Skip to main content

Role of Nutrition in the Pathophysiology, Prevention, and Treatment of Type 2 Diabetes and the Spectrum of Cardiometabolic Disease

  • Chapter
  • First Online:
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 2125 Accesses

Diabetes encompasses a group of complex, chronic, and progressive diseases that are primarily defined on the basis of hyperglycemia. Two major types of diabetes are recognized and include Type 1 diabetes and Type 2 diabetes. Type 1 diabetes, which accounts for ∼5% of diabetes cases, is caused mainly by immune-mediated pancreatic B-cell destruction leading to absolute insulin deficiency. Type 2 diabetes, which accounts for the majority of patients (90–95%), features a multifactorial pathogenesis involving defects in both insulin action and insulin secretion as a result of a complex interaction of genetic and environmental influences.

Key Points

• The overlapping syndromes of prediabetes and metabolic syndrome place individuals at increased risk of Type 2 diabetes and cardiovascular disease, and in aggregate, these disorders comprise the spectrum of cardiometabolic disease. Treatment of these prediabetic states is critical for reducing patient suffering and social costs attributable to the increasing prevalence of diabetes worldwide.

• Insulin resistance is central to the pathophysiology of Type 2 diabetes and metabolic syndrome. While obesity can exacerbate insulin resistance, it is abnormal lipid accumulation in visceral adipose tissue, and in skeletal muscle cells and hepatocytes, that appear to be more potent and independent mediators of cardiometabolic disease.

• Cardiometabolic disease can be effectively treated or prevented using nutrition as a component of lifestyle therapy, which, given the underlying pathophysiology, will need to augment insulin sensitivity, enhance insulin secretion, and/or ameliorate cardiovascular risk factors. This can be accomplished via hypocaloric feeding or altered macronutrient composition of the diet.

• Hypocaloric diets resulting in 5–10% weight loss are effective over a wide spectrum of caloric composition ranging from low carbohydrate to low fat.

• Isocaloric diets can also improve insulin sensitivity and cardiovascular risk factors particularly if enriched in monounsaturated fat or fiber with reduced intake of saturated fat.

• Genome-wide association studies have confirmed multiple susceptibility loci (i.e., gene-based single nucleotide polymorphisms—SNPs) for Type 2 diabetes and obesity and present a powerful paradigm for the identification and study of nutrient–gene interactions, provided that investigators measure diet as an environmental variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Definition and Diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. World Health Organization Report, 2006.

    Google Scholar 

  2. Garber AJ, Handelsman Y, Einhorn D, et al. Diagnosis and management of prediabetes in the continuum of hyperglycemia: when do the risks of diabetes begin? A consensus statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists. Endocr Pract 2008;14:933–46.

    PubMed  Google Scholar 

  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus.. Diabetes Care 2008;31:S55–60.

    Google Scholar 

  4. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735–52.

    Article  PubMed  Google Scholar 

  5. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15: 539–53.

    Article  CAS  PubMed  Google Scholar 

  6. InternationalDiabetes Federation: The IDF consensus worldwide definition of the metabolic syndrome. April 14, 2005 Available at http://www.idf.org/webdata/docs/IDFMetasyndrome definition.pdf.

  7. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Pugh K, Jenkins AJ, Klein RL, Liao Y. The Effects of Insulin Resistance and Type 2 Diabetes Mellitus on Lipoprotein Subclass Particle Size and Concentration Determined by Nuclear Magnetic Resonance. Diabetes 2003;52:453–62.

    Article  CAS  PubMed  Google Scholar 

  8. Liao Y, Kwon S, Shaughnessy S, Wallace P, Hutto A, Jenkins AJ, Klein RL, Garvey WT. Critical evaluation of ATP III criteria in identifying insulin resistance with dyslipidemia. Diabetes Care 2004;27:978–83.

    Article  PubMed  Google Scholar 

  9. Lara-Castro C, Garvey WT. Diet, insulin resistance, and obesity: zoning in on data for Atkins dieters living in South Beach.J Clin Endocrinol Metab 2004;89:4197–205.

    Article  CAS  PubMed  Google Scholar 

  10. Lara-Castro C, Newcomer BR, Rowell J, et al. Effects of short-term very low-calorie diet on intramyocellular lipid and insulin sensitivity in nondiabetic and type 2 diabetic subjects. Metabolism 2008;57:1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lara-Castro C, Fu Y, Chung BH, Garvey WT. Adiponectin and the metabolic syndrome: mechanisms mediating the risk of metabolic and cardiovascular disease. Curr Opin Lipidol 2007;18:263–70.

    Article  CAS  PubMed  Google Scholar 

  12. Tian L, Luo N, Klein RL, Chung BH, Garvey WT, Fu Y. Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis, 2009;202:152–61.

    Google Scholar 

  13. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  14. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes 1999;48:839–47.

    Article  CAS  PubMed  Google Scholar 

  15. Foster GD, Wyatt HR, Hill JO, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003;348:2082–90.

    Article  CAS  PubMed  Google Scholar 

  16. Samaha FF, Iqbal N, Seshadri P, et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003;348:2074–81.

    Article  CAS  PubMed  Google Scholar 

  17. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS Jr, Brehm BJ, Bucher HC. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006;166:285–293.

    Article  CAS  PubMed  Google Scholar 

  18. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343–50.

    Article  CAS  PubMed  Google Scholar 

  19. Diabetes Prevention Program Research Group. Reduction in the incidence of Type 2 Diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403.

    Google Scholar 

  20. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997;20:537–44.

    CAS  Google Scholar 

  21. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA 1999;282:1523–9.

    Article  CAS  PubMed  Google Scholar 

  22. Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999;48:1600–6.

    Article  CAS  PubMed  Google Scholar 

  23. Banting W. Letter on Corpulence, Addressed to the Public, 3rd ed. London: Harrison, 1864.

    Google Scholar 

  24. Borkman M, Campbell LV, Chisholm DJ, Storlien LH. Comparison of the effects on insulin sensitivity of high carbohydrate and high fat diets in normal subjects. J Clin Endocrinol Metab 1991;72:432–7.

    Article  CAS  PubMed  Google Scholar 

  25. Swinburn BA, Boyce VL, Bergman RN, Howard BV, Bogardus C. Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. J Clin Endocrinol Metab 1991;73:156–65.

    Article  CAS  PubMed  Google Scholar 

  26. Lovejoy JC, Windhauser MM, Rood JC, de la Bretonne JA. Effect of a controlled high-fat versus low-fat diet on insulin sensitivity and leptin levels in African-American and Caucasian women. Metabolism 1998;47:1520–4.

    Article  CAS  PubMed  Google Scholar 

  27. Weinsier RL. EatRight Lose Weight: Seven Simple Steps. Birmingham, AL: Oxmoor House, 1997.

    Google Scholar 

  28. Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004;27:155–61.

    Article  CAS  PubMed  Google Scholar 

  29. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002;359:2072–7.

    Article  CAS  PubMed  Google Scholar 

  30. Mayer-Davis EJ, Monaco JH, Hoen HM, et al. Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). Am J Clin Nutr 1997;65:79–87.

    CAS  PubMed  Google Scholar 

  31. Parker DR, Weiss ST, Troisi R, Cassano PA, Vokonas PS, Landsberg L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: the Normative Aging Study. Am J Clin Nutr 1993;58: 129–36.

    CAS  PubMed  Google Scholar 

  32. Summers LK, Fielding BA, Bradshaw HA, et al. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 2002;45:369–77.

    Article  CAS  PubMed  Google Scholar 

  33. Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr 1998;67:577S–82S.

    CAS  PubMed  Google Scholar 

  34. Vessby B, Unsitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 2001;44:312–9.

    Article  CAS  PubMed  Google Scholar 

  35. Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. J Am Medical Assoc 2004;292:1440–6.

    Article  CAS  Google Scholar 

  36. Due A, Larsen TM, Mu H, Hermansen K, Stender S, Astrup A. Comparison of 3 ad libitum diets for weight-loss maintenance, risk of cardiovascular disease, and diabetes: a 6-mo randomized, controlled trial. Am J Clin Nutr 2008;88: 1232–41.

    CAS  PubMed  Google Scholar 

  37. Bantle JP, Wylie-Rosett J, Albright AL, et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;31(Suppl. 1):S61–78.

    CAS  PubMed  Google Scholar 

  38. Rivellese AA, De Natale C, Lilli S. Type of dietary fat and insulin resistance. Ann N Y Acad Sci 2002;967:329–35.

    Article  CAS  PubMed  Google Scholar 

  39. Brown JM, McIntosh MK. Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J Nutr 2003;133:3041–6.

    CAS  PubMed  Google Scholar 

  40. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 2002;25:1516–21.

    Article  CAS  PubMed  Google Scholar 

  41. WHO. Diet, Nutrition, and the Prevention of Chronic Diseases. Tech Rep Ser 916. Geneva: World Health Organization, 2003.

    Google Scholar 

  42. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 1992;13:387–414.

    CAS  PubMed  Google Scholar 

  43. Daly M. Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr 2003;78:865S–72S.

    CAS  PubMed  Google Scholar 

  44. Kiens B, Richter EA. Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am J Clin Nutr 1996;63:47–53.

    CAS  PubMed  Google Scholar 

  45. Hu FB, van Dam RM, Liu S. Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia 2001;44:805–17.

    Article  CAS  PubMed  Google Scholar 

  46. Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RB Jr, Mayer-Davis EJ. Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr 2003;78:965–71.

    CAS  PubMed  Google Scholar 

  47. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004;27:538–46.

    Article  PubMed  Google Scholar 

  48. Pereira MA, Jacobs DR Jr, Pins JJ, et al. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr 2002;75:848–55.

    CAS  PubMed  Google Scholar 

  49. Hoffmann K, Mattheisen M, Dahm S, et al. A German genome-wide linkage scan for type 2 diabetes supports the existence of a metabolic syndrome locus on chromosome 1p36.13 and a type 2 diabetes locus on chromosome 16p12.2. Diabetologia 2007;50:1418–22.

    Article  CAS  PubMed  Google Scholar 

  50. Hsueh WC, Silver KD, Pollin TI, et al. A genome-wide linkage scan of insulin level derived traits: the Amish Family Diabetes Study. Diabetes 2007;56:2643–8.

    Article  CAS  PubMed  Google Scholar 

  51. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320–3.

    Article  CAS  PubMed  Google Scholar 

  52. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007;316:1341–5.

    Article  CAS  PubMed  Google Scholar 

  53. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007;316:1336–41.

    Article  CAS  PubMed  Google Scholar 

  54. Florez JC, Manning AK, Dupuis J, et al. A 100 K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: replication and integration with other genome-wide datasets. Diabetes 2007;56:3063–74.

    Article  CAS  PubMed  Google Scholar 

  55. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006;355:241–50.

    Article  CAS  PubMed  Google Scholar 

  56. Munoz J, Lok KH, Gower BA, et al. Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with reduced insulin secretion in nondiabetic women. Diabetes 2006;55:3630–4.

    Article  CAS  PubMed  Google Scholar 

  57. Argyropoulos G, Brown AM, Willi SM, et al. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J Clin Invest 1998;102:1345–51.

    Article  CAS  PubMed  Google Scholar 

  58. Ravussin E. Metabolic differences and the development of obesity. Metabolism 1995;44:12–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lara-Castro, C., Garvey, W.T. (2010). Role of Nutrition in the Pathophysiology, Prevention, and Treatment of Type 2 Diabetes and the Spectrum of Cardiometabolic Disease. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-542-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-542-2_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-541-5

  • Online ISBN: 978-1-60327-542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics