Skip to main content

Presentation and Pathophysiology of Seizures in the Critical Care Environment: An Overview

  • Chapter
  • First Online:
Seizures in Critical Care

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Seizures represent stereotypic electroencephalographic (EEG) and behavioral paroxysms as a consequence of electrical neurological derangement. Although seizures are often associated with stereotypic convulsive phenomena, in the ICU they are as likely to be subclinical as they are to express muscle contractions or behavioral symptoms. Hence, vigilance is required in the critical care setting. Due to the admission diagnoses and physiological derangements common to critically ill patients, the intensive care unit (ICU) hosts conditions appropriate for the manifestation of the entire spectrum of seizure disorders. Common etiologies of seizures in the ICU are due to primary neurological pathology or secondary to critical illness and clinical management. Alterations in neurotransmitter sensitivity via up- or down regulation of receptors, a decrease in inhibition, alterations in membrane pump functions, all may contribute to the high incidence of seizures in an ICU. Particularly prevalent as precipitants of seizures are hypoxia/ischemia, mass lesions, drug toxicity, and metabolic abnormalities. For optimal treatment, early diagnosis of the seizure type and its cause is important to ensure appropriate therapy. Most seizures and their recurrence are easily treated, and attention is focused on ascertaining the cause and correcting any medical abnormality. Convulsive status epilepticus represents the most feared seizure state, and requires emergent treatment before irreversible brain injury and severe metabolic disturbances occur. Treatment of seizures with anticonvulsants in an ICU is not without risks, and appropriate judgment and selection of therapeutic drugs are important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andy OJ, Mukawa J (1959) Brain stem lesion effects on electrically induced seizures (electroencephalographic and behavioral study). EEG Clin Neurophysiol 11:397

    Google Scholar 

  2. Bancaud J et al (1974) “Generalized” epileptic seizures elicited by electrical stimulation of the frontal lobe in man. EEG Clin Neurophysiol 37:275–282

    Article  CAS  Google Scholar 

  3. Gloor P (1968) Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9:249–263

    Article  PubMed  CAS  Google Scholar 

  4. Murphy JP, Gelhorn E (1945) Further investigations on diencephaliz-cortical relations and their significance for the problem of emotion. J Neurophys 8:431–455

    CAS  Google Scholar 

  5. Velasco F et al (1976) Specific and non-specific multiple unit activities during the onset of pentylenetetrazol seizures. II Acute lesions interruption non-specific system connections. Epilepsia 17:461–475

    Article  PubMed  CAS  Google Scholar 

  6. Green JD, Morin F (1953) Hypothalamic electrical activity and hypothalamo-cortical relationships. Am J Physiol 172:175–186

    PubMed  CAS  Google Scholar 

  7. Jinnai D et al (1969) Effects of brain-stem lesions on metrazol-induced seizures in cats. Clin Neurophysiol 27:404–411

    Article  CAS  Google Scholar 

  8. Kreindler A et al (1958) Electroclinical features of convulsions induced by stimulation of brain stem. J Neuro Phys 21:430–436

    CAS  Google Scholar 

  9. Mirski MA, Ferrendelli JA (1987) Interruption of the connections of the mamillary bodies protect against generalized pentylenetetrazol seizures in guinea pigs. J Neurosci 7:662–670

    PubMed  CAS  Google Scholar 

  10. Mirski MA, Ferrendelli JA (1986) Anterior thalamic mediation of generalized pentylenetetrazol seizures. Brain Res 399:212–223

    Article  PubMed  CAS  Google Scholar 

  11. Mirski MA, Fisher RA (1993) Pharmacological inhibition of posterior hypothalamus raises seizure threshold in rats. Epilepsia 34(Suppl 6):12

    Google Scholar 

  12. Mirski MA, Ferrendelli JA (1986) Anterior thalamus and substantia nigra: two distinct structures mediating experimental generalized seizures. Brain Res 397:377–380

    Article  PubMed  CAS  Google Scholar 

  13. Mullen S et al (1967) Thalamic lesions for the control of epilepsy-a study of nine cases. Arch Neurol 16:277–285

    Article  Google Scholar 

  14. Nogueira RG, Sheth KN, Duffy FH, Helmers SL, Bromfield EB (2008) Bilateral tonic-clonic seizures with temporal onset and preservation of consciousness. Neurology. 70(22 Pt 2), 2188–90. No abstract available

    Google Scholar 

  15. Bell WL, Walczak TS, Shin C, Radtke RA (1997) Painful generalised clonic and tonic-clonic seizures with retained consciousness. J Neurol Neurosurg Psychiatry 63:792–795

    Article  PubMed  CAS  Google Scholar 

  16. Bleck TP, Smith MC, Pierre-Louis SJC et al (1993) Neurologic complications of critical medical illness. Crit Care Med 21:98–103

    Article  PubMed  CAS  Google Scholar 

  17. Mirski MA, Muffelman B, Ulatowski JA, Hanley DF (1995) Sedation for the critically ill neurologic patient. Crit Care Med 23:2038–2053

    Article  PubMed  CAS  Google Scholar 

  18. Mirski MA, McPherson RW, Traystman RJ (1994) Dexmedetomidine lowers seizure threshold in a rat model of experimental generalized epilepsy. Anesthesiology 81:1422–1428

    Article  PubMed  CAS  Google Scholar 

  19. Wallace KL (1997) Antibiotic-induced convulsions. Crit Care Clinics 13:741–761

    Article  CAS  Google Scholar 

  20. Dreifuss FE (1991) Toxic effects of drugs used in the ICU. Anticonvulsant agents. Crit Care Clin 7:521–532

    PubMed  CAS  Google Scholar 

  21. Annegers JF, Hauser A, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Eng J Med 338:20–24

    Article  CAS  Google Scholar 

  22. Arboix A, Garcia-Eroles L, Massons JB, Oliveres M, Comes E (1997) Predictive factors of early seizures after acute cerebrovascular disease. Stroke 28:1590–1594

    Article  PubMed  CAS  Google Scholar 

  23. Lee ST, Lui TN, Wong CW et al (1997) Early seizures after severe closed head injury. Can J Neurol Sci 24:40–43

    PubMed  CAS  Google Scholar 

  24. Lee ST, Lui TN, Wong CW, Yeh YS, Tzaan WC (1995) Early seizures after moderate closed head injury. Acta-Neurochir-Wien 137:151–154

    Article  PubMed  CAS  Google Scholar 

  25. Sabo RA, Hanigan WC, Aldag JC (1995) Chronic subdural hematomas and seizures: the role of prophylactic anticonvulsive medication. Surg Neurol 43:579–582

    Article  PubMed  CAS  Google Scholar 

  26. Wijdicks EFM, Sharbrough FW (1993) New-onset seizures in critically ill patients. Neurology 43:1042–1044

    Article  PubMed  CAS  Google Scholar 

  27. Claassen J, Jetté N, Chum F et al (2007) Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology 69:1356–1365

    Article  PubMed  CAS  Google Scholar 

  28. Yanagawa Y, Nishi K, Sakamoto T (2008) Hyperammonemia is associated with generalized convulsion. Intern Med 47:21–23

    Article  PubMed  Google Scholar 

  29. DeLorenzo RJ (1990) Status epilepticus: concepts in diagnosis and treatment. Semin Neurol 10:396–405

    Article  PubMed  CAS  Google Scholar 

  30. Striano P, Striano S, Tortora F, De Robertis E, Palumbo D, Elefante A, Servillo G (2005) Clinical spectrum and critical care management of Posterior Reversible Encephalopathy Syndrome (PRES). Med Sci Monit 11, CR549–53.

    Google Scholar 

  31. Towne AR, Pellock JM, Ko D, DeLorenzo RJ (1994) Determinants of mortality in status epilepticus. Epilepsia 35:27–34

    Article  PubMed  CAS  Google Scholar 

  32. Sloviter RS (1999) Status epilepticus-induced neuronal injury and network reorganization. Epilepsia 40:S34–S39 discussion S40-1

    Article  PubMed  Google Scholar 

  33. Clark S, Wilson WA (1999) Mechanisms of epileptogenesis. Adv Neurol 79:607–630

    PubMed  CAS  Google Scholar 

  34. Delgado-Escueta AV, Wilson WA, Olsen RW, and Porter eds. Advances in Neurology Vol 79. Jaspers Basic Mechanisms of the Epilepsies (1999) Lippincott. Wilkins and Williams, Philadelphia

    Google Scholar 

  35. McNamara JO (1999) Emerging insights into the genesis of epilepsy. Nature 399:A15–A22

    Article  PubMed  CAS  Google Scholar 

  36. Mirski MA et al (1997) Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res 28:89–100

    Article  PubMed  CAS  Google Scholar 

  37. Connors BW (1984) Initiation of synchronized neuronal bursting in neocortex. Nature 310:685–687

    Article  PubMed  CAS  Google Scholar 

  38. Segal MM (2002) Sodium channels and epilepsy electrophysiology. Novartis Found Symp 241:173–180

    Article  PubMed  CAS  Google Scholar 

  39. Jeffreys JG (1994) Experimental neurobiology of the epilepsies. Curr Opin Neurol 7:113–122

    Article  Google Scholar 

  40. Jeffreys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75:689–723

    Google Scholar 

  41. Le Beau FEN, Alger BE (1998) Transient suppression of GABAA – receptor-mediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. J Neurophysiol 79:659–669

    PubMed  CAS  Google Scholar 

  42. Lopantsev V, Avioli M (1998) Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro. J Physiol 509:785–796

    Article  PubMed  CAS  Google Scholar 

  43. Traub RD, Jeffreys JG (1994) Are there unifying principles underlying the generation of epileptiform after-discharges in vitro? Prog Brain Res 102:383–394

    Article  PubMed  CAS  Google Scholar 

  44. Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–660

    PubMed  CAS  Google Scholar 

  45. Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243

    PubMed  CAS  Google Scholar 

  46. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276

    PubMed  CAS  Google Scholar 

  47. Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341

    Article  PubMed  CAS  Google Scholar 

  48. McCormick DA, Contreras D (2001) On the cellular and network basis of epileptic seizures. Annual Rev Physiol 63:815–846

    Article  PubMed  CAS  Google Scholar 

  49. Traub RD, Jeffrey JG, Miles R (1993) Analysis of the propagation of disinhibition-induced afterdischarge along the guinea-pig hippocampal slice in vitro. J Physiol 472:267–287

    PubMed  CAS  Google Scholar 

  50. Stasheff SF, Hines M, Wilson MA (1993) Axon terminal hyperexcitability associated with epileptogenesis in vitro I Orifin of ectopic spikes. J Neurophysiol 70:961–975

    PubMed  CAS  Google Scholar 

  51. Mirski MA, Ferrendelli JA (1985) Selective metabolic activation of the mamillary bodies and their connections during ethosuximide-induced suppression of pentylenetetrazol seizures. Epilepsia 51:194–203

    Google Scholar 

  52. Mirski MA, Ferrendelli JA (1984) Interruption of the mammillothalamic tracts prevents seizures in guinea pigs. Science 226:72–74

    Article  PubMed  CAS  Google Scholar 

  53. Mirski MA, Varelos P (2001) Seizures in the ICU. J Neurosurg Anesthesiol 13:163–175

    Article  PubMed  Google Scholar 

  54. Gastaut JL, Sabet Hassan MS, Bianchi CL, Gastaut H (1979) Electroencephalography in brain edema (127 cases of brain tumour investigated by cranial computerized tomography). EEG Clin Electrophysiol 46:239–255

    Article  CAS  Google Scholar 

  55. Williamson A, Patrylo PR, Lee S, Spencer DD (2003) Physiology of human cortical neurons adjacent to cavernous malformations and tumors. Epilepsia 44:1413–1419

    Article  PubMed  Google Scholar 

  56. Kim JH, Guimaraes PO, Shen MY, Masukawa LM, Spencer DD (1990) Hippocampal neuron density in temporal lobe epilepsy with and without glioma. Acta Neuropathol (Berlin) 80:41–45

    Article  CAS  Google Scholar 

  57. Wolf HK, Wiestler OD (1993) Surgical pathology of chronic epileptic seizure disorders. Brain Pathol 3:371–380

    Article  PubMed  CAS  Google Scholar 

  58. Avoli M, Drapeau C, Pumain R, Olivier A, Villemure JG (1991) Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. Ann Neurol 30:589–596

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalez D, Elvidge AR (1962) On the occurrence of epilepsy caused by astrocytoma of the cerebral hemispheres. J Neurosurg 19:470–482

    Article  PubMed  CAS  Google Scholar 

  60. Sherwin A, Robitaille Y, Quesney F et al (1988) Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 38:920–923

    Article  PubMed  CAS  Google Scholar 

  61. Singh R, Pathak DN (1990) Lipid peroxidation and glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and glucose-6-phosphate dehydrogenase activities in FeCl3 induced epileptogenic foci in the rat brain. Epilepsia 31:15–26

    Article  PubMed  CAS  Google Scholar 

  62. Towne AR, Waterhouse EJ, Boggs JG et al (2000) Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology 54:340–345

    Article  PubMed  CAS  Google Scholar 

  63. Jordan KG (1993) Continuous EEG and evoked potential monitoring in the neuroscience intensive care unit. J Clin Neurophysiol 10:445–475

    Article  PubMed  CAS  Google Scholar 

  64. Nuwer MR (2007) ICU EEG monitoring: nonconvulsive seizures, nomenclature, and pathophysiology. Clin Neurophysiol 118:1653–1654

    Article  PubMed  Google Scholar 

  65. Hirsch LJ, Pang T, Claassen J, Chang C, Khaled KA, Wittman J, Emerson RG (2008) Focal motor seizures induced by alerting stimuli in critically ill patients. Epilepsia 49:968–973

    Article  PubMed  Google Scholar 

  66. Hirsch LJ, Claassen J, Mayer SA, Emerson RG (2004) Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs): a common EEG phenomenon in the critically ill. Epilepsia 45:109–123

    Article  PubMed  Google Scholar 

  67. Koutroumanidis M, Tsatsou K, Bonakis A, Michael M, Tan SV. Stimulus-induced bilateral central periodic discharges, cortical myoclonus and arousal responses in mild reversible coma. Clin Neurophysiol 2008; e pub Sep 20

    Google Scholar 

  68. DeLorenzo RJ, Waterhouse EJ, Towne AR et al (1998) Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia 39:833–840

    Article  PubMed  CAS  Google Scholar 

  69. Treiman DM, Meyers PD, Walton NY et al (1998) A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N Eng J Med 339:792–798

    Article  CAS  Google Scholar 

  70. Fountain NB, Lothman EW (1995) Pathophysiology of status epilepticus. J Clin Neurophysiol 12:326–342

    PubMed  CAS  Google Scholar 

  71. Abou Khaled KJ, Hirsch LJ (2008) Updates in the management of seizures and status epilepticus in critically ill patients. Neurol Clin 26:385–408

    Article  PubMed  Google Scholar 

  72. Garzon E, Fernandez RM, Sakamoto AC (2001) Serial EEG during human status epilepticus: evidence for PLED as an ictal pattern. Neurology 57:1175–1183

    Article  PubMed  CAS  Google Scholar 

  73. Mirski MA (1989) Rapid treatment of status epilepticus with low dose pentobarbital. Crit Care Report 1:150–156

    Google Scholar 

  74. Mirski MA, Williams MA, Hanley DF (1995) Prolonged pentobarbital and phenobarbital coma for refractory generalized status epilepticus. Crit Care Med 23:400–404

    Article  PubMed  CAS  Google Scholar 

  75. Drislane FW, Lopez MR, Blum AS, Schomer DL (2008) Detection and treatment of refractory status epilepticus in the intensive care unit. J Clin Neurophysiol 25(4):181–186

    Article  PubMed  Google Scholar 

  76. Legriel S, Mourvillier B, Bele N, Amaro J, Fouet P, Manet P, Hilpert F (2008) Outcomes in 140 critically ill patients with status epilepticus. Intensive Care Med 34(3):476–480

    Article  PubMed  Google Scholar 

  77. Minicucci F, Muscas G, Perucca E, Capovilla G, Vigevano F, Tinuper P (2006) Treatment of status epilepticus in adults: guidelines of the Italian League against Epilepsy. Epilepsia 47(Suppl 5):9–15

    Article  PubMed  CAS  Google Scholar 

  78. Slooter AJ, Vriens EM, Leijten FS, Spijkstra JJ, Girbes AR, van Huffelen AC, Stam CJ (2006) Seizure detection in adult ICU patients based on changes in EEG synchronization likelihood. Neurocrit Care 5:186–192

    Article  PubMed  CAS  Google Scholar 

  79. Trevathan E (2006) Ellen R. Grass Lecture: Rapid EEG analysis for intensive care decisions in status epilepticus. Am J Electroneurodiagnostic Technol 46:4–17

    PubMed  Google Scholar 

  80. Rumbach L, Sablot D, Berger E, Tatu L, Vuillier F, Moulin T (2000) Status epilepticus in stroke: report on a hospital-based stroke cohort. Neurology 54:350–354

    Article  PubMed  CAS  Google Scholar 

  81. Young GB, Goodenough P, Jacono V, Schieven JR (1988) Periodic lateralized epileptiform discharges: electrographic and clinical features. Am J EEG Technol 28:1–13

    Google Scholar 

  82. Pohlman-Eden B, Hoch DB, Cochius JIU, Chiappa KH (1996) Periodic lateralized epileptiform discharges: a critical review. J Clin Neurophysiol 13:519–530

    Article  Google Scholar 

  83. Gross DW, Quesney LF, Sadikot AF (1998) Chronic periodic lateralized epileptiform discharges during sleep in a patient with caudate nucleus atrophy: insights into the anatomical circuitry of PLEDs. EEG Clin Electrophysiol 107:434–438

    Article  CAS  Google Scholar 

  84. Norden AD, Blumenfeld H (2002) The role of subcortical structures in human epilepsy. Epilepsy Behav 3:219–231

    Article  PubMed  Google Scholar 

  85. Raroque HG, Gonzales PCW, Jhaveri HS, Leroy RF, Allen EC (1993) Defining the role of structural lesions and metabolic abnormalities in periodic lateralized epileptiform discharges. Epilepsia 34:279–283

    Article  PubMed  Google Scholar 

  86. Reiher JR, Hollier LH, Sundt TM et al (1991) Periodic lateralized epileptiform discharges with transitional rhythmic discharges: association with seizures. EEG Clin Neurophysiol 78:12–17

    Article  CAS  Google Scholar 

  87. Erkulvrawatr S (1977) Occurrence, evolution and prognosis of periodic lateralized epileptiform discharges in EEG. Clin Electroencephalogr 8:89–99

    Google Scholar 

  88. Markund ON, Daly DD (1971) Pseudoperiodic lateralized paroxysmal discharges in electroencephalogram. Neurology 21:975–981

    Article  Google Scholar 

  89. Garcia-Morales I, Garcia MT, Galan-Davila L, Gomez-Escalonilla C, Saiz-Diaz R et al (2002) Periodic lateralized epileptiform discharges. J Clin Neurophysiol 19:172–177

    Google Scholar 

  90. Bremmer RP (2004) EEG in convulsive and nonconvulsive status epilepticus. J Clin Neurophysiol 21:319–331

    Google Scholar 

  91. Stafstrom CE (1998) Back to basics: the pathophysiology of epileptic seizures: a primer For pediatricians. Ped in Rev 19:342–351

    Article  CAS  Google Scholar 

  92. Kaplan PW (2006) The EEG of status epilepticus. J Clin Neurophysiol 23:221–229

    Article  PubMed  Google Scholar 

  93. Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir 142:1–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mirski, M.A. (2010). Presentation and Pathophysiology of Seizures in the Critical Care Environment: An Overview. In: Varelas, P. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-532-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-532-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-531-6

  • Online ISBN: 978-1-60327-532-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics