Skip to main content

Folic Acid/Folic Acid-Containing Multivitamins and Primary Prevention of Birth Defects and Preterm Birth

  • Chapter
  • First Online:
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The deficiency or overdosage of certain nutrients may have a role in the origin of birth defects. First, in 1932, Hale (1) demonstrated that a vitamin A-free diet during early pregnancy of sows resulted in offspring without eyeballs, oral clefts, accessory ears, malposition of the kidney and defects of hind legs. Hale’s conclusion was “the condition is illustrative of the marked effect that a deficiency may have in the disturbance of the internal factors that control the mechanism of development”. Further development of experimental teratology became possible when small rodents were introduced for this purpose. Joseph Warkany (1902–1992), one of the founders of teratology, recognized the importance of purified diets and used these to test various vitamin deficiencies for their teratogenic effects. Warkany (2,3) found that maternal dietary deficiency can induce structural birth defects, i.e. congenital abnormalities (CAs). Marjorie M. Nelson (4) introduced the use of antimetabolites which made possible conversion of long-term nutritional experiments into short-term chemical testing. First, antimetabolites of folic acid were used and folate deficiency was proven to be highly teratogenic in pregnant rats (5–7), producing multiple CAs, neural-tube defects, orofacial clefts, and other CAs. Later the teratogenic effect of 4-aminopteroylglutamic acid (aminopterin), a folic acid antagonist, was confirmed in man (8–10) as well. Recently the human teratogenic effect of some other folic acid antagonist drugs, e.g. trimethoprim has been shown (11,12).

Key Points

• Neural-tube defects are preventable by periconceptional folic acid or folic acid-containing multivitamin supplementation.

• The incidence of some other structural birth defects, i.e. congenital abnormalities of the heart, urinary tract, and limbs can also be reduced by folic acid-containing multivitamin use during the periconceptional period.

• All women of childbearing age who are capable of becoming pregnant should consume folic and/or a folic acid-containing multivitamin daily during the periconceptional period.

• The primary prevention of neural-tube defects and some other congenital abnormalities by periconceptional folic acid/multivitamin supplementation is much better than the so-called secondary prevention, i.e. the termination of pregnancy after the prenatal diagnosis of severe fetal defects.

• The rate of preterm birth can be reduced by the high dose of folic acid in the third trimester of pregnancy.

• Periconceptional care—beyond other benefits—is optimal for the introduction of periconceptional folic acid/multivitamin supplementation.

• Food (flour) fortification is the most practical means of supplementation of folic acid and other vitamins for all women.

• Proper preparation for conception is the earliest and most effective method for the prevention of birth defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hale, F. (1932) Pigs born without eyeballs. J Hered 24, 105–9.

    Google Scholar 

  2. Warkany, J. (1971) Congenital malformations induced by maternal dietary deficiency: Experiments and their interpretation. Harvey Lec, 1952–1953 18, 89–102.

    Google Scholar 

  3. Warkany, J. (1971) Congenital Malformations. Notes and Comments. Year Book Medical Publications, Chicago, IL.

    Google Scholar 

  4. Nelson, M.M. (1955) Mammalian fetal development and antimetabolities. In: Rhoads EP, ed. Antimetabolites and Cancer. American Association for the Advancement of Science Monograph, Washington D.C.

    Google Scholar 

  5. Evans, H.M., Nelson, M.M., Asling, C.V. (1951) Multiple congenital abnormalities resulting from acute folic acid deficiency during gestation. Science 114, 479.

    Google Scholar 

  6. Nelson, M.M., Asling, C.W., Evans, H.M. (1952) Production of multiple congenital abnormalities in young by maternal pteroylglutamic acid deficiency during gestation. J Nutr 48, 61–79.

    PubMed  CAS  Google Scholar 

  7. Nelson, M.M., Wright, H.V., Asling, C.W., Evans, H.M. (1955) Multiple congenital abnormalities resulting from transitory deficiency of pteroylgutamic acid during gestation in the rat. J Nutr 56, 349–69.

    PubMed  CAS  Google Scholar 

  8. Thiersch, J.B. (1952) Therapeutic abortions with a folic acid antagonist, 4-aminopteroylglutamic acid (4-amino PGA) administered by the oral route. Am J Obstet Gynecol 63, 1298–304.

    PubMed  CAS  Google Scholar 

  9. Meltzer, H.J. (1956) Congenital anomalies due to attempted abortion with 4-aminopteroglutamic acid. J Am Med Assoc 161, 1253.

    PubMed  CAS  Google Scholar 

  10. Warkany, J., Beaudry, P.H., Hornstein, S. (1959) Attempted abortion with 4-aminopteroylglutamic acid (aminopterin): malformations of the child. Am J Dis Child 97, 274–81.

    CAS  Google Scholar 

  11. Hernandez-Diaz, S., Werler, M.M., Walker, A.M., Mitchell, A.A. (2000) Folic acid antagonists during pregnancy and risk of birth defects. N Engl J Med 343, 1608–14.

    PubMed  CAS  Google Scholar 

  12. Czeizel, A.E., Rockenbauer, M., S∅rensen, H.A.T., Olsen, J. (2001) Teratogenic risk of trimethoprim-sulfonamides. A population-based case-control study. Reprod Toxicol 15, 637–46.

    PubMed  CAS  Google Scholar 

  13. Hibbard, B.M. (1964) The role of folic acid in pregnancy with particular reference to anaemia, abruption and abortion. J Obstet Gynecol 71, 529–42.

    CAS  Google Scholar 

  14. Hibbard, E.D., Smithells, R.W. (1965) Folic acid metabolism and human embryopathy. Lancet 1, 1254.

    Google Scholar 

  15. Smithells, R.W., Sheppard, S., Schorah, C.J. (1976) Vitamin deficiencies and neural tube defects. Arch Dis Child 51, 944–9.

    PubMed  CAS  Google Scholar 

  16. Van Allen, M.I., Kalousek, D.K., Chernoff, G.F., et al. (1993) Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 47, 723–43.

    PubMed  Google Scholar 

  17. Czeizel, A.E., Tusnády, G. (1984) Aetiological Studies of Isolated Common Congenital Abnormalities in Hungary. Akadémiai Kiadó, Budapest.

    Google Scholar 

  18. Elwood, J.M., Little, J., Elwood, J.H. (1992) Epidemiology and Control of Neural Tube Defects. Oxford University Press, Oxford.

    Google Scholar 

  19. Smithells, R.W., Sheppard, S., Schorah, C.J., et al. (1980) Possible prevention of neural tube defects by periconceptional vitamin supplementation. Lancet 1, 339–40.

    PubMed  CAS  Google Scholar 

  20. Smithells, R.W., Sheppard, S., Wild, J., Schorah, C.J. (1989) Prevention of neural tube defect recurrences in Yorkshire: final report. Lancet 2, 498–9.

    PubMed  CAS  Google Scholar 

  21. Nevin, N.C., Seller, M.J. (1990) Prevention of neural tube defect recurrences. Lancet 1, 178–9.

    Google Scholar 

  22. MRC Vitamin Study Research Group. (1991) Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet 338, 131–7.

    Google Scholar 

  23. Laurence, K.M., James, N., Miller, M.H., et al. (1981) Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J 282, 1509–11.

    CAS  Google Scholar 

  24. CDC. (1991) Use of folic acid for prevention of spina bifida and other neural tube defects. J Am Med Assoc 266, 1191–2.

    Google Scholar 

  25. Czeizel, A.E., Dudás, I. (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327, 1832–5.

    PubMed  CAS  Google Scholar 

  26. CDC. (1992) Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR 41, 1233–8.

    Google Scholar 

  27. Czeizel, A.E., Dobó, M., Vargha, P. (2004) Hungarian two-cohort controlled study of periconceptional multivitamin supplementation to prevent certain congenital abnormalities. Birth Defects Res, Part A. 70, 853–61.

    CAS  Google Scholar 

  28. Berry, R.J., Li, Z., Erickson, J.D., et al. (1999) Prevention of neural-tube defects with folic acid in China. China-US Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341, 1485–90.

    PubMed  CAS  Google Scholar 

  29. Wald, N.J. (1994) Folic acid and neural tube defects: the current evidence and implications for prevention. In: Bock G, Marsh J, eds. Neural Tube Defects. CIBA Foundation Symposium 181. John Wiley and sons, Chichester, pp. 192–211.

    Google Scholar 

  30. Yates, R.W., Ferguson-Smith, M.A., Shenkin, A., et al. (1987) Is disordered folate metabolism the basis for genetic predisposition to neural tube defects? Clin Genet 31, 279–87.

    PubMed  CAS  Google Scholar 

  31. Bolander-Gouaille, C. (2002) Focus on Homocysteine and the Vitamins involved in its metabolism, 2nd edn. Springer Verlag, France, Paris.

    Google Scholar 

  32. Massaro, E.J., Rogersm J.M. (eds. ) (2002) Folate and Human Development. Humana Press, Totowa, New Jersey.

    Google Scholar 

  33. Wills, L. (1931) Treatment of “pernicious anaemia” of pregnancy and “tropical anaemia” with special reference to yeast extract as a curative agent. Br Med J I, 1059–64.

    Google Scholar 

  34. Hoffbrand, A.V. (2001) The history of folic acid. Br J Haematol 113, 579–89.

    PubMed  CAS  Google Scholar 

  35. Goyette, D., Summer, J.S., Milos, R. (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7, 195–200.

    PubMed  CAS  Google Scholar 

  36. Frosst, P., Blom, H.J., Milos, R. (1995) A candidate genetic risk-factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10, 111–3.

    PubMed  CAS  Google Scholar 

  37. Wilcken, B., Bamforth, F., Li, Z., et al. (2003) Geographical and ethnic variation of the 677C/T allele of 5, 10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 40, 619–25.

    PubMed  CAS  Google Scholar 

  38. Van der Put, N.M., Steegers-Theunissen, R.P.M., Frosst, P., et al. (1995) Mutated methylentetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346, 1070–1.

    PubMed  Google Scholar 

  39. Ou, C.Y., Stevenson, R.F., Brown, V.K., et al. (1996) 5, 10 methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects. Am J Hum Genet 63, 610–4.

    CAS  Google Scholar 

  40. Czeizel, A.E., Révész, C. (1970) Major malformations of the central nervous system in Hungary. Br J Prev Soc Med 24, 205–22.

    PubMed  CAS  Google Scholar 

  41. Weitkamp, L.R., Tackels, D.C., Hunter, A.G.W., et al. (1998) Heterozygote advantage of the MTHFR gene in patients with neural-tube defects and their relatives. Lancet 351, 1554–5.

    PubMed  CAS  Google Scholar 

  42. van der Put, N.M.J., Gabreels, F., Stevens, E.M.B., et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neural-tube defect? Am J Hum Genet 62, 1044–6.

    PubMed  Google Scholar 

  43. Coelho, C.N.D., Klein, N.W. (1990) Methionine and neural-tube closure in cultured rat embryos: morphological and biochemical analysis. Teratology 42, 437–51.

    PubMed  CAS  Google Scholar 

  44. Vanaerts, L.A.G.J.M., Blom, H.J., Deabreu, R., et al. (1994) Prevention of neural tube defects by and toxicity of L-homocysteine in cultured postimplantation rat embryos. Teratology 50, 348–60.

    PubMed  CAS  Google Scholar 

  45. Steegers-Theunissen, R.P.M., Boers, G.H.J., Trijbels, F.J.M., Eskes, T.K.A.B. (1991) Neural-tube defects and derangement of homocysteine metabolism. N Engl J Med 24, 199–200.

    Google Scholar 

  46. Steegers-Theunissen, R.P.M., Boers, G.H.J., Blom, H.J., et al. (1995) Neural tube defects and elevated homocysteine levels in amniotic fluid. Am J Obstet Gynecol 172, 1436–41.

    PubMed  CAS  Google Scholar 

  47. Greene, N.D., Copp, A.J. (2005) Mouse models of neural tube defects: investigating preventive mechanism. Am J Med Genet C Semin Med Genet 135, 31–41.

    Google Scholar 

  48. Canadian Task Force on the Periodic Health Examination. (1994) Periodic health examination, 1994 update. 3. Primary and secondary prevention of neural tube defects. Can Med Assoc J 151, 21–8.

    Google Scholar 

  49. Czeizel, A.E., Susánszky, E. (1994) Diet intake and vitamin supplement use of Hungarian women during the preconceptional period. Int J Vitam Nutr Res 64, 300–5.

    PubMed  CAS  Google Scholar 

  50. Dudás, I., Rockenbauer, M., Czeizel, A.E. (1995) The effect of preconceptional multivitamin supplementation on the menstrual cycle. Arch Gynecol Obstet 256, 115–23.

    PubMed  Google Scholar 

  51. Czeizel, A.E., Rockenbauer, M., Susánszky, E. (1996) No change in sexual activity during periconceptional multivitamin supplementation. Brit J Obst Gynecol 103, 569–73.

    CAS  Google Scholar 

  52. Czeizel, A.E., Métneki, J., Dudás, I. (1996) The effect of preconceptional multivitamin suppelementation on fertility. Int J Vitam Nutr Res 66, 55–8.

    PubMed  CAS  Google Scholar 

  53. Czeizel, A.E., Dudás, I., Fritz, G., et al. (1992) The effect of periconceptional multivitamin-mineral supplementation on vertigo, nausea and vomiting in the first trimester of pregnancy. Arch Gynecol Obstet 251, 181–5.

    PubMed  CAS  Google Scholar 

  54. Czeizel, A.E. (1993) Randomized, controlled trial of the effect of periconceptional multivitamin supplementation on pregnancy outcome. In: Wharton BA, ed. Maternal-Child Issues in Nutrition Wyeth-Ayerst Nutritional Seminar Series. Excerpta Medica, Princeton, NJ, pp. 13–24.

    Google Scholar 

  55. Erős, E., Géher, P., Gömör, B., Czeizel, A.E. (1998) Epileptogenic activity of folic acid after drug induces SLE. (Folic acid and epilepsy). Eur J Obstet Gynecol Reprod Biol 80, 75–8.

    PubMed  Google Scholar 

  56. Czeizel, A.E., Métneki, J., Dudás, I. (1994) Higher rate of multiple births after periconceptional multivitamin supplementation. N Engl J Med 330, 1687–8.

    PubMed  CAS  Google Scholar 

  57. Czeizel, A.E., Métneki, J., Dudás, I. (1994) The higher rate of multiple births after periconceptional multivitamin supplementation: An analysis of causes. Acta Genet Med Gemellol 43, 175–84.

    PubMed  CAS  Google Scholar 

  58. Werler, M.M., Cragan, J.D., Wasserman, C.R., et al. (1997) Multivitamin supplementation and multiple births. Am J Med Genet 71, 93–6.

    PubMed  CAS  Google Scholar 

  59. Erickson, A., Källen, B., Aberg, A. (2001) Use of multivitamins and folic acid in early pregnany and multiple births in Sweden. Twin Res 4, 63–6.

    Google Scholar 

  60. Zhu, L., Gindler, J., Wang, H., et al. (2003) Folic acid supplementation during early pregnancy and likelihood of multiple births: a population-based cohort study. Lancet 361, 380–4.

    Google Scholar 

  61. Botto, L.D., Yang, G. (2000) 5,10,methylenetetrahydrofolate reductase gene variants and congenital abnormalities. A HuGE review. Am J Epidemiol 15, 862–77.

    Google Scholar 

  62. Hasbargen, U., Lohse, P., Thaler, C.J. (2000) The number of dichorionic twin pregnancies is reduced by the common MTHFR 677CT mutation. Hum Reprod 15, 2059–662.

    Google Scholar 

  63. Czeizel, A.E., Rockenbauer, M., Siffel, Cs., Varga, E. (2001) Description and mission evaluation of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980–1996. Teratology 63, 176–85.

    PubMed  CAS  Google Scholar 

  64. Czeizel, A.E., Vargha, P. (2004) Periconceptional folic acid/multivitamin supplementation and twins. Am J Obst Gynecol 191, 790–4.

    CAS  Google Scholar 

  65. Muggli, E.E., Halliday, J.H. (2007) Folic acid and risk of twinning: a systematic review of the recent literature, July 1994 to July 2006. MJA 186, 243–8.

    PubMed  Google Scholar 

  66. Czeizel, A.E., Dudás, I., Métneki, J. (1994) Pregnancy outcomes in a randomized controlled trial of periconceptional multivitamin supplementation. Final report. Arch Gynecol Obstet 255, 131–9.

    PubMed  CAS  Google Scholar 

  67. Windham, G.C., Shaw, G.M., Todoroff, K., Svan, S.H. (2000) Miscarriage and use of multivitamins or folic acid. Am J Med Genet 90, 261–2.

    PubMed  CAS  Google Scholar 

  68. Gindler, J., Li, Z., Berry, R.J., et al. (2001) Folic acid supplements during pregnancy and risk of miscarriage. Lancet 358, 796–800.

    PubMed  CAS  Google Scholar 

  69. Hook, E.B., Czeizel, A.E. (1997) Can terathanasia explain the protective effect of folic acid supplementation on birth defects? Lancet 350, 513–5.

    PubMed  CAS  Google Scholar 

  70. Czeizel, A.E. (2001) Miscarriage and use of multivitamins or folic acid. Am J Med Genet 104, 179.

    PubMed  CAS  Google Scholar 

  71. George, L., Mills, J.L., Johansson, A.L.V., et al. (2002) Plasma folate levels and risk of spontaneous abortion. J Am Med Assoc 288, 1867–73.

    CAS  Google Scholar 

  72. Nelen, W.L., Blom, H.J., Steegers, E.A. et al. (2000) Homocysteine and folate levels as risk factor for recurrent early pregnancy loss. Obstet Gynecol 99, 519–24.

    Google Scholar 

  73. Czeizel, A.E., Dobó, M. (1994) Postnatal somatic and mental development after periconceptional multivitamin supplementation. Arch Dis Child 70, 229–33.

    PubMed  CAS  Google Scholar 

  74. Dobó, M., Czeizel, A.E. (1998) Longterm somatic and mental development of children after periconceptional multivitamin supplementation. Eur J Pediatr 157, 719–23.

    PubMed  Google Scholar 

  75. Holmes-Siedle, M., Dennis, J., Lindenbaum, R.H., Galliard, A. (1992) Long-term effects of periconceptional multivitamin supplementation for prevention of neural tube defects: a seven to 10 year follow up. Arch Dis Child 67, 1436–41.

    PubMed  CAS  Google Scholar 

  76. Czeizel, A.E. (1993) Prevention of congenital abnormalities by periconceptional multivitamin supplementation. Br Med J 306, 1645–8.

    CAS  Google Scholar 

  77. Czeizel, A.E. (1998) Periconceptional folic acid-containing multivitamin supplementation. Eur J Obstet Gynec Reprod Biol 75, 151–61.

    Google Scholar 

  78. Czeizel, A.E. (1996) Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation. Am J Med Genet 62, 179–83.

    PubMed  CAS  Google Scholar 

  79. Tolarova, M. (1982) Periconceptional supplementation with vitamins and folic acid to prevent recurrence of cleft lip. Lancet 2, 217.

    PubMed  CAS  Google Scholar 

  80. Czeizel, A.E., Tímár, L., Sárközi, A. (1999) Dose-dependent effect of folic acid on the prevention of orofacial clefts. Pediatrics 104, e66.

    PubMed  CAS  Google Scholar 

  81. Shaw, G.M., Lammer, E.J., Wasserman, C.R., et al. (1995) Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 345, 393–6.

    Google Scholar 

  82. Hayes, C., Werler, M.M., Willett, W.C., Mitchell, A.A. (1996) Case-control study of periconceptional folic acid supplementation and oral clefts. Am J Epidemiol 143, 1229–34.

    PubMed  CAS  Google Scholar 

  83. Czeizel, A.E. (2002) Prevention of oral clefts through the use of folic acid and multivitamin supplements: evidence and gap. In: Wyszynski, D.F. ed. Cleft Lip and Palate. From Origin to Treatment. Oxford University Press, New York, pp. 443–57.

    Google Scholar 

  84. Van Rooij, I.A.L.M., Vermeij-Keers, C., Kluijtmans, L.A.J., et al. (2003) Does the interaction between maternal folate intake and the methylenetetrahydrofolate reductase polymorphism affect the risk of cleft lip with or without cleft palate? Am J Epidemiol 157, 583–91.

    PubMed  Google Scholar 

  85. Botto, L.D., Khoury, M.J., Mulinare, J., Erickson, J.D. (1996) Periconceptional multivitamin use and the occurrence of conotruncal heart defects. Results from a population-based case-control study. Pediatrics 98, 911–7.

    PubMed  CAS  Google Scholar 

  86. Botto, L.D., Mulinare, J., Erickson, J.D. (2000) Occurrence of congenital heart defects in relation to maternal multivitamin use. Am J Epidemiol 151, 878–84.

    PubMed  CAS  Google Scholar 

  87. Kapusa, L., Haagmans, M.L.M., Steegers, E.A.P., et al. (1999) Congenital heart defects and derangement of homocysteine metabolism. J Pediatr 135, 773–4.

    Google Scholar 

  88. van Beynum, I.M., Kapusta, L., den Heijer, M., et al (2006) Maternal MTHFR 677C-T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation? Eur Heart J 27, 981–7.

    PubMed  Google Scholar 

  89. Shaw, G.W., O’Malley, C.D., Wasserman, C.R., et al. (1995) Maternal periconceptional use of multivitamin and reduced risk for conotruncal heart defects and limb deficiencies among offspring. Am J Med Genet 59, 536–45.

    PubMed  CAS  Google Scholar 

  90. Werler, M.M., Hayes, C., Louik, C. (1999) Multivitamin use and risk of birth defects. Am J Epidemiol 150, 675–82.

    PubMed  CAS  Google Scholar 

  91. Scanlon, K.S., Ferencz, C., Loffredo, C.A., et al. (1998) Preconceptional folate intake and malformations of the cardiac outflow tract. Baltimore-Washington Infant Study Group. Epidemiology 9, 95–8.

    PubMed  CAS  Google Scholar 

  92. Czeizel, A.E., Tóth, M., Rockenbauer, M. (1996) A case-control analysis of folic acid supplementation during pregnancy. Teratology 53, 345–51.

    PubMed  CAS  Google Scholar 

  93. Baird, C.D., Nelson, M.M., Monie, I.W., Evans, H.M. (1954) Congenital cardiovascular anomalies induced by pteroylglutamic acid deficiency during gestation in the rat. Circ Rev 2, 544–8.

    CAS  Google Scholar 

  94. Monie, I.W., Nelson, M.M. (1963) Abnormalities of pulmonary and other vessels in rat fetuses from maternal pteroylglutamic acid deficiency. Anat Rec 147, 397–401.

    PubMed  CAS  Google Scholar 

  95. Monie, I.W., Nelson, M.M., Evans, H.M. (1954) Abnormalities of the urinary system of rat embryos resulting from maternal pteroylglutamic acid deficiency. Anat Rec 120, 119–36.

    PubMed  CAS  Google Scholar 

  96. Monie, I.W., Nelson, M.M., Evans, H.M. (1957) Abnormalities of the urinary system of rat embryos resulting from transitory deficiency of pteroylglutamic acid during gestation in the rat. Anat Rec 127, 711–24.

    PubMed  CAS  Google Scholar 

  97. Li, D.K., Daling, J.R., Mueller, B.A., et al. (1995) Periconceptional multivitamin use in relation to the risk of congenital urinary tract anomalies. Epidemiology 6, 212–8.

    PubMed  CAS  Google Scholar 

  98. Yang, Q., Khoury, M.J., Olney, R.S., et al. (1997) Does periconceptional multivitamin use reduce the risk for limb deficiency in offspring? Epidemiology 8, 157–61

    PubMed  CAS  Google Scholar 

  99. Myers, M.F., Li, S., Correa-Villasenon, A., et al. (2001) Folic acid supplementation and risk for imperforate anus in China. Am J Epidemiol 154, 1051–6.

    PubMed  CAS  Google Scholar 

  100. Botto, L.D., Mulinarem J., Erickson, J.D. (2002) Occurrence of omphalocele in relation to maternal multivitamin use: a population-based study. Pediatrics 109, 904–8.

    PubMed  Google Scholar 

  101. James, S.J., Pogribna, J., Pogribny, I.P., et al. (1999) Abnormal folate metabolism and mutation in the methylenetetrahydrofolate-reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 70, 495–501.

    PubMed  CAS  Google Scholar 

  102. Hobbs, C.A., Sherman, S.L., Yi, P., et al. (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 67, 623–30.

    PubMed  CAS  Google Scholar 

  103. Barkai, G., Arbuzova, S., Berkenstadt, M., et al. (2003) Frequency of Down’s syndrome and neural-tube defects in the same family. Lancet 361, 1331–5.

    PubMed  Google Scholar 

  104. Gueant, J.L., Gueant-Rodriguez, R.M., Anello, G., et al (2003) Genetic determinants of folate and vitamin B12 metabolism: a common pathway in neural tube defects and Down syndrome? Clin Chem Lab Med 41, 1473–7.

    PubMed  CAS  Google Scholar 

  105. Czeizel, A.E., Puhó, E. (2005) Maternal use of nutritional supplements during the first month of pregnancy and a reduced risk of Down’s syndrome. A case-control study. Nutrition 21, 698–704.

    PubMed  Google Scholar 

  106. Czeizel, A.E., Medveczki, E. (2003) No difference in the occurrence of multimalformed offspring after periconceptional multivitamin supplementation. Obstet Gynecol 102, 1255–61.

    PubMed  CAS  Google Scholar 

  107. Shaw, G.M., Croen, L.A., Todoroff, K., Tolarova, M.M. (2000) Periconceptional intake of vitamin supplement and risk of multiple congenital anomalies. Am J Med Genet 93, 188–93.

    PubMed  CAS  Google Scholar 

  108. Yuskin, N., Honein, M.A., Moore, C.A. (2005) Reported multivitamin supplementation and the occurrence of multiple congenital anomalies. Am J Med Genet Part A 136A, 1–7.

    Google Scholar 

  109. Czeizel, A.E., Puho, H.E., Bánhidy, F. (2006) No association between periconceptional multivitamin supplementation and risk of multiple congenital abnormalities. A population-based case-control study. Am J Med Genet Part A 140A, 2469–77.

    Google Scholar 

  110. Botto, L.D., Olney, R.S., Erickson, J.D. (2004) Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am J Med Genet Part C 125C, 12–21.

    PubMed  Google Scholar 

  111. Lumley, J., Watson, L., Watson, M., et al. (2001) Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects. Cochrane Database Syst Rev 3, CD00156.

    Google Scholar 

  112. Hernandez-Diaz, S., Werler, M.M., Walker, A.M., Mitchell, A.A. (2001) Neural-tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol 153, 961–8.

    PubMed  CAS  Google Scholar 

  113. Czeizel, A.E., Puho, E. (2004) A possible association between congenital abnormalities and the use of different sulfonamides during pregnancy. Congenit Anom (Kyoto) 44, 79–86.

    CAS  Google Scholar 

  114. Bunin, G.R., Kuijten, R.R., Buckley, J.D., et al. (1993) Relation between maternal diet and subsequent primitive neuroectodermal brain tumours in young children. N Engl J Med 329, 536–41.

    PubMed  CAS  Google Scholar 

  115. Thompson, J.R., Gerald, P.F., Willoughby, L.N., Armstrong, B.K. (2001) Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet 358, 1935–40.

    PubMed  CAS  Google Scholar 

  116. Ács, N., Bánhidy, F., Puho, E., Czeizel, A.E. (2005) Maternal influenza during pregnancy and risk of congenital abnormalities on offspring. Birth Defects Res Part A 73, 989–96.

    Google Scholar 

  117. Botto, L.D., Erickson, J.D., Mulinare, J., et al. (2002) Maternal fever, multivitamin use, and selected birth defects: evidence of interaction? Epidemiology 13, 485–8.

    PubMed  Google Scholar 

  118. Czeizel, A.E., Ács, N., Bánhidy, F., et al. (2007) Primary prevention of congenital abnormalities due to high fever related maternal diseases by antifever therapy and folic acid supplementation. Curr Woman’s Health Rev 3, 1–12.

    Google Scholar 

  119. Czeizel, A.E., Sankaranarayanan, K. (1984) The load of genetic and partially genetic disorders in man. I. Congenital anomalies: estimates of detriment in terms of years of life lost and years of impaired life. Mutat Res 128, 499–503.

    Google Scholar 

  120. Tarusco, D. (ed. ) (2004) Folic Acid: From Research to Public Health Practice. Rapporti ISTISAN 04/26, Roma.

    Google Scholar 

  121. Bjerkedahl, T., Czeizel, A.E.R., Hosmer, D.W. (1989) Birth weight of single livebirths and weight specific early neonatal mortality in Hungary and Norway. Paediatr Perinat Epidemiol 3, 129–40.

    Google Scholar 

  122. Goldenberg, R.L., Culhane, J.F., Iams, J.D., Romero, R. (2008) Epidemiology of preterm birth. Lancet 371, 75–84.

    PubMed  Google Scholar 

  123. Institute of Medicine, (1990) Subcommittee on Nutritional Status and Weight Gain during Pregnancy: Nutrition during Pregnancy. National Academy Press, Washington, DC.

    Google Scholar 

  124. Spencer, N. (2003) Social and environmental determinants of birth weight. In: Weighing the Evidence —How is Birthweight Determined? Radcliffe Medical Press, Oxford, pp. 87–121.

    Google Scholar 

  125. Ek, J. (1982) Plasma and red cell folate in mothers and infants in normal pregnancies. Relation to birth weight. Acta Obstet Gynecol Scand 61, 17–20.

    PubMed  CAS  Google Scholar 

  126. Goldenberg, R.L., Tamura, T., Cliver, S.P., et al. (1992) Serum folate and fetal growth retardation: a matter of compliance? Obstet Gynecol 79, 719–22.

    PubMed  CAS  Google Scholar 

  127. Neggers, Y.H., Goldenberg, R.L., Tamura, T., et al. (1997) The relationship between maternal dietary intake and infant birth weight. Acta Obstet Gynecol Scand 165(Suppl), 71–5.

    CAS  Google Scholar 

  128. Scholl, T.O., Johnson, W.G. (2000) Folic acid influence on the outcome of pregnancy. Am J Clin Nutr 71, 1285–303S.

    Google Scholar 

  129. Relton, C.L., Pearce, M.S., Parker, L. (2005) The influence of erythrocyte folate and serum vitamin B12 status on birth weight. Br J Nutr 93, 593–9.

    PubMed  CAS  Google Scholar 

  130. Murphy, M.M., Scott, J.M., Arija, V., et al. (2004) Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight. Clin Chem 50, 1406–12.

    PubMed  CAS  Google Scholar 

  131. Scholl, T.O., Hediger, M.L., Schall, J.I., et al. (1996) Dietary and serum folate: their influence on the outcome of pregnancy. Am J Clin Nutr 63, 520–5.

    PubMed  CAS  Google Scholar 

  132. Siega-Riz, A.M., Savitz, S.A., Zeisel, S.H., et al. (2001) Second trimester folate status and preterm birth. Am J Obstet Gynecol 191, 851–7.

    Google Scholar 

  133. Vollset, S.E., Refsumm H., Irgens, L.M., et al. (2000) Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: The Hordaland Homocysteine Study. Am J Clin Nutr 71, 962–3

    PubMed  CAS  Google Scholar 

  134. Ronnenberg, A.G., Goldman, M.B., Chen, D., et al. (2002) Preconception homocysteiner and B vitamin status and birth outcomes in Chinese women. Am J Clin Nutr 76, 1385–91.

    PubMed  CAS  Google Scholar 

  135. Shaw, G.M., Liberman, R.F., Todoroff, K., Wasserman, C.R. (1997) Low birth weight, preterm delivery, and periconceptional vitamin use. J Pediatr 130, 1013–4.

    PubMed  CAS  Google Scholar 

  136. Scholl, T.O., Hediger, M.L., Bendich, A., et al. (1997) Use of multivitamin/mineral prenatal supplements: influence on the outcome of pregnancy. Am J Epidemiol 146, 134–41.

    PubMed  CAS  Google Scholar 

  137. Shaw, G.M., Carmincheael, S.L., Nelson, V., et al. (2004) Occurrence of low birthweight and preterm delivery among California infants before and after compulsory food fortification with folic acid. Publ Health Rep 119, 170–3.

    Google Scholar 

  138. Smits, L.J.M., Essed, G.G.M. (2001) Short pregnancy intervals and unfavorable pregnancy outcomes: Role of folate depletion. Lancet 358, 2074–7.

    PubMed  CAS  Google Scholar 

  139. Bukowski, R., Malone F.D. (2009) Preconceptional folate supplementation and risk of spontaneous preferm birth; a cohort study. PLoSMid 6(5). e1000061

    Google Scholar 

  140. McPartlin, J., Halligan, A., Scott, J.M., Darling, M., Weir, D.G. (1993) Accelerated folate breakdown in pregnancy. Lancet 341, 148–9.

    PubMed  CAS  Google Scholar 

  141. Cikot, R.J.L.M., Steegers-Theunissen, R.P.M., Thomas, C.M.G., et al. (2001) Longitudinal vitamin and homocysteine levels in normal pregnancy. Br J Nutr 85, 49–58.

    PubMed  CAS  Google Scholar 

  142. van der Molen, E.F., Verbruggen, B., Nokalova, I., et al. (2000) Hyperhomocysteinemia and other thrombotic risk factors in women with placental vasculopathy. Br J Obstet Gynecol 107, 785–91.

    Google Scholar 

  143. Medina, M.A., Urdiales, J.L., Amores-Sanchez, M.I. (2001) Roles of homocysteine in cell metabolism, old and new function. Eur J Biochem 268, 3871–82.

    PubMed  CAS  Google Scholar 

  144. Ferguson, S.E., Smith, G.N., Walker, M.C. (2001) Maternal plasma homocysteine levels in women with preterm premature rupture of membranes. Med Hypotheses 56, 85–90.

    PubMed  CAS  Google Scholar 

  145. Nilsen, R.M., Vollset, S.E., Svein, A., et al. (2008) Folic acid and multivitamin supplementation use and risk of placental abruption: A population-based registry study. Am J Epidemiol 10, 1093/aje/kwm373.

    Google Scholar 

  146. Johnson, W.G., Scholl, T.O., Spychala, J.R., et al. (2005) Common dihydrofolate reductase 19-base deletion allele: a novel risk factors for preterm delivery. Am J Clin Nutr 81, 664–8.

    PubMed  CAS  Google Scholar 

  147. Goldenberg, R.L. (2003) The plausibility of micronutrient deficiency in relationship to perinatal infection. J Nutr 133, 1645–8S

    Google Scholar 

  148. Black, R.E., Allen, L.H., Bhutta, Z.A., et al. (2008) Maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371, 243–60.

    PubMed  Google Scholar 

  149. Wald, N.J., Law, M.R., Morris, J.K., Wald, D.S. (2001) Quantifying the effect of folic acid. Lancet 358, 2069–73.

    PubMed  CAS  Google Scholar 

  150. WHO Reg. 1. (2205) Make every mother and child count. http://www.who.int/whr/2005/download/en

  151. Eichholzer, M., Tönz, O., Zimmermann, R. (2006) Folic acid: a public-health challenge. Lancet 367, 1352–61.

    PubMed  Google Scholar 

  152. Barker, D.J.P. (ed. ) (1992) Fetal and Infant Origins of Adult Disease. British Medical Journal Publication, London, England.

    Google Scholar 

  153. Food Safety Authority of Ireland (2006) Report of the Committee on Folic Acid Food Fortification, Dublin.

    Google Scholar 

  154. Iyengar, L., Apte, S.V. (1972) Nutrient stores in human foetal livers. Br J Nutr 27, 313–7.

    PubMed  CAS  Google Scholar 

  155. Strelling, M.K. (1976) Transfer of folate to the fetus. Dev Med Child Neurol 28, 533–5.

    Google Scholar 

  156. Department of Health (2000) Committee on Medical Aspects of Food and Nutrition Policy (COMA): Folic Acid and the Prevention of Disease, London.

    Google Scholar 

  157. Bower, C., Wald, N.J. (1995) Vitamin B12 deficiency and the fortification of food with folic acid. Eur J Clin Nutr 49, 87–93.

    Google Scholar 

  158. Cuskelly, G.J., McNulty, H., Scott, J.M. (1996) Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet 347, 657–9.

    PubMed  CAS  Google Scholar 

  159. Botto, L.D., Lisi, A., Robert-Gnansia, E., et al. (2005) International retrospective cohort study of neural tube defects in relation to folic acid recommendations: are the recommendations working? Br Med J 330, 571.

    Google Scholar 

  160. Healthy People 2000. (2000) National health population and disease prevention objectives. US Department of Health and Human Service. Public Health Service. DHHS Publ No. 91-502.13.

    Google Scholar 

  161. Czeizel, A.E., Dobó, M., Dudás, I., et al. (1998) The Hungarian periconceptional service as a model for community genetics. Community Genet 1, 252–9.

    PubMed  CAS  Google Scholar 

  162. Czeizel, A.E. (1999) Ten years of experience in the periconceptional care. Eur J Obstet Gynecol Reprod Biol 89, 43–9.

    Google Scholar 

  163. Czeizel, A.E., Gasztonyi, Z., Kuliev, A. (2005) Periconceptional clinics: A medical healthcare infrastructure of new genetics. Fetal Diagn Ther 20, 518–45.

    Google Scholar 

  164. Czeizel, A.E. (2004) The primary prevention of birth defects: Multivitamin or folic acid? Int J Med Sci 1, 50–61.

    PubMed  CAS  Google Scholar 

  165. Kirke, P.N., Molloy, A.M., Daly, L. E, et al. (1993) Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med 86, 703–8.

    PubMed  CAS  Google Scholar 

  166. Mills, J.L., McPartlin, J.M., Kirke, P.N., et al. (1995) Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345, 149–51.

    PubMed  CAS  Google Scholar 

  167. Herbert, V., Bigaouette, J. (1997) Call for endorsement of petition to the Food and Drug Administration to always add vitamin B12 to any folate fortification or supplement. Am J Clin Nutr 65, 572–3.

    PubMed  CAS  Google Scholar 

  168. van der Griend, R. (1999) Combination of low-dose folic acid and pyridoxine for treatment of hyperhomocysteinemia in patients with premature arterial disease and their relatives. Atherosclerosis 143, 177–83.

    PubMed  Google Scholar 

  169. McNulty, H., McKinely, Wilson, B., et al. (2002) Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: Implications for riboflavin requirements. Am J Clin Nutr 76, 436–41.

    PubMed  CAS  Google Scholar 

  170. Stokes, P.L. (1975) Folate metabolism in scurry. Am J Clin Nutr 28, 126–9.

    PubMed  CAS  Google Scholar 

  171. Tamura, T., Shane, B., Baer, M.T., et al. (1978) Absorption of mono- and polyglutamyl folates in zinc-depleted man. Am J Clin Nutr 31, 1984–7.

    PubMed  CAS  Google Scholar 

  172. US National Academy of Sciences. (1988) Dietary Reference Intakes: Folate, Other B Vitamins and Choline. National Academy Press, Washington DC.

    Google Scholar 

  173. Daly, S., Mills, J.L., Molloy, A.M., et al. (1997) Minimum effective dose of folic acid for food fortification to prevent neural-tube defects. Lancet 350, 1666–9.

    PubMed  CAS  Google Scholar 

  174. Institute of Medicine. (1998) Dietary Reference Intakes: A Risk Assessment Model for Establishing Upper Intake Levels for Nutrients. National Academy Press, Washington DC.

    Google Scholar 

  175. European Commission Scientific Committee on Food. (2000) Tolerable Upper Limit Levels for Vitamins and Minerals, Brussels.

    Google Scholar 

  176. Butterworth, C.E., Tamura, T. (1989) Folic acid and toxicity: a brief review. Am J Clin Nutr 50, 353–8.

    PubMed  CAS  Google Scholar 

  177. Czeizel, A.E., Tomcsik, M. (1999) Acute toxicity of folic acid in pregnant women. Teratology 60, 3–4.

    PubMed  CAS  Google Scholar 

  178. Lindenbaum, J., Healton, E.B., Savage, D.G., et al. (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anaemia or macrocytosis. N Engl J Med 318, 1720–8.

    PubMed  CAS  Google Scholar 

  179. Oakley, G.P., Jr, (1997) Let’s increase4 folic acid fortification and include vitamin B-12. Am J Clin Nutr 6, 1889–90.

    Google Scholar 

  180. US Department of Health and Human Services. (1996) Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Fed Regist 61, 8781–7.

    Google Scholar 

  181. Jacques, P.F., Selhub, J., Bostom, A.G., et al. (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340, 1449–54.

    PubMed  CAS  Google Scholar 

  182. Honein, M.A., Paulozzi, L.J., Methens, T.J., et al. (2001) Impact of folic acid fortification of the US Food Supply on the occurrence of neural tube defects. J Am Med Assoc 285, 2981–6.

    CAS  Google Scholar 

  183. Williams, L.J., Mai, C., Edmonds, L.D., et al. (2002) Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 66, 33–9.

    PubMed  CAS  Google Scholar 

  184. Grosse, S.D., Waltzman, N.J., Romano, P.S., Mulinare, J. (2005) Reevaluating the benefits of folic acid fortification in the United States: economic analysis, regulation, and public health. Am J Pub Health 95, 1917–22.

    Google Scholar 

  185. Vermeulen, M.J., Boss, S.C., Cole, D.E.C. (2002) Increased red cell folate concentrations in women of reproductive age after Canadian folic acid food fortification. Epidemiology 13, 238–40.

    PubMed  Google Scholar 

  186. De Wals, P., Tairou, F., Van Allen, M., et al. (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357, 135–42.

    PubMed  Google Scholar 

  187. Freire, W.B., Hertrampf, E., Cortes, F. (2000) Effect of folic acid fortification in Chile: preliminary results. Eur J Pediatr Surg 10, 42–3.

    PubMed  Google Scholar 

  188. Hertrampf, E., Cortes, F. (2004) Folic acid fortification of wheat flour in Chile. Nutr Rev 62, S44–8.

    PubMed  Google Scholar 

  189. Chen, L.T., Rivery, M.A. (2004) The Costa-Rica Experience: Reduction of NTDS following food fortification programs. Nutr Rev 62, S40–3.

    PubMed  Google Scholar 

  190. Czeizel, A.E., Merhala, Z. (1998) Bread fortification with folic acid, vitamin B12 and vitamin B6 in Hungary. Lancet 352, 1225.

    PubMed  CAS  Google Scholar 

  191. Czeizel, A.E., Kökény, M. (2002) Bread fortification with folic acid in Hungary. Br Med J 325, 391.

    Google Scholar 

  192. Department of Health. (2002) Scientific Review of the Welfare Food Scheme. Report on Health and Social Subjects 51. TSO, London.

    Google Scholar 

  193. Wald, D.S., Law, M., Morris, J.K. (2002) Homocysteine and cardiovascular disease: evidence on causality from e meta-analysis. Br Med J 325, 1202–6.

    Google Scholar 

  194. Yang, Q., Botto, L.D., Erickson, J.D., et al. (2006) Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation 113, 1335–43.

    PubMed  Google Scholar 

  195. Bresalier, R.S. (2008) Chemoprevention of colorectal cancer? Why all the confusion. Curr Opin Gastroenterol 24, 48–50.

    PubMed  CAS  Google Scholar 

  196. Fenech, M. (2001) The role of folic acid and vitamin B 12 in genomic stability of human cells. Mutat Res 475, 57–67.

    PubMed  CAS  Google Scholar 

  197. Oakley, G.P. (2002) Inertia on folic acid fortification: Public health malpractice. Teratology 66, 44–54.

    PubMed  CAS  Google Scholar 

  198. Czeizel, A.E. (2004) Randomized Controlled Trial of Multivitamin Supplementation on Birth Defects and Pregnancy Outcomes, 1984–1994. Complementary and Alternative Medicine Data Archive, Data Set 16 October 2004. Sociometric Corporation, National Institute of Health.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Czeizel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Czeizel, A.E. (2010). Folic Acid/Folic Acid-Containing Multivitamins and Primary Prevention of Birth Defects and Preterm Birth. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-542-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-542-2_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-541-5

  • Online ISBN: 978-1-60327-542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics