Skip to main content

Pathophysiology of Erectile Dysfunction Following Radical Prostatectomy

  • Chapter
  • First Online:
Book cover Sexual Function in the Prostate Cancer Patient

Part of the book series: Current Clinical Urology ((CCU))

  • 542 Accesses

Abstract

Prostate cancer is the most common solid tumor in adult men, with an estimated 230,000 new cases diagnosed in the USA in 2006. There is a greater concern for quality of life after prostate cancer treatment due to the younger age of diagnosis and increased survival rate. One goal of radical prostatectomy surgery is to limit any further impairment of erectile function. We examine the current understanding of the pathophysiology of ED following radical prostatectomy.

During erection, parasympathetic tone dominates and a number of molecular pathways mediate a decrease in intracellular Ca, corporal smooth muscle relaxation, increased penile arterial inflow, and tumescence. Nitric oxide (NO) is generally agreed upon as the principle neurotransmitter involved in initiating and maintaining penile smooth muscle relaxation, and thus erection. It is clear that the extent to which the cavernous nerves are salvaged or damaged during radical prostatectomy is directly proportional to a patient’s degree of postoperative ED. An emerging concept in the field of erectile dysfunction is penile homeostasis. In order for an erection to occur, the complex and unique sinusoidal morphology of the corpora cavernosa must be maintained. New light has been shed on this process with the identification and investigation of the morphogenic protein Sonic hedgehog (SHH), along with its downstream targets Patched 1 (PTCH1), Hox, bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and NOS.

It is believed that chronic hypoxia and denervation of erectile tissue following radical prostatectomy result in permanent ED via apoptosis of smooth muscle cells, deposition of collagen (scar), and penile fibrosis. Hypoxia also causes an increase in release of potent vasoconstrictor molecules such as endothelin-1, a pro-fibrotic peptide, with synthesis.

Active investigation continues in the fields of penile homeostasis, the pathophysiology of ED, control of inflammation and fibrosis, prevention or limitation of smooth muscle apoptosis, and neural regenerative strategies influenced by TGF-B1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal, A., et al. (2006) Cancer statistics 2006. CA Cancer J. Clin. 56(2), 106–130.

    PubMed  Google Scholar 

  2. Vale, J. (2000) Erectile dysfunction following radical therapy for prostate cancer. Radiother. Oncol. 57(3), 301–305.

    PubMed  CAS  Google Scholar 

  3. Kendirci, M., and Hellstrom, W.J. (2004) Current concepts in the management of erectile dysfunction in men with prostate cancer. Clin. Prostate Cancer 3(2), 87–92.

    PubMed  Google Scholar 

  4. Katz, A. (2005) What happened? Sexual consequences of prostate cancer and its treatment. Can. Fam. Physician 51, 977–982.

    PubMed  Google Scholar 

  5. Alivizatos, G., and Skolarikos, A. (2005) Incontinence and erectile dysfunction following radical prostatectomy: a review. Sci. World J. 5, 747–758.

    Google Scholar 

  6. Penson, D.F., et al. (2005) 5-year urinary and sexual outcomes after radical prostatectomy: results from the prostate cancer outcomes study. J. Urol. 173(5), 1701–1705.

    PubMed  Google Scholar 

  7. Miyao, N., et al. (2001) Recovery of sexual function after nerve-sparing radical prostatectomy or cystectomy. Int. J. Urol. 8(4), 158–164.

    PubMed  CAS  Google Scholar 

  8. Crawford, E.D., et al. (1997) Comparison of perspectives on prostate cancer: analyses of survey data. Urology 50(3), 366–372.

    PubMed  CAS  Google Scholar 

  9. Litwin, M.S., et al. (1999) Sexual function and bother after radical prostatectomy or radiation for prostate cancer: multivariate quality-of-life analysis from CaPSURE. Cancer of the Prostate Strategic Urologic Research Endeavor. Urology 54(3), 503–508.

    PubMed  CAS  Google Scholar 

  10. Shindel, A., et al. (2005) Sexual dysfunction in female partners of men who have undergone radical prostatectomy correlates with sexual dysfunction of the male partner. J. Sex. Med. 2(6), 833–841; discussion 841.

    PubMed  Google Scholar 

  11. Rabbani, F., et al. (2000) Factors predicting recovery of erections after radical prostatectomy. J. Urol. 164(6), 1929–1934.

    PubMed  CAS  Google Scholar 

  12. Johannes, C.B., et al. (2000) Incidence of erectile dysfunction in men 40 to 69 years old: longitudinal results from the Massachusetts male aging study. J. Urol. 163(2), 460–463.

    PubMed  CAS  Google Scholar 

  13. Leeson, T.S., and Leeson, C.R. (1965) The fine structure of cavernous tissue in the adult rat penis. Invest. Urol. 3(2), 144–154.

    PubMed  CAS  Google Scholar 

  14. Goldstein, A.M.B., Meehan, J.P., and Zakhary, R. (1982) New observations on microarchitecture of corpora cavernosa in man and possible relationship to mechanism of erection. Urology 20, 259.

    PubMed  CAS  Google Scholar 

  15. Breza, J., et al. (1989) Detailed anatomy of penile neurovascular structures: surgical significance. J. Urol. 141(2), 437–443.

    PubMed  CAS  Google Scholar 

  16. Kim, E.D., Blackburn, D., and McVary, K.T. (1994) Post-radical prostatectomy penile blood flow: assessment with color flow Doppler ultrasound. J. Urol. 152(6 Pt 2), 2276–2279.

    PubMed  CAS  Google Scholar 

  17. Mulhall, J.P., et al. (2002) Erectile dysfunction after radical prostatectomy: hemodynamic profiles and their correlation with the recovery of erectile function. J. Urol. 167(3), 1371–1375.

    PubMed  Google Scholar 

  18. Rogers, C.G., Trock, B.P., and Walsh, P.C. (2004) Preservation of accessory pudendal arteries during radical retropubic prostatectomy: surgical technique and results. Urology 64(1), 148–151.

    PubMed  Google Scholar 

  19. Aboseif, S.R., et al. (1989) Penile venous drainage in erectile dysfunction. Anatomical, radiological and functional considerations. Br. J. Urol. 64(2), 183–190.

    PubMed  CAS  Google Scholar 

  20. Andersson, K.E., and Wagner, G. (1995) Physiology of penile erection. Physiol. Rev. 75(1), 191–236.

    PubMed  CAS  Google Scholar 

  21. Walsh, P.C., and Donker, P.J. (1982) Impotence following radical prostatectomy: insight into etiology and prevention. J. Urol. 128(3), 492–497.

    PubMed  CAS  Google Scholar 

  22. Ignarro, L.J., et al. (1990) Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun. 170(2), 843–850.

    PubMed  CAS  Google Scholar 

  23. Holmquist, F., et al. (1991) Effects of the nitric oxide synthase inhibitor NG-nitro-L-arginine on the erectile response to cavernous nerve stimulation in the rabbit. Acta Physiol. Scand. 143(3), 299–304.

    PubMed  CAS  Google Scholar 

  24. Kim, N., et al. (1991) A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J. Clin. Invest. 88(1), 112–118.

    PubMed  CAS  Google Scholar 

  25. Pickard, R.S., Powell, P.H., and Zar, M.A. (1991) The effect of inhibitors of nitric oxide biosynthesis and cyclic GMP formation on nerve-evoked relaxation of human cavernosal smooth muscle. Br. J. Pharmacol. 104(3), 755–759.

    PubMed  CAS  Google Scholar 

  26. Burnett, A.L., et al. (1992) Nitric oxide: a physiologic mediator of penile erection. Science 257(5068), 401–403.

    PubMed  CAS  Google Scholar 

  27. Rajfer, J., et al. (1992) Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N. Engl. J. Med. 326(2), 90–94.

    PubMed  CAS  Google Scholar 

  28. Trigo-Rocha, F., et al. (1993) The role of cyclic adenosine monophosphate, cyclic guanosine monophosphate, endothelium and nonadrenergic, noncholinergic neurotransmission in canine penile erection. J. Urol. 149(4), 872–877.

    PubMed  CAS  Google Scholar 

  29. Burnett, A.L., and Musicki, B. (2005) The nitric oxide signaling pathway in the penis. Curr. Pharm. Des. 11(31), 3987–3994.

    PubMed  CAS  Google Scholar 

  30. Rajasekaran, M., et al. (1998) Ex vivo expression of nitric oxide synthase isoforms (eNOS/iNOS) and calmodulin in human penile cavernosal cells. J. Urol. 160(6 Pt 1), 2210–2215.

    PubMed  CAS  Google Scholar 

  31. Ehren, I., Adolfsson, J., and Wiklund, N.P. (1994) Nitric oxide synthase activity in the human urogenital tract. Urol. Res. 22(5), 287–290.

    PubMed  CAS  Google Scholar 

  32. Magee, T.R., et al. (2003) Protein inhibitor of nitric oxide synthase (NOS) and the N-methyl-D-aspartate receptor are expressed in the rat and mouse penile nerves and colocalize with penile neuronal NOS. Biol. Reprod. 68(2), 478–488.

    PubMed  CAS  Google Scholar 

  33. Gonzalez-Cadavid, N.F., and Rajfer, J. (2000) Therapeutic stimulation of penile nitric oxide synthase (NOS) and related pathways. Drugs Today (Barc) 36(2–3), 163–174.

    CAS  Google Scholar 

  34. Podlasek, C.A., et al. (2001) Analysis of NOS isoform changes in a post radical prostatectomy model of erectile dysfunction. Int. J. Impot. Res. 13(Suppl 5), S1–15.

    PubMed  Google Scholar 

  35. Hurt, K.J., et al. (2002) Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection. Proc. Natl. Acad. Sci. USA 99(6), 4061–4066.

    PubMed  CAS  Google Scholar 

  36. Burnett, A.L. (2004) Novel nitric oxide signaling mechanisms regulate the erectile response. Int. J. Impot. Res. 16(Suppl 1), S15–S19.

    PubMed  CAS  Google Scholar 

  37. Podlasek, C.A., et al. (2001) Characterization and localization of nitric oxide synthase isoforms in the BB/WOR diabetic rat. J. Urol. 166(2), 746–755.

    PubMed  CAS  Google Scholar 

  38. Jung, G.W., et al. (1999) The role of growth factor on regeneration of nitric oxide synthase (NOS) – containing nerves after cavernous neurotomy in the rats. Int. J. Impot. Res. 11(4), 227–235.

    PubMed  CAS  Google Scholar 

  39. Ujiie, K., et al. (1994) Localization and regulation of endothelial NO synthase mRNA expression in rat kidney. Am. J. Physiol. 267(2 Pt 2), F296–F302.

    PubMed  CAS  Google Scholar 

  40. Moncada, S. (1997) Nitric oxide in the vasculature: physiology and pathophysiology. Ann. NY. Acad. Sci. 811, 60–67; discussion 67–69.

    PubMed  CAS  Google Scholar 

  41. Musicki, B., et al. (2004) Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection. Biol. Reprod. 70(2), 282–289.

    PubMed  CAS  Google Scholar 

  42. Gonzalez-Cadavid, N.F., and Rajfer, J. (2005) The pleiotropic effects of inducible nitric oxide synthase (iNOS) on the physiology and pathology of penile erection. Curr. Pharm. Des. 11(31), 4041–4046.

    PubMed  CAS  Google Scholar 

  43. Ferrini, M.G., et al. (2002) Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide 6(3), 283–294.

    PubMed  CAS  Google Scholar 

  44. Valente, E.G., et al. (2003) L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie’s fibrotic plaque and related fibroblast cultures. Nitric Oxide 9(4), 229–244.

    PubMed  CAS  Google Scholar 

  45. Gholami, S.S., et al. (2003) Peyronie’s disease: a review. J. Urol. 169(4), 1234–1241.

    PubMed  Google Scholar 

  46. Shi, H.P., et al. (2001) The role of iNOS in wound healing. Surgery 130(2), 225–229.

    PubMed  CAS  Google Scholar 

  47. Frank, S., et al. (2002) Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int. 61(3), 882–888.

    PubMed  CAS  Google Scholar 

  48. Seftel, A.D., et al. (1997) Advanced glycation end products in human penis: elevation in diabetic tissue, site of deposition, and possible effect through iNOS or eNOS. Urology 50(6), 1016–1026.

    PubMed  CAS  Google Scholar 

  49. Rajasekaran, M., Hellstrom, W.J., and Sikka, S.C. (2001) Nitric oxide induces oxidative stress and mediates cytotoxicity to human cavernosal cells in culture. J. Androl. 22(1), 34–39.

    PubMed  CAS  Google Scholar 

  50. Burnett, A.L., et al. (1993) Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J. Urol. 150(1), 73–76.

    PubMed  CAS  Google Scholar 

  51. Haffner, M.C., et al. (2005) Health-related quality-of-life outcomes after anatomic retropubic radical prostatectomy in the phosphodiesterase type 5 ERA: impact of neurovascular bundle preservation. Urology 66(2), 371–376.

    PubMed  Google Scholar 

  52. Gralnek, D., et al. (2000) Differences in sexual function and quality of life after nerve sparing and nonnerve sparing radical retropubic prostatectomy. J. Urol. 163(4), 1166–1169; discussion 1169–1170.

    PubMed  CAS  Google Scholar 

  53. Kundu, S.D., et al. (2004) Potency, continence and complications in 3,477 consecutive radical retropubic prostatectomies. J. Urol. 172(6 Pt 1), 2227–2231.

    PubMed  Google Scholar 

  54. Sunderland, S. (1977) Some anatomical and pathophysiological data relevant to facial nerve injury and repair. In: Fisch, U., ed. Facial Nerve Surgery. Birmingham, Alabama: Aesculapius Publishers.

    Google Scholar 

  55. Zippe, C.D., et al. (2001) Management of erectile dysfunction following radical prostatectomy. Curr. Urol. Rep. 2(6), 495–503.

    PubMed  CAS  Google Scholar 

  56. Walsh, P.C., et al. (2000) Patient-reported urinary continence and sexual function after anatomic radical prostatectomy. Urology 55(1), 58–61.

    PubMed  CAS  Google Scholar 

  57. Walsh, P.C. (2001) Nerve grafts are rarely necessary and are unlikely to improve sexual function in men undergoing anatomic radical prostatectomy. Urology 57(6), 1020–1024.

    PubMed  CAS  Google Scholar 

  58. Carrier, S., et al. (1995) Regeneration of nitric oxide synthase-containing nerves after cavernous nerve neurotomy in the rat. J. Urol. 153(5), 1722–1727.

    PubMed  CAS  Google Scholar 

  59. El-Sakka, A.I., et al. (1998) Effect of cavernous nerve freezing on protein and gene expression of nitric oxide synthase in the rat penis and pelvic ganglia. J. Urol. 160(6 Pt 1), 2245–2252.

    PubMed  CAS  Google Scholar 

  60. Jung, G.W., Spencer, E.M., and Lue, T.F. (1998) Growth hormone enhances regeneration of nitric oxide synthase-containing penile nerves after cavernous nerve neurotomy in rats. J. Urol. 160(5), 1899–1904.

    PubMed  CAS  Google Scholar 

  61. Andersson, K.E. (2001) Pharmacology of penile erection. Pharmacol. Rev. 53(3), 417–450.

    PubMed  CAS  Google Scholar 

  62. Hedlund, H., and Andersson, K.E. (1985) Comparison of the responses to drugs acting on adrenoreceptors and muscarinic receptors in human isolated corpus cavernosum and cavernous artery. J. Auton. Pharmacol. 5(1), 81–88.

    PubMed  CAS  Google Scholar 

  63. Diederichs, W., et al. (1990) Norepinephrine involvement in penile detumescence. J. Urol. 143(6), 1264–1266.

    PubMed  CAS  Google Scholar 

  64. Holmquist, F., Andersson, K.E., and Hedlund, H. (1990) Actions of endothelin on isolated corpus cavernosum from rabbit and man. Acta Physiol. Scand. 139(1), 113–122.

    PubMed  CAS  Google Scholar 

  65. Saenz de Tejada, I., et al. (1991) Endothelin: localization, synthesis, activity, and receptor types in human penile corpus cavernosum. Am. J. Physiol. 261(4 Pt 2), H1078–H1085.

    PubMed  CAS  Google Scholar 

  66. Hedlund, H., et al. (1989) Characterization of contraction-mediating prostanoid receptors in human penile erectile tissues. J. Urol. 141(1), 182–186.

    PubMed  CAS  Google Scholar 

  67. Azadzoi, K.M., et al. (1992) Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone. J. Urol. 147(1), 220–225.

    PubMed  CAS  Google Scholar 

  68. Lue, T.F. (2002) Chapter 45: Physiology of Penile Erection and Pathophysiology of Erectile Dysfunction and Priapism. In: Walsh, P.C., Retik, A.B., Vaughan, E.D., and Wein, A.J., eds. Campbell’s Urology, 8th edn. Philadelphia, PA: WB Saunders Co.

    Google Scholar 

  69. Gupta, S., et al. (1995) Possible role of Na(+)-K(+)-ATPase in the regulation of human corpus cavernosum smooth muscle contractility by nitric oxide. Br. J. Pharmacol. 116(4), 2201–2206.

    PubMed  CAS  Google Scholar 

  70. Draznin, M.B., Rapoport, R.M., and Murad, F. (1986) Myosin light chain phosphorylation in contraction and relaxation of intact rat thoracic aorta. Int. J. Biochem. 18(10), 917–928.

    PubMed  CAS  Google Scholar 

  71. Christ, G.J., et al. (1999) Ion channels and gap junctions: their role in erectile physiology, dysfunction, and future therapy. Mol. Urol. 3(2), 61–73.

    PubMed  CAS  Google Scholar 

  72. Sawada, N., et al. (2001) cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem. Biophys. Res. Commun. 280(3), 798–805.

    PubMed  CAS  Google Scholar 

  73. Sauzeau, V., et al. (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem. 275(28), 21722–21729.

    PubMed  CAS  Google Scholar 

  74. Gudi, T., et al. (2002) cGMP-dependent protein kinase inhibits serum-response element-dependent transcription by inhibiting rho activation and functions. J. Biol. Chem. 277(40), 37382–37393.

    PubMed  CAS  Google Scholar 

  75. Chitaley, K., Webb, R.C., and Mills, T.M. (2003) The ups and downs of Rho-kinase and penile erection: upstream regulators and downstream substrates of rho-kinase and their potential role in the erectile response. Int. J. Impot. Res. 15(2), 105–109.

    PubMed  CAS  Google Scholar 

  76. Wang, H., et al. (2002) RhoA-mediated Ca2+ sensitization in erectile function. J. Biol. Chem. 277(34), 30614–30621.

    PubMed  CAS  Google Scholar 

  77. Rees, R.W., et al. (2002) Human and rabbit cavernosal smooth muscle cells express Rho-kinase. Int. J. Impot. Res. 14(1), 1–7.

    PubMed  CAS  Google Scholar 

  78. Mills, T.M., et al. (2001) Effect of Rho-kinase inhibition on vasoconstriction in the penile circulation. J. Appl. Physiol. 91(3), 1269–1273.

    PubMed  CAS  Google Scholar 

  79. Somlyo, A.P., and Somlyo, A.V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83(4), 1325–1358.

    PubMed  CAS  Google Scholar 

  80. Somlyo, A.P., and Somlyo, A.V. (2000) Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522(Pt 2), 177–185.

    PubMed  CAS  Google Scholar 

  81. Amano, M., et al. (1999) The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274(45), 32418–32424.

    PubMed  CAS  Google Scholar 

  82. Ming, X.F., et al. (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol. Cell Biol. 22(24), 8467–8477.

    PubMed  CAS  Google Scholar 

  83. Linder, A.E., et al. (2005) Rho-kinase and RGS-containing RhoGEFs as molecular targets for the treatment of erectile dysfunction. Curr. Pharm. Des. 11(31), 4029–4040.

    PubMed  CAS  Google Scholar 

  84. Hedlund, P., et al. (2000) Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc. Natl. Acad. Sci. USA 97(5), 2349–2354.

    PubMed  CAS  Google Scholar 

  85. Marti, E., and Bovolenta, P. (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 25(2), 89–96.

    PubMed  CAS  Google Scholar 

  86. Machold, R., and Fishell, G. (2002) Hedgehog patterns midbrain architecture. Trends Neurosci. 25(1), 10–11.

    PubMed  CAS  Google Scholar 

  87. Podlasek, C.A., et al. (1999) Prostate development requires Sonic hedgehog expressed by the urogenital sinus epithelium. Dev. Biol. 209(1), 28–39.

    PubMed  CAS  Google Scholar 

  88. Niswander, L., et al. (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371(6498), 609–612.

    PubMed  CAS  Google Scholar 

  89. Ekker, S.C., et al. (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol. 5(8), 944–955.

    PubMed  CAS  Google Scholar 

  90. Bitgood, M.J., and McMahon, A.P. (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172(1), 126–138.

    PubMed  CAS  Google Scholar 

  91. Bellusci, S., et al. (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124(1), 53–63.

    PubMed  CAS  Google Scholar 

  92. Traiffort, E., et al. (2001) High expression and anterograde axonal transport of aminoterminal sonic hedgehog in the adult hamster brain. Eur. J. Neurosci. 14(5), 839–850.

    PubMed  CAS  Google Scholar 

  93. Thomas, M.K., et al. (2000) Hedgehog signaling regulation of insulin production by pancreatic beta-cells. Diabetes 49(12), 2039–2047.

    PubMed  CAS  Google Scholar 

  94. Pola, R., et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 7(6), 706–711.

    Google Scholar 

  95. Podlasek, C.A., et al. (2003) Sonic hedgehog cascade is required for penile postnatal morphogenesis, differentiation, and adult homeostasis. Biol. Reprod. 68(2), 423–438.

    PubMed  CAS  Google Scholar 

  96. Zeng, X., et al. (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411(6838), 716–720.

    PubMed  CAS  Google Scholar 

  97. Martin, G. (1996) Pass the butter. Science 274(5285), 203–204.

    PubMed  CAS  Google Scholar 

  98. Lewis, P.M., et al. (2001) Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105(5), 599–612.

    PubMed  CAS  Google Scholar 

  99. Gritli-Linde, A., et al. (2001) The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev. Biol. 236(2), 364–386.

    PubMed  CAS  Google Scholar 

  100. Murone, M., Rosenthal, A., and de Sauvage, F.J. (1999) Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9(2), 76–84.

    PubMed  CAS  Google Scholar 

  101. Lawson, N.D., Vogel, A.M., and Weinstein, B.M. (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3(1), 127–136.

    PubMed  CAS  Google Scholar 

  102. Motoyama, J., et al. (1998) Ptch2, a second mouse Patched gene is co-expressed with Sonic hedgehog. Nat. Genet. 18(2), 104–106.

    PubMed  CAS  Google Scholar 

  103. Alcedo, J., et al. (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86(2), 221–232.

    PubMed  CAS  Google Scholar 

  104. Haraguchi, R., et al. (2001) Unique functions of Sonic hedgehog signaling during external genitalia development. Development 128(21), 4241–4250.

    PubMed  CAS  Google Scholar 

  105. Perriton, C.L., et al. (2002) Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev. Biol. 247(1), 26–46.

    PubMed  CAS  Google Scholar 

  106. Kondo, T., et al. (1997) Of fingers, toes and penises. Nature 390(6655), 29.

    PubMed  CAS  Google Scholar 

  107. Leeson, T.S., and Leeson, C.R. (1966) Penile cavernous tissue: an electron microscopic study of its development in the rat. Acta Anat. (Basel) 63(3), 404–417.

    CAS  Google Scholar 

  108. Podlasek, C.A., et al. (2007) Regulation of cavernous nerve injury-induced apoptosis by sonic hedgehog. Biol. Reprod. 76(1), 19–28.

    PubMed  CAS  Google Scholar 

  109. User, H.M., et al. (2003) Penile weight and cell subtype specific changes in a post-radical prostatectomy model of erectile dysfunction. J. Urol.169(3), 1175–1179.

    PubMed  Google Scholar 

  110. Klein, L.T., et al. (1997) Apoptosis in the rat penis after penile denervation. J. Urol. 158(2), 626–630.

    PubMed  CAS  Google Scholar 

  111. Podlasek, C.A., et al. (2003) Altered Sonic hedgehog signaling is associated with morphological abnormalities in the penis of the BB/WOR diabetic rat. Biol. Reprod. 69(3), 816–827.

    PubMed  CAS  Google Scholar 

  112. Saenz de Tejada, I., et al. (1989) Regulation of adrenergic activity in penile corpus cavernosum. J. Urol. 142(4), 1117–1121.

    Google Scholar 

  113. Saenz de Tejada, I., et al. (1989) Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N. Engl. J. Med. 320(16), 1025–1030.

    Google Scholar 

  114. Kim, Y.C., et al. (1995) Modulation of vasoactive intestinal polypeptide (VIP)-mediated relaxation by nitric oxide and prostanoids in the rabbit corpus cavernosum. J. Urol. 153(3 Pt 1), 807–810.

    PubMed  CAS  Google Scholar 

  115. Hedlund, P., Alm, P., and Andersson, K.E. (1999) NO synthase in cholinergic nerves and NO-induced relaxation in the rat isolated corpus cavernosum. Br. J. Pharmacol. 127(2), 349–360.

    PubMed  CAS  Google Scholar 

  116. Moreland, R.B. (1998) Is there a role of hypoxemia in penile fibrosis: a viewpoint presented to the Society for the Study of Impotence. Int. J. Impot. Res. 10(2), 113–120.

    PubMed  CAS  Google Scholar 

  117. Tarhan, F., et al. (1997) Cavernous oxygen tension in the patients with erectile dysfunction. Int. J. Impot. Res. 9(3), 149–153.

    PubMed  CAS  Google Scholar 

  118. Kim, N., et al. (1993) Oxygen tension regulates the nitric oxide pathway. Physiological role in penile erection. J. Clin. Invest. 91(2), 437–442.

    PubMed  CAS  Google Scholar 

  119. Yao, K.S., Clayton, M., and O’Dwyer, P.J. (1995) Apoptosis in human adenocarcinoma HT29 cells induced by exposure to hypoxia. J. Natl. Cancer Inst. 87(2), 117–122.

    PubMed  CAS  Google Scholar 

  120. Yamanaka, M., et al. (2002) Loss of anti-apoptotic genes in aging rat crura. J. Urol. 168(5), 2296–2300.

    PubMed  CAS  Google Scholar 

  121. Daley, J.T., et al. (1996) Prostanoid production in rabbit corpus cavernosum: I. regulation by oxygen tension. J. Urol. 155(4), 1482–1487.

    PubMed  CAS  Google Scholar 

  122. Nehra, A., et al. (1999) Transforming growth factor-beta1 (TGF-beta1) is sufficient to induce fibrosis of rabbit corpus cavernosum in vivo. J. Urol. 162(3 Pt 1), 910–915.

    PubMed  CAS  Google Scholar 

  123. Moreland, R.B., et al. (1995) PGE1 suppresses the induction of collagen synthesis by transforming growth factor-beta 1 in human corpus cavernosum smooth muscle. J. Urol. 153(3 Pt 1), 826–834.

    PubMed  CAS  Google Scholar 

  124. Leungwattanakij, S., et al. (2003) Cavernous neurotomy causes hypoxia and fibrosis in rat corpus cavernosum. J. Androl. 24(2), 239–245.

    PubMed  Google Scholar 

  125. Granchi, S., et al. (2002) Expression and regulation of endothelin-1 and its receptors in human penile smooth muscle cells. Mol. Hum. Reprod. 8(12), 1053–1064.

    PubMed  CAS  Google Scholar 

  126. Iacono, F., et al. (2005) Histological alterations in cavernous tissue after radical prostatectomy. J. Urol. 173(5), 1673–1676.

    PubMed  Google Scholar 

  127. Ciancio, S.J., and Kim, E.D. (2000) Penile fibrotic changes after radical retropubic prostatectomy. BJU Int. 85(1), 101–106.

    PubMed  CAS  Google Scholar 

  128. Savoie, M., Kim, S.S., and Soloway, M.S. (2003) A prospective study measuring penile length in men treated with radical prostatectomy for prostate cancer. J. Urol. 169(4), 1462–1464.

    PubMed  Google Scholar 

  129. Fraiman, M.C., Lepor, H., and McCullough, A.R. (1999) Changes in Penile morphometrics in men with erectile dysfunction after nerve-sparing radical retropubic prostatectomy. Mol. Urol.. 3(2): 109–115.

    PubMed  Google Scholar 

  130. Nehra, A., et al. (1996) Mechanisms of venous leakage: a prospective clinicopathological correlation of corporeal function and structure. J. Urol. 156(4), 1320–1329.

    PubMed  CAS  Google Scholar 

  131. Montorsi, F., et al. (1997) Recovery of spontaneous erectile function after nerve-sparing radical retropubic prostatectomy with and without early intracavernous injections of alprostadil: results of a prospective, randomized trial. J. Urol. 158(4), 1408–1410.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yi Tang from Children’s Memorial Hospital, Chicago for the electron microscopic analysis of normal penile tissue.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Modder, J., Podlasek, C.A., McVary, K.T. (2009). Pathophysiology of Erectile Dysfunction Following Radical Prostatectomy. In: Mulhall, J. (eds) Sexual Function in the Prostate Cancer Patient. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-60327-555-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-555-2_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-554-5

  • Online ISBN: 978-1-60327-555-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics