassium currents in ischemia-vulnerable and ischemia-resistant neurons in the hippocampus after ischemia. Brain Res 2005;1033: 78–89.

    Article  CAS  PubMed  Google Scholar 

  41. Yu SP, Yeh C, Strasser U, Tian M, Choi DW. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 1999;284:336–9.

    Article  CAS  PubMed  Google Scholar 

  42. Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997;278:114–17.

    Article  CAS  PubMed  Google Scholar 

  43. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 2003;23:4798–802.

    CAS  PubMed  Google Scholar 

  44. Redman PT, He K, Hartnett KA, et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci USA 2007;104:3568–73.

    Article  CAS  PubMed  Google Scholar 

  45. Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW. Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 2003;34:1281–6.

    Article  CAS  PubMed  Google Scholar 

  46. Deng P, Pang ZP, Zhang Y, Xu ZC. Increase of delayed rectifier potassium currents in large aspiny neurons in the neostriatum following transient forebrain ischemia. Neuroscience 2005;131:135–46.

    Article  CAS  PubMed  Google Scholar 

  47. Misonou H, Mohapatra DP, Menegola M, Trimmer JS. Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. J Neurosci 2005;25:11184–93.

    Article  CAS  PubMed  Google Scholar 

  48. Gribkoff VK, Starrett JE, Jr., Dworetzky SI, et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 2001;7:471–7.

    Article  CAS  PubMed  Google Scholar 

  49. Heron-Milhavet L, Xue-Jun Y, Vannucci SJ, et al. Protection against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Mol Cell Neurosci 2004;25:585–93.

    Article  CAS  PubMed  Google Scholar 

  50. Heurteaux C, Guy N, Laigle C, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 2004;23:2684–95.

    Article  CAS  PubMed  Google Scholar 

  51. Jonas EA, Kaczmarek LK. Regulation of potassium channels by protein kinases. Curr Opin Neurobiol 1996;6:318–23.

    Article  CAS  PubMed  Google Scholar 

  52. Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 2002;22:4860–8.

    CAS  PubMed  Google Scholar 

  53. Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke 2005;36:2781–90.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka K. Alteration of second messengers during acute cerebral ischemia — adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol 2001;65:173–207.

    Article  CAS  PubMed  Google Scholar 

  55. Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 2007;54:933–47.

    Article  CAS  PubMed  Google Scholar 

  56. Misonou H, Mohapatra DP, Park EW, et al. Regulation of ion channel localization and phos-phorylation by neuronal activity. Nat Neurosci 2004;7:711–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deng, P., Xu, Z.C. (2009). Brain Ischemia and Neuronal Excitability. In: Haddad, G.G., Yu, S.P. (eds) Brain Hypoxia and Ischemia. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-579-8_3

Download citation

Publish with us

Policies and ethics