Skip to main content

Regulation of Vulnerability to NMDA Excitotoxicity During Postnatal Maturation

  • Chapter
Brain Hypoxia and Ischemia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Hippocampal and cortical vulnerability to injury following activation of N-methyl-d-aspartate (NMDA) receptors increases markedly during development from embryonic life to the adult. The mechanisms underlying this increased vulnerability are multiple, and include developmental regulation of NMDA receptor subunit expression, localization of NMDA to synapses or extrasynaptic locations, and intracellular metabolism of NMDA-induced increases in cytosolic calcium concentrations, particularly by mitochondria. The role of nitric oxide is highlighted, especially with new data demonstrating a role for mitochondrial nitric oxide syn-thase (NOS) as a primary mediator of the decreased vulnerability of immature neurons to excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fazekas JF, Himwich HE. Anaerobic survival of adult animals. Am J Physiol 1943; 139(3): 366–70.

    CAS  Google Scholar 

  2. Fazekas JF, Alexander FAD, Himwich HE. Tolerance of the newborn to anoxia. Am J Physiol 1941;134(2):281–7.

    CAS  Google Scholar 

  3. Kabat H. The greater resistance of very young animals to arrest of the brain circulation. Am J Physiol 1940;130(3):588–99.

    Google Scholar 

  4. Duffy TE, Kohle SJ, Vannucci RC. Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia. J Neurochem 1975;24(2):271–6.

    CAS  PubMed  Google Scholar 

  5. Olney JW, Sharpe LG. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 1969;166(903):386–8.

    CAS  PubMed  Google Scholar 

  6. Choi DW, Koh J, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. J Neurosci 1988;8:185–96.

    Google Scholar 

  7. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci 1987;7(2):357–68.

    CAS  PubMed  Google Scholar 

  8. Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci 1987;7(2):369–79.

    CAS  PubMed  Google Scholar 

  9. Ikonomidou C, Price MT, Mosinger JL, et al. Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain. J Neurosci 1989;9(5):1693–700.

    CAS  PubMed  Google Scholar 

  10. Olney JW, Ikonomidou C, Mosinger JL, Frierdich G. MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci 1989;9(5):1701–4.

    CAS  PubMed  Google Scholar 

  11. Goldberg MP, Weiss JH, Pham PC, Choi DW. N-methyl-d-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J Pharmacol Exp Ther 1987;243(2):784–91.

    CAS  PubMed  Google Scholar 

  12. Ikonomidou C, Mosinger JL, Salles KS, Labruyere J, Olney JW. Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxic-ity. J Neurosci 1989;9(8):2809–18.

    CAS  PubMed  Google Scholar 

  13. McDonald JW, Silverstein FS, Johnston M V. Neurotoxicity of N-methyl-d-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 1988;459(1):200–3.

    CAS  PubMed  Google Scholar 

  14. Blumenfeld KS, Welsh FA, Harris VA, Pesenson MA. Regional expression of c-fos and heat shock protein-70 mRNA following hypoxia-ischemia in immature rat brain. J Cereb Blood Flow Metab 1992;12(6):987–95.

    CAS  PubMed  Google Scholar 

  15. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: A light microscopic study. Dev Brain Res 1997;100(2):149–60.

    CAS  Google Scholar 

  16. Towfighi J, Mauger D. Temporal evolution of neuronal changes in cerebral hypoxia-ischemia in developing rats: a quantitative light microscopic study. Dev Brain Res 1998;109(2):169–77.

    CAS  Google Scholar 

  17. Liu Z, Stafstrom CE, Sarkisian M, et al. Age-dependent effects of glutamate toxicity in the hippocampus. Brain Res Dev Brain Res 1996;97(2):178–84.

    CAS  PubMed  Google Scholar 

  18. Zhou M, Baudry M. Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 2006;26(11):2956–63.

    CAS  PubMed  Google Scholar 

  19. Aitken PG, Breese GR, Dudek FF, et al. Preparative methods for brain slices: A discussion. J Neurosci Methods 1995;59(1):139–49.

    CAS  PubMed  Google Scholar 

  20. Lipton P, Aitken PG, Dudek FE, et al. Making the best of brain slices; comparing preparative methods. J Neurosci Methods 1995;59(1):151–6.

    CAS  PubMed  Google Scholar 

  21. Marks JD, Friedman JE, Haddad GG. Vulnerability of CA1 neurons to glutamate is develop-mentally regulated. Brain Res Dev Brain Res 1996;97:194–206.

    Google Scholar 

  22. Marks JD, Bindokas VP, Zhang XM. Maturation of vulnerability to excitotoxicity: Intra-cellular mechanisms in cultured postnatal hippocampal neurons. Brain Res Dev Brain Res 2000;124(1–2):101–16.

    CAS  PubMed  Google Scholar 

  23. Marks JD, Boriboun C, Wang J. Mitochondrial nitric oxide mediates decreased vulnerability of hippocampal neurons from immature animals to NMDA. J Neurosci 2005;25(28):6561–75.

    CAS  PubMed  Google Scholar 

  24. Dubinsky JM, Rothman SM. Intracellular calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury. J Neurosci 1991;11(8):2545–51.

    CAS  PubMed  Google Scholar 

  25. Tymianski M, Charlton MP, Carlen PL, Tator CH. Source specificity of early calcium neuro-toxicity in cultured embryonic spinal neurons. J Neurosci 1993;13(5):2085–104.

    CAS  PubMed  Google Scholar 

  26. Sattler R, Charlton MP, Hafner M, Tymianski M. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 1998;71(6): 2349–64.

    CAS  PubMed  Google Scholar 

  27. Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995;15(4):961–73.

    CAS  PubMed  Google Scholar 

  28. Budd SL. Mechanisms of neuronal damage in brain hypoxia/ischemia: Focus on the role of mitochondrial calcium accumulation. Pharmacol Ther 1998;80(2):203–29.

    CAS  PubMed  Google Scholar 

  29. Nicholls DG, Budd SL. Mitochondria and neuronal glutamate excitotoxicity. Biochim Biophys Acta 1998;1366(1–2):97–112.

    CAS  PubMed  Google Scholar 

  30. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998;1(5):366–73.

    CAS  PubMed  Google Scholar 

  31. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000;80(1):316–60.

    Google Scholar 

  32. Wahl P, Schousboe A, Honore T, Drejer J. Glutamate-induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J Neurochem 1989;53(4):1316–19.

    CAS  PubMed  Google Scholar 

  33. Peterson C, Neal JH, Cotman CW. Development of excitotoxicity in cultured hippocampal neurons. Dev Brain Res 1989;48(2):187–95.

    CAS  Google Scholar 

  34. Mattson MP, Wang H, Michaelis EK. Developmental expression, compartmentalization, and possible role in excitotoxicity of a putative NMDA receptor protein in cultured hippocampal neurons. Brain Res 1991;565(1):94–108.

    CAS  PubMed  Google Scholar 

  35. Xia Y, Ragan RE, Seah EE, Michaelis ML, Michaelis EK. Developmental expression of N-methyl-d-aspartate (NMDA)-induced neurotoxicity, NMDA receptor function, and the NMDAR1 and glutamate-binding protein subunits in cerebellar granule cells in primary cultures. Neurochem Res 1995;20(5):617–29.

    CAS  PubMed  Google Scholar 

  36. Toescu EC, Verkhratsky A. Neuronal ageing in long-term cultures: Alterations of Ca2+ home-ostasis. Neuroreport 2000;11(17):3725–9.

    CAS  PubMed  Google Scholar 

  37. Eimerl S, Schramm M. The quantity of calcium that appears to induce neuronal death. J Neurochem 1994;62(3):1223–6.

    CAS  PubMed  Google Scholar 

  38. Cheng C, Fass DM, Reynolds IJ. Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca2+]i increases and NMDA receptor mRNA levels. Brain Res 1999;849(1–2):97–108.

    CAS  PubMed  Google Scholar 

  39. Brewer LD, Thibault O, Staton J, et al. Increased vulnerability of hippocampal neurons with age in culture: Temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Res 2007;1151:20–31.

    CAS  PubMed  Google Scholar 

  40. Fogal B, Trettel J, Uliasz TF, Levine ES, Hewett SJ. Changes in secondary glutamate release underlie the developmental regulation of excitotoxic neuronal cell death. Neuroscience 2005;132(4):929–42.

    CAS  PubMed  Google Scholar 

  41. Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by gluta-mate: Role in neuronal death. Mol Pharmacol 1989;36(1):106–12.

    CAS  PubMed  Google Scholar 

  42. Adamec E, Didier M, Nixon RA. Developmental regulation of the recovery process following glutamate-induced calcium rise in rodent primary neuronal cultures. Dev Brain Res 1998;108(1–2):101–10.

    CAS  Google Scholar 

  43. Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992;12(5):1882–95.

    CAS  PubMed  Google Scholar 

  44. Castilho RF, Hansson O, Ward MW, Budd SL, Nicholls DG. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 1998;18(24): 10277–86.

    CAS  PubMed  Google Scholar 

  45. Nicholls DG, Vesce S, Kirk L, Chalmers S. Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium 2003;34(4–5): 407–24.

    CAS  PubMed  Google Scholar 

  46. Luetjens CM, Bui NT, Sengpiel B, et al. Delayed mitochondrial dysfunction in excitotoxic neuron death: Cytochrome c release and a secondary increase in superoxide production. J Neurosci 2000;20(15):5715–23.

    CAS  PubMed  Google Scholar 

  47. Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 2004;36(3–4):257–64.

    CAS  PubMed  Google Scholar 

  48. Rothman SM, Thurston JH, Hauhart RE. Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 1987;22(2):471–80.

    CAS  PubMed  Google Scholar 

  49. Hartley DM, Choi DW. Delayed rescue of N-methyl-d-aspartate receptor-mediated neuronal injury in cortical culture. J Pharmacol Exp Ther 1989;250(2):752–8.

    CAS  PubMed  Google Scholar 

  50. Norris CM, Blalock EM, Thibault O, et al. Electrophysiological mechanisms of delayed excitotoxicity: Positive feedback loop between NMDA receptor current and depolarization-mediated glutamate release. J Neurophysiol 2006;96(5):2488–500.

    CAS  PubMed  Google Scholar 

  51. Verdoorn TA, Kleckner NW, Dingledine R. Rat brain N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Science 1987;238(4830):1114–16.

    CAS  PubMed  Google Scholar 

  52. Rachline J, Perin-Dureau F, Le Goff A, Neyton J, Paoletti P. The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J Neurosci 2005;25(2):308–17.

    CAS  PubMed  Google Scholar 

  53. McGurk JF, Bennett M V, Zukin RS. Polyamines potentiate responses of N-methyl-d-aspartate receptors expressed in xenopus oocytes. Proc Natl Acad Sci USA 1990;87(24):9971–4.

    CAS  PubMed  Google Scholar 

  54. Traynelis SF, Cull-Candy SG. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 1991;433:727–63.

    CAS  PubMed  Google Scholar 

  55. Aizenman E, Lipton SA, Loring RH. Selective modulation of NMDA responses by reduction and oxidation. Neuron 1989;2(3):1257–63.

    CAS  PubMed  Google Scholar 

  56. Lin Y, Skeberdis VA , Francesconi A, Bennett MVL, Zukin RS. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci 2004;24(45):10138–48.

    CAS  PubMed  Google Scholar 

  57. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: Diversity, development and disease. Curr Opin Neurobiol 2001;11(3):327–35.

    Google Scholar 

  58. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005;179(1):4–29.

    CAS  PubMed  Google Scholar 

  59. Benveniste M, Mayer ML. Kinetic analysis of antagonist action at N-methyl-d-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 1991;59(3): 560–73.

    CAS  PubMed  Google Scholar 

  60. Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-d-aspartate receptor. Neuron 1991;7(4):605–13.

    CAS  PubMed  Google Scholar 

  61. Vicini S, Wang JF, Li JH, et al. Functional and pharmacological differences between recom-binant N-methyl-d-aspartate receptors. J Neurophysiol 1998;79(2):555–66.

    CAS  PubMed  Google Scholar 

  62. Behe P, Colquhoun D, Wyllie DJA. Activation of single AMPA- and NMDA-type glutamate receptor channels. In: Jonas P, Monyer H, eds. Ionotropic glutamate receptors in the CNS. Berlin: Springer; 1999:175–218.

    Google Scholar 

  63. Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002;415(6873):793–8.

    CAS  PubMed  Google Scholar 

  64. Sucher NJ, Akbarian S, Chi CL, et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 1995;15(10):6509–20.

    CAS  PubMed  Google Scholar 

  65. Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA. Cloning and characterization of chi-1: A developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 1995;15(10):6498–508.

    CAS  PubMed  Google Scholar 

  66. Nishi M, Hinds H, Lu H-P, Kawata M, Hayashi Y. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 2001;21(23):185RC.

    Google Scholar 

  67. Matsuda K, Fletcher M, Kamiya Y, Yuzaki M. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 2003;23(31):10064–73.

    CAS  PubMed  Google Scholar 

  68. Das S, Sasaki YF, Rothe T, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 1998;393(6683):377–81.

    CAS  PubMed  Google Scholar 

  69. Mott DD, Doherty JJ, Zhang S, et al. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1998;1(8):659–67.

    CAS  PubMed  Google Scholar 

  70. Williams K. Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: Selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993;44(4):851–9.

    CAS  PubMed  Google Scholar 

  71. Neyton J, Paoletti P. Relating NMDA receptor function to receptor subunit composition: Limitations of the pharmacological approach. J Neurosci 2006;26(5):1331–3.

    CAS  PubMed  Google Scholar 

  72. Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M. 5-Phosphono-methylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 2002; 12(7):1099–102.

    CAS  PubMed  Google Scholar 

  73. Chen N, Moshaver A, Raymond LA. Differential sensitivity of recombinant N-methyl-d-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol 1997;51(6):1015–23.

    CAS  PubMed  Google Scholar 

  74. Hatton CJ, Paoletti P. Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 2005;46(2):261–74.

    CAS  PubMed  Google Scholar 

  75. Köhr G. NMDA receptor function: Subunit composition versus spatial distribution. Cell Tissue Res 2006;326(2):439–46.

    PubMed  Google Scholar 

  76. Wang YH, Bosy TZ, Yasuda RP, et al. Characterization of NMDA receptor subunit-specific antibodies: Distribution of NR2A and NR2B receptor subunits in rat brain and ontogenic profile in the cerebellum. J Neurochem 1995;65(1):176–83.

    CAS  PubMed  Google Scholar 

  77. Wenzel A, Scheurer L, Kunzi R, Fritschy JM, Mohler H, Benke D. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport 1995;7(1):45–8.

    CAS  PubMed  Google Scholar 

  78. Tsumoto T, Hagihara K, Sato H, Hata Y. NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats. Nature 1987;327(6122):513–14.

    CAS  PubMed  Google Scholar 

  79. Hestrin S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 1992;357(6380):686–9.

    CAS  PubMed  Google Scholar 

  80. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of hetero-meric NMDA receptors during development of rat cortex. Nature 1994;368(6467):144–7.

    CAS  PubMed  Google Scholar 

  81. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12(3):529–40.

    CAS  PubMed  Google Scholar 

  82. Portera-Cailliau C, Price DL, Martin LJ. N-methyl-d-aspartate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-specific antibodies. J Neurochem 1996;66(2):692–700.

    Google Scholar 

  83. Law AJ, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ. Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation. Eur J Neurosci 2003;18(5):1197–205.

    PubMed  Google Scholar 

  84. Kleckner NW, Dingledine R. Regulation of hippocampal NMDA receptors by magnesium and glycine during development. Mol Brain Res 1991;11(2):151–9.

    CAS  PubMed  Google Scholar 

  85. Barth AL, Malenka RC. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nat Neurosci 2001;4(3):235–6.

    CAS  PubMed  Google Scholar 

  86. Lu H-C, Gonzalez E, Crair MC. Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition. Neuron 2001;32(4):619–34.

    PubMed  Google Scholar 

  87. Townsend M, Yoshii A, Mishina M, Constantine-Paton M. Developmental loss of miniature N-methyl-d-aspartate receptor currents in NR2A knockout mice. Proc Natl Acad Sci USA 2003;100(3):1340–5.

    CAS  PubMed  Google Scholar 

  88. Williams K, Russell SL, Shen YM, Molinoff PB. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 1993;10(2):267–78.

    CAS  PubMed  Google Scholar 

  89. Massey P V, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 2004;24(36):7821–8.

    CAS  PubMed  Google Scholar 

  90. Liu L, Wong TP, Pozza MF, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004;304(5673):1021–4.

    CAS  PubMed  Google Scholar 

  91. Kohr G, Jensen V, Koester HJ, et al. Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci 2003;23(34):10791–9.

    PubMed  Google Scholar 

  92. DeRidder MN, Simon MJ, Siman R, Auberson YP, Raghupathi R, Meaney DF. Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol Dis 2006;22(1): 165–76.

    CAS  PubMed  Google Scholar 

  93. von Engelhardt J, Coserea I, Pawlak V, et al. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology 2007;53(1):10–17.

    Google Scholar 

  94. Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 1998;92(2):279–89.

    CAS  PubMed  Google Scholar 

  95. Bliss T, Schoepfer R. Neuroscience. Controlling the ups and downs of synaptic strength. Science 2004;304(5673):973–4.

    CAS  PubMed  Google Scholar 

  96. Liu Y, Wong TP, Aarts M, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007;27(11):2846–57.

    CAS  PubMed  Google Scholar 

  97. Tovar KR, Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 1999;19(10):4180–8.

    CAS  PubMed  Google Scholar 

  98. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002;5(5):405–14.

    CAS  PubMed  Google Scholar 

  99. Zhang SJ, Steijaert MN, Lau D, et al. Decoding NMDA receptor signaling: Identification of genomic programs specifying neuronal survival and death. Neuron 2007;53(4):549–62.

    CAS  PubMed  Google Scholar 

  100. Li JH, Wang YH, Wolfe BB, et al. Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur J Neurosci 1998;10(5):1704–15.

    CAS  PubMed  Google Scholar 

  101. Rao A, Kim E, Sheng M, Craig AM. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 1998;18(4):1217–29.

    CAS  PubMed  Google Scholar 

  102. Abele AE, Scholz KP, Scholz WK, Miller RJ. Excitotoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons. Neuron 1990;4(3):413–19.

    CAS  PubMed  Google Scholar 

  103. Meldrum B. Protection against ischaemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc Brain Metab Rev 1990;2(1):27–57.

    CAS  PubMed  Google Scholar 

  104. Limbrick DD, Jr., Sombati S, DeLorenzo RJ. Calcium influx constitutes the ionic basis for the maintenance of glutamate-induced extended neuronal depolarization associated with hippocampal neuronal death. Cell Calcium 2003;33(2):69–81.

    CAS  PubMed  Google Scholar 

  105. Humeau Y, Doussau F, Grant NJ, Poulain B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000;82(5):427–46.

    CAS  PubMed  Google Scholar 

  106. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, et al. dl-Threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 1998;53(2):195–201.

    CAS  PubMed  Google Scholar 

  107. Montana V, Ni Y, Sunjara V, Hua X, Parpura V. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 2004;24(11):2633–42.

    CAS  PubMed  Google Scholar 

  108. Bezzi P, Gundersen V, Galbete JL, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 2004;7(6):613–20.

    CAS  PubMed  Google Scholar 

  109. Hara MR, Snyder SH. Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol 2007;47(1):117–41.

    CAS  PubMed  Google Scholar 

  110. Dalkara T, Yoshida T, Irikura K, Moskowitz MA. Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 1994;33(11):1447–52.

    CAS  PubMed  Google Scholar 

  111. Mayer B, Klatt P, Bohme E, Schmidt K. Regulation of neuronal nitric oxide and cyclic GMP formation by Ca2+. J Neurochem 1992;59(6):2024–9.

    CAS  PubMed  Google Scholar 

  112. Cui H, Hayashi A, Sun H-S, et al. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 2007;27(37): 9901–15.

    CAS  PubMed  Google Scholar 

  113. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 1991;88(14):6368–71.

    CAS  PubMed  Google Scholar 

  114. Dawson V, Kizushi V, Huang P, Snyder S, Dawson T. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 1996;16(8):2479–87.

    CAS  PubMed  Google Scholar 

  115. Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 1994;14(6):924–9.

    CAS  PubMed  Google Scholar 

  116. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994;265(5180):1883–5.

    CAS  PubMed  Google Scholar 

  117. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 1993;18(4):195–9.

    CAS  PubMed  Google Scholar 

  118. Brorson JR, Schumacker PT, Zhang H. Nitric oxide acutely inhibits neuronal energy production. J Neurosci 1999;19(1):147–58.

    CAS  PubMed  Google Scholar 

  119. Ushmorov A, Ratter F, Lehmann V, Droge W, Schirrmacher V, Umansky V. Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release. Blood 1999;93(7):2342–52.

    CAS  PubMed  Google Scholar 

  120. Koivisto A, Matthias A, Bronnikov G, Nedergaard J. Kinetics of the inhibition of mitochon-drial respiration by NO. FEBS Lett 1997;417(1):75–80.

    CAS  PubMed  Google Scholar 

  121. Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 2002;297(5584):1186–90.

    CAS  PubMed  Google Scholar 

  122. Matsumoto T, Pollock JS, Nakane M, Forstermann U. Developmental changes of cytosolic and particulate nitric oxide synthase in rat brain. Brain Res Dev Brain Res 1993;73(2): 199–203.

    CAS  PubMed  Google Scholar 

  123. Kimura KA, Reynolds JN, Brien JF. Ontogeny of nitric oxide synthase I and III protein expression and enzymatic activity in the guinea pig hippocampus. Dev Brain Res 1999;116(2): 211–16.

    CAS  Google Scholar 

  124. Terada H, Nagai T, Okada S, Kimura H, Kitahama K. Ontogenesis of neurons immunoreactive for nitric oxide synthase in rat forebrain and midbrain. Dev Brain Res 2001;128(2):121–37.

    CAS  Google Scholar 

  125. Keilhoff G, Seidel B, Noack H, Tischmeyer W, Stanek D, Wolf G. Patterns of nitric oxide synthase at the messenger RNA and protein levels during early rat brain development. Neuroscience 1996;75(4):1193–201.

    CAS  PubMed  Google Scholar 

  126. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418(3):291–6.

    CAS  PubMed  Google Scholar 

  127. Lacza Z, Puskar M, Figueroa JP, Zhang J, Rajapakse N, Busija DW. Mitochondrial nitric oxide synthase is constitutively active and is functionally upregulated in hypoxia. Free Radic Biol Med 2001;31(12):1609–15.

    CAS  PubMed  Google Scholar 

  128. Bringold U, Ghafourifar P, Richter C. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med 2000;29(3–4):343–8.

    CAS  PubMed  Google Scholar 

  129. Giulivi C. Characterization and function of mitochondrial nitric-oxide synthase. Free Radic Biol Med 2003;34(4):397–408.

    CAS  PubMed  Google Scholar 

  130. Kanai AJ, Pearce LL, Clemens PR, et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci 2001; 98(24):14126–31.

    CAS  PubMed  Google Scholar 

  131. Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 2002;277(41):38079–86.

    CAS  PubMed  Google Scholar 

  132. Lacza Z, Snipes JA, Zhang J, et al. Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med 2003;35(10):1217–28.

    CAS  PubMed  Google Scholar 

  133. Lacza Z, Horn TF, Snipes JA, et al. Lack of mitochondrial nitric oxide production in the mouse brain. J Neurochem 2004;90(4):942–51.

    CAS  PubMed  Google Scholar 

  134. Gao S, Chen J, Brodsky S V, et al. Docking of eNOS to the mitochondrial outer membrane: A pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a proteinase K-cleavable peptide on the cytoplasmic face of mitochondria. J Biol Chem 2004;279: 15968–74.

    CAS  PubMed  Google Scholar 

  135. Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE. Interaction of cyanide and nitric oxide with cytochrome c oxidase: Implications for acute cyanide toxicity. Toxicol Sci 2008;101(1):101–11.

    CAS  PubMed  Google Scholar 

  136. Giusti S, Converso DP, Poderoso JJ, Fiszer de Plazas S. Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS. Eur J Neurosci 2008;27(1):123–31.

    PubMed  Google Scholar 

  137. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption I: Cellular physiology. Am J Physiol Cell Physiol 2006;291(6):C1225–C1231.

    CAS  PubMed  Google Scholar 

  138. Persichini T, Mazzone V, Polticelli F, et al. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 2005;384:254–9.

    CAS  PubMed  Google Scholar 

  139. Lores-Arnaiz S, Perazzo JC, Prestifilippo JP, et al. Hippocampal mitochondrial dysfunction with decreased mtNOS activity in prehepatic portal hypertensive rats. Neurochem Int 2005;47(5):362–8.

    Google Scholar 

  140. Zanella B, Giordano E, Muscari C, Zini M, Guarnieri C. Nitric oxide synthase activity in rat cardiac mitochondria. Basic Res Cardiol 2004;99(3):159–64.

    CAS  PubMed  Google Scholar 

  141. Traaseth N, Elfering S, Solien J, Haynes V, Giulivi C. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochim Biophys Acta (BBA) Bioenergetics 2004;1658(1–2):64–71.

    CAS  Google Scholar 

  142. Lores-Arnaiz S, D'Amico G, Czerniczyniec A, Bustamante J, Boveris A. Brain mitochon-drial nitric oxide synthase: In vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys 2004;430(2):170–7.

    Google Scholar 

  143. Dedkova EN, Ji X, Lipsius SL, Blatter LA. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 2003;286(2):C406–C415.

    PubMed  Google Scholar 

  144. Boveris A, Valdez LB, Alvarez S, Zaobornyj T, Boveris AD, Navarro A. Kidney mitochon-drial nitric oxide synthase. Antioxid Redox Signal 2003;5(3):265–71.

    CAS  PubMed  Google Scholar 

  145. Alvarez S, Valdez LB, Zaobornyj T, Boveris A. Oxygen dependence of mitochondrial nitric oxide synthase activity. Biochem Biophys Res Commun 2003;305(3):771–5.

    CAS  PubMed  Google Scholar 

  146. Riobo NA, Melani M, Sanjuan N, et al. The modulation of mitochondrial nitric-oxide syn-thase activity in rat brain development. J Biol Chem 2002;277(45):42447–55.

    CAS  PubMed  Google Scholar 

  147. Sarkela TM, Berthiaume J, Elfering S, Gybina AA, Giulivi C. The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem 2001;276(10):6945–9.

    CAS  PubMed  Google Scholar 

  148. Batista CMC, de Paula KC, Cavalcante LA, Mendez-Otero R. Subcellular localization of neuronal nitric oxide synthase in the superficial gray layer of the rat superior colliculus. Neurosci Res 2001;41(1):67–70.

    CAS  PubMed  Google Scholar 

  149. Lopez-Figueroa MO, Caamano C, Morano MI, Ronn LC, Akil H, Watson SJ. Direct evidence of nitric oxide presence within mitochondria. Biochem Biophys Res Commun 2000;272(1):129–33.

    Google Scholar 

  150. Matlib MA, Zhou Z, Knight S, et al. Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myo-cytes. J Biol Chem 1998;273(17):10223–31.

    CAS  PubMed  Google Scholar 

  151. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 2001;1504(1):46–57.

    CAS  PubMed  Google Scholar 

  152. Feng ZC, Roberts EL, Jr., Sick TJ, Rosenthal M. Depth profile of local oxygen tension and blood flow in rat cerebral cortex, white matter and hippocampus. Brain Res 1988;445(2):280–8.

    CAS  PubMed  Google Scholar 

  153. Buerk DG, Nair P. PtiO2 and CMRO2 changes in cortex and hippocampus of aging gerbil brain. J Appl Physiol 1993;74(4):1723–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marks, J.D. (2009). Regulation of Vulnerability to NMDA Excitotoxicity During Postnatal Maturation. In: Haddad, G.G., Yu, S.P. (eds) Brain Hypoxia and Ischemia. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-579-8_1

Download citation

Publish with us

Policies and ethics