Skip to main content

Acute Stroke Therapy: Highlighting the Ischemic Penumbra

  • Chapter
Book cover Brain Hypoxia and Ischemia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The ultimate goal of acute stroke therapy is to rescue the affected brain tissues that are salvageable and to avoid or minimize the potential neurological outcome. The current available thrombolytic treatment is limited by the narrow therapeutic time window due mainly to the progressively reduced rescuable tissues (ischemic penumbra) after the onset of stroke. Therefore, preserving penumbral tissue can potentially widen the therapeutic time window and improve the quality of acute stroke therapy. Hence, ischemic penumbra is the key to stroke pathology and treatment. In this chapter, the basic concept of ischemic penumbra is examined and this is followed by the discussion of the identification and evolution of penumbral tissue in animal stroke models and stroke patients. Finally, the possible mechanism of penumbral cell death and the importance of preserving penumbral tissue in the acute stroke therapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NINDS. (1995) Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med, 333, 1581–7.

    Article  Google Scholar 

  2. Lyden PD. (1999) Thrombolysis for acute stroke. Prog Cardiovasc Dis, 42, 175–83.

    Article  CAS  PubMed  Google Scholar 

  3. Khaja AM, Grotta JC. (2007) Established treatments for acute ischaemic stroke. Lancet, 369, 319–30.

    Article  CAS  PubMed  Google Scholar 

  4. Brott T, Bogousslavsky J. (2000) Treatment of acute ischemic stroke. N Engl J Med, 343, 710–22.

    Article  CAS  PubMed  Google Scholar 

  5. Symon L, Branston NM, Strong AJ, Hope TD. (1977) The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol Suppl (R Coll Pathol), 11, 149–54.

    CAS  Google Scholar 

  6. Astrup J, Siesjo BK, Symon L. (1981) Thresholds in cerebral ischemia — the ischemic penumbra. Stroke, 12, 723–5.

    CAS  PubMed  Google Scholar 

  7. Hossmann KA. (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol, 26(7–8):1057–83.

    PubMed  Google Scholar 

  8. Hakim AM. (1987) The cerebral ischemic penumbra. Can J Neurol Sci, 14, 557–9.

    CAS  PubMed  Google Scholar 

  9. Hossmann KA. (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol, 36, 557–65.

    Article  CAS  PubMed  Google Scholar 

  10. Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab, 20, 306–15.

    Article  CAS  PubMed  Google Scholar 

  11. Lee DH, Kang DW, Ahn JS, Choi CG, Kim SJ, Suh DC. (2005) Imaging of the ischemic penumbra in acute stroke. Korean J Radiol, 6, 64–74.

    Article  PubMed  Google Scholar 

  12. Heiss WD. (2003) Best measure of ischemic penumbra: positron emission tomography. Stroke, 34, 2534–5.

    Article  PubMed  Google Scholar 

  13. Warach S, Dashe JF, Edelman RR. (1996) Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab, 16, 53–9.

    Article  CAS  PubMed  Google Scholar 

  14. Parsons MW, Yang Q, Barber PA, Darby DG, Desmond PM, Gerraty RP, Tress BM, Davis SM. (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke, 32, 1581–7.

    CAS  PubMed  Google Scholar 

  15. Kidwell CS, Alger JR, Saver JL. (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke, 34, 2729–35.

    Article  PubMed  Google Scholar 

  16. Rohl L, Ostergaard L, Simonsen CZ, Vestergaard-Poulsen P, Andersen G, Sakoh M, Le Bihan D, Gyldensted C. (2001) Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke, 32, 1140–6.

    CAS  PubMed  Google Scholar 

  17. Fisher M. (2006) The ischemic penumbra: a new opportunity for neuroprotection. Cerebrovasc Dis, 21 (Suppl 2), 64–70.

    Article  PubMed  Google Scholar 

  18. Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M. (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol, 142, 623–35.

    CAS  PubMed  Google Scholar 

  19. Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, Warach S. (1997) Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol, 41, 581–9.

    Article  CAS  PubMed  Google Scholar 

  20. Karonen JO, Vanninen RL, Liu Y, Ostergaard L, Kuikka JT, Nuutinen J, Vanninen EJ, Partanen PL, Vainio PA, Korhonen K, Perkio J, Roivainen R, Sivenius J, Aronen HJ. (1999) Combined diffusion and perfusion MRI with correlation to single-photon emission CT in acute ischemic stroke. Ischemic penumbra predicts infarct growth. Stroke, 30, 1583–90.

    CAS  PubMed  Google Scholar 

  21. Parsons MW, Barber PA, Chalk J, Darby DG, Rose S, Desmond PM, Gerraty RP, Tress BM, Wright PM, Donnan GA, Davis SM. (2002) Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol, 51, 28–37.

    Article  PubMed  Google Scholar 

  22. Back T, Hemmen T, Schuler OG. (2004) Lesion evolution in cerebral ischemia. J Neurol, 251, 388–97.

    Article  PubMed  Google Scholar 

  23. Yao H, Shu Y, Wang J, Brinkman BC, Haddad GG. (2007) Factors influencing cell fate in the infarct rim. J Neurochem, 100, 1224–33.

    Article  CAS  PubMed  Google Scholar 

  24. Hansen AJ. (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev, 65, 101–48.

    CAS  PubMed  Google Scholar 

  25. Siesjo BK. (1988) Mechanisms of ischemic brain damage. Crit Care Med, 16, 954–63.

    Article  CAS  PubMed  Google Scholar 

  26. Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. (1991) Dynamics of interstitial and intra-cellular pH in evolving brain infarct. Am J Physiol, 260, R581–R588.

    CAS  PubMed  Google Scholar 

  27. Kraig RP, Pulsinelli WA, Plum F. (1986) Carbonic acid buffer changes during complete brain ischemia. Am J Physiol, 250, R348–R357.

    CAS  PubMed  Google Scholar 

  28. Siesjo BK, Katsura KI, Kristian T, Li PA, Siesjo P. (1996) Molecular mechanisms of acidosis-mediated damage. Acta Neurochir Suppl, 66, 8–14.

    CAS  PubMed  Google Scholar 

  29. Nedergaard M, Goldman SA, Desai S, Pulsinelli WA. (1991) Acid-induced death in neurons and glia. J Neurosci, 11, 2489–97.

    CAS  PubMed  Google Scholar 

  30. Swanson RA, Farrell K, Stein BA. (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia, 21, 142–53.

    Article  CAS  PubMed  Google Scholar 

  31. Chesler M. (2005) Failure and function of intracellular pH regulation in acute hypoxic-ischemic injury of astrocytes. Glia, 50, 398–406.

    Article  PubMed  Google Scholar 

  32. Anderson RE, Tan WK, Martin HS, Meyer FB. (1999) Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Stroke, 30, 160–70.

    CAS  PubMed  Google Scholar 

  33. Gido G, Kristian T, Siesjo BK. (1997) Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke, 28, 206–10.

    CAS  PubMed  Google Scholar 

  34. Sick TJ, Feng ZC, Rosenthal M. (1998) Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab, 18, 1114–20.

    Article  CAS  PubMed  Google Scholar 

  35. Kristian T, Gido G, Kuroda S, Schutz A, Siesjo BK. (1998) Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Exp Brain Res, 120, 503–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hansen AJ, Zeuthen T. (1981) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand, 113, 437–45.

    Article  CAS  PubMed  Google Scholar 

  37. Nedergaard M. (1988) Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand, 77, 81–101.

    Article  CAS  PubMed  Google Scholar 

  38. Mies G, Iijima T, Hossmann KA. (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport, 4, 709–11.

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL, Moskowitz MA, Lo EH. (1998) Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci, 18, 9564–71.

    CAS  PubMed  Google Scholar 

  40. Yao H, Haddad GG. (2004) Calcium and pH homeostasis in neurons during hypoxia and ischemia. Cell Calcium, 36, 247–55.

    Article  CAS  PubMed  Google Scholar 

  41. Yano S, Brown EM, Chattopadhyay N. (2004) Calcium-sensing receptor in the brain. Cell Calcium, 35, 257–64.

    Article  CAS  PubMed  Google Scholar 

  42. Siesjo BK, Katsura K, Kristian T. (1996) Acidosis-related damage. Adv Neurol, 71, 209–33; discussion 234–6.

    CAS  PubMed  Google Scholar 

  43. MacDonald JF, Xiong ZG, Jackson MF. (2006) Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci, 29, 75–81.

    Article  CAS  PubMed  Google Scholar 

  44. Budd SL. (1998) Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation. Pharmacol Ther, 80, 203–29.

    Article  CAS  PubMed  Google Scholar 

  45. Friedman JE, Haddad GG. (1994) Removal of extracellular sodium prevents anoxia-induced injury in freshly dissociated rat CA1 hippocampal neurons. Brain Res, 641, 57–64.

    Article  CAS  PubMed  Google Scholar 

  46. Leis JA, Bekar LK, Walz W. (2005) Potassium homeostasis in the ischemic brain. Glia, 50, 407–16.

    Article  PubMed  Google Scholar 

  47. Sick TJ, Xu G, Perez-Pinzon MA. (1999) Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat. Stroke, 30, 2416–21; discussion 2422.

    CAS  PubMed  Google Scholar 

  48. Fujikawa DG, Kim JS, Daniels AH, Alcaraz AF, Sohn TB. (1996) In vivo elevation of extracellular potassium in the rat amygdala increases extracellular glutamate and aspartate and damages neurons. Neuroscience, 74, 695–706.

    Article  CAS  PubMed  Google Scholar 

  49. Yu SP, Canzoniero LM, Choi DW. (2001) Ion homeostasis and apoptosis. Curr Opin Cell Biol, 13, 405–11.

    Article  CAS  PubMed  Google Scholar 

  50. Yao H, Sun XL, Gu X, Wang J, Haddad GG. (2007) Cell death in an ischemic infarct rim model. J Neurochem, 103(4):1644–53.

    Article  CAS  PubMed  Google Scholar 

  51. Maeno E, Shimizu T, Okada Y. (2006) Normotonic cell shrinkage induces apoptosis under extracellular low Cl conditions in human lymphoid and epithelial cells. Acta Physiol, 187, 217–22.

    Article  CAS  Google Scholar 

  52. Wyllie AH, Kerr JF, Currie AR. (1980) Cell death: the significance of apoptosis. Int Rev Cytol, 68, 251–306.

    Article  CAS  PubMed  Google Scholar 

  53. Kerr JF, Wyllie AH, Currie AR. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26, 239–57.

    CAS  PubMed  Google Scholar 

  54. Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T. (2004) Dual roles of plasma-lemmal chloride channels in induction of cell death. Pflugers Arch, 448, 287–95.

    Article  CAS  PubMed  Google Scholar 

  55. Bortner CD, Cidlowski JA. (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol, 56, 1549–59.

    Article  CAS  PubMed  Google Scholar 

  56. Dubinsky JM, Kristal BS, Elizondo-Fournier M. (1995) An obligate role for oxygen in the early stages of glutamate-induced, delayed neuronal death. J Neurosci, 15, 7071–8.

    CAS  PubMed  Google Scholar 

  57. Fisher M. (2004) The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis, 17 (Suppl 1), 1–6.

    Article  PubMed  Google Scholar 

  58. Ginsberg MD. (2003) Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke, 34, 214–23.

    Article  PubMed  Google Scholar 

  59. Hakim AM. (1998) Ischemic penumbra: the therapeutic window. Neurology, 51, S44–S46.

    CAS  PubMed  Google Scholar 

  60. Dirnagl U, Iadecola C, Moskowitz MA. (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci, 22, 391–7.

    Article  CAS  PubMed  Google Scholar 

  61. Smith WS. (2004) Pathophysiology of focal cerebral ischemia: a therapeutic perspective. J Vasc Interv Radiol, 15, S3–S12.

    PubMed  Google Scholar 

  62. Ridenour TR, Warner DS, Todd MM, McAllister AC. (1992) Mild hypothermia reduces infarct size resulting from temporary but not permanent focal ischemia in rats. Stroke, 23, 733–8.

    CAS  PubMed  Google Scholar 

  63. Yanamoto H, Nagata I, Niitsu Y, Zhang Z, Xue JH, Sakai N, Kikuchi H. (2001) Prolonged mild hypothermia therapy protects the brain against permanent focal ischemia. Stroke, 32, 232–9.

    CAS  PubMed  Google Scholar 

  64. Erecinska M, Thoresen M, Silver IA. (2003) Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab, 23, 513–30.

    Article  CAS  PubMed  Google Scholar 

  65. Frantseva M V, Carlen PL, El-Beheiry H. (1999) A submersion method to induce hypoxic damage in organotypic hippocampal cultures. J Neurosci Methods, 89, 25–31.

    Article  CAS  PubMed  Google Scholar 

  66. McManus T, Sadgrove M, Pringle AK, Chad JE, Sundstrom LE. (2004) Intraischaemic hypothermia reduces free radical production and protects against ischaemic insults in cultured hippocampal slices. J Neurochem, 91, 327–36.

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, Chopp M, Jiang N, Zaloga C. (1995) In situ detection of DNA fragmentation after focal cerebral ischemia in mice. Brain Res Mol Brain Res, 28, 164–8.

    Article  CAS  PubMed  Google Scholar 

  68. Charriaut-Marlangue C, Margaill I, Represa A, Popovici T, Plotkine M, Ben-Ari Y. (1996) Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab, 16, 186–94.

    Article  CAS  PubMed  Google Scholar 

  69. Zivin JA. (2007) Clinical trials of neuroprotective therapies. Stroke, 38, 791–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yao, H. (2009). Acute Stroke Therapy: Highlighting the Ischemic Penumbra. In: Haddad, G.G., Yu, S.P. (eds) Brain Hypoxia and Ischemia. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-579-8_16

Download citation

Publish with us

Policies and ethics