Skip to main content

Congenital Disorders of Glycosylation and Their Effects on the Liver

  • Chapter
  • First Online:
Fibrocystic Diseases of the Liver

Part of the book series: Clinical Gastroenterology ((CG))

  • 832 Accesses

Summary

Glycoprotein synthesis is one of the major duties of the liver. During the last decade a large number of inherited disorders in protein glycosylation have been identified that alter the architecture and function of the liver. Many congenital disorders of glycosylation (CDG) compromise the synthesis of a host of membrane and secreted glycoproteins often leading to steatosis, hepatic fibrosis, and abnormal bile duct architecture. Misfolded glycoproteins accumulate in the endoplasmic reticulum (ER) and improperly glycosylated plasma proteins are frequently unstable, leading to pro- or anti-coagulant status. CDG patients with liver pathology often present with a host of abnormalities in other systems, including the gastrointestinal tract causing protein-losing enteropathy, hypotonia, hypoglycemia, developmental delay, and seizures. In some cases, pathology is primarily confined to the liver. Effective therapy is available for only one of the more than 20 types of CDG. A simple and inexpensive serum transferrin glycosylation test can suggest a glycosylation disorder and should be used early on in a diagnostic workup of any patients with unknown liver-related pathology, especially if it occurs in combination with abnormalities in other organ systems. Many CDG patients probably remain undiagnosed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eklund EA, Freeze HH. Essentials of glycosylation. Semin Pediatr Neurol 2005;12, 134–143.

    Article  PubMed  Google Scholar 

  2. Varki A, Cummings R, Esko J et al. Essentials of Glycobiology, 1st ed, 1999. New York: Spring Harbor Laboratory Press.

    Google Scholar 

  3. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P et al. Familiar psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum arylsulphatase A and increased CSF protein: A new syndrome? Pediatr Res 1980;14, 179.

    Article  Google Scholar 

  4. Aebi M, Helenius A, Schenk B et al. Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: An updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj J 1999;16, 669–671.

    Article  CAS  PubMed  Google Scholar 

  5. Jaeken J, Hennet T, Freeze HH, Matthijs G. On the nomenclature of congenital disorders of glycosylation (CDG). J Inherit Metab Dis 2008; Oct 24. [Epub ahead of print].

    Google Scholar 

  6. Kranz C, Jungeblut C, Denecke J et al. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 2007;80, 433–440.

    Article  CAS  PubMed  Google Scholar 

  7. Haeuptle MA, Pujol FM, Neupert C et al. Human RFT1 deficiency leads to a disorder of N-linked glycosylation. Am J Hum Genet 2008;82, 600–606.

    Article  CAS  PubMed  Google Scholar 

  8. Wu X, Rush JS, Karaoglu D et al. Deficiency of UDP-GlcNAc: Dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum Mutat 2003;22, 144–150.

    Article  CAS  PubMed  Google Scholar 

  9. Imbach T, Schenk B, Schollen E et al. Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie. J Clin Invest 2000;105, 233–239.

    Article  CAS  PubMed  Google Scholar 

  10. Kranz C, Denecke J, Lehle L et al. Congenital disorder of glycosylation type Ik (CDG-Ik): A defect of mannosyltransferase I. Am J Hum Genet 2004;74, 545–551.

    Article  CAS  PubMed  Google Scholar 

  11. Grubenmann CE, Frank CG, Hulsmeier AJ et al. Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet 2004;13, 535–542.

    Article  CAS  PubMed  Google Scholar 

  12. Schwarz M, Thiel C, Lubbehusen J et al. Deficiency of GDP-Man: GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Am J Hum Genet 2004;74, 472–481.

    Article  CAS  PubMed  Google Scholar 

  13. Thiel C, Schwarz M, Peng J et al. A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J Biol Chem 2003;278, 22498–22505.

    Article  CAS  PubMed  Google Scholar 

  14. Körner C, Knauer R, Stephani U et al. Carbohydrate deficient glycoprotein syndrome type IV: Deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. EMBO J 1999;18, 6816–6822.

    Article  PubMed  Google Scholar 

  15. Frank CG, Grubenmann CE, Eyaid W et al. Identification and functional analysis of a defect in the human ALG9 gene: Definition of congenital disorder of glycosylation type IL. Am J Hum Genet 2004;75, 146–150.

    Article  CAS  PubMed  Google Scholar 

  16. Chantret I, Dupre T, Delenda C et al. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose: Man7GlcNAc2-PP-dolichyl mannosyltransferase. J Biol Chem 2002;277, 25815–25822.

    Article  CAS  PubMed  Google Scholar 

  17. Körner C, Knauer R, Holzbach U et al. Carbohydrate-deficient glycoprotein syndrome type V: Deficiency of dolichyl-P-Glc: Man9GlcNAc2-PP-dolichyl glucosyltransferase. Proc Natl Acad Sci USA 1998;95, 13200–13205.

    Article  PubMed  Google Scholar 

  18. Chantret I, Dancourt J, Dupre T et al. A deficiency in dolichyl-P-glucose: Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J Biol Chem 2003;278, 9962–9971.

    Article  CAS  PubMed  Google Scholar 

  19. Kranz C, Denecke J, Lehrman MA et al. A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If). J Clin Invest 2001;108, 1613–1619.

    CAS  PubMed  Google Scholar 

  20. Molinari F, Foulquier F, Tarpey PS et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet 2008;82, 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  21. Niehues R, Hasilik M, Alton G et al. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 1998;101, 1414–1420.

    Article  CAS  PubMed  Google Scholar 

  22. Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 1995;377, 318–320.

    Article  PubMed  Google Scholar 

  23. De Praeter CM, Gerwig GJ, Bause E et al. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 2000;66;1744–1756.

    Article  PubMed  Google Scholar 

  24. Trombetta ES, Simons JF, Helenius A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 1996;271, 27509–27516.

    Article  CAS  PubMed  Google Scholar 

  25. Drenth JP, Martina JA, Te Morsche RH et al. Molecular characterization of hepatocystin, the protein that is defective in autosomal dominant polycystic liver disease. Gastroenterology 2004;126, 1819–1827.

    Article  CAS  PubMed  Google Scholar 

  26. Tan J, Dunn J, Jaeken J, Schachter H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am J Hum Genet 1996;59, 810–817.

    CAS  PubMed  Google Scholar 

  27. Lübke T, Marquardt T, Etzioni A et al. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 2001;28, 73–76.

    Article  PubMed  Google Scholar 

  28. Hansske B, Thiel C, Lübke T et al. Deficiency of UDP-galactose: N-acetylglucosamine beta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest 2002;109, 725–733.

    Article  CAS  PubMed  Google Scholar 

  29. Foulquier F, Vasile E, Schollen E et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 2006;103, 3764–3769.

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Steet RA, Bohorov O et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 2004;10, 518–523.

    Article  CAS  PubMed  Google Scholar 

  31. Kranz C, Ng BG, Sun L et al. COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 2007;16, 731–741.

    Article  CAS  PubMed  Google Scholar 

  32. Foulquier F, Ungar D, Reynders E et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Hum Mol Genet 2007;16, 717–730.

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Duncker I, Dupre T, Piller V et al. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 2005;105, 2671–2676.

    Article  CAS  PubMed  Google Scholar 

  34. Marquardt T, Denecke J. Congenital disorders of glycosylation: Review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 2003;162, 359–379.

    CAS  PubMed  Google Scholar 

  35. Grünewald S, De Vos R, Jaeken J. Abnormal lysosomal inclusions in liver hepatocytes but not in fibroblasts in congenital disorders of glycosylation (CDG). J Inherit Metab Dis 2003;26, 49–54.

    Article  PubMed  Google Scholar 

  36. Freeze HH. Congenital disorders of glycosylation and the pediatric liver. Semin Liver Dis 2001;21, 501–515.

    Article  CAS  PubMed  Google Scholar 

  37. Damen G, de Klerk H, Huijmans J et al. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr 2004;38, 282–287.

    Article  PubMed  Google Scholar 

  38. Arnoux JB, Boddaert N, Valayannopoulos V et al. Risk assessment of acute vascular events in congenital disorder of glycosylation type Ia. Mol Genet Metab 2008;93, 444–449.

    Article  CAS  PubMed  Google Scholar 

  39. Iancu TC, Mahajnah M, Manov I et al. The liver in congenital disorders of glycosylation: Ultrastructural features. Ultrastruct Pathol 2007;31, 189–197.

    Article  PubMed  Google Scholar 

  40. Mention K, Lacaille F, Valayannopoulos V et al. Development of liver disease despite mannose treatment in two patients with CDG-Ib. Mol Genet Metab 2008;93, 40–43.

    Article  CAS  PubMed  Google Scholar 

  41. Conradi N, De Vos R, Jaeken J et al. Liver pathology in the carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand Suppl 1991;375, 50–54.

    Article  Google Scholar 

  42. Sun L, Eklund EA, Chung WK et al. Congenital disorder of glycosylation id presenting with hyperinsulinemic hypoglycemia and islet cell hyperplasia. J Clin Endocrinol Metab 2005;90, 4371–4375.

    Article  CAS  PubMed  Google Scholar 

  43. Pedersen PS, Tygstrup I. Congenital hepatic fibrosis combined with protein-losing enteropathy and recurrent thrombosis. Acta Paediatr Scand 1980;69, 571–574.

    Article  CAS  PubMed  Google Scholar 

  44. Chikh K, Vey S, Simonot C et al. Niemann-Pick type C disease: Importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Mol Genet Metab 2004;83, 220–230.

    Article  CAS  PubMed  Google Scholar 

  45. Barone R, Carchon H, Jansen E et al. Lysosomal enzyme activities in serum and leukocytes from patients with carbohydrate-deficient glycoprotein syndrome type IA (phosphomannomutase deficiency). J Inherit Metab Dis 1998;21, 167–172.

    Article  CAS  PubMed  Google Scholar 

  46. Golabek AA, Kida E, Walus M et al. Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I. J Biol Chem 2003;278, 7135–7145.

    Article  CAS  PubMed  Google Scholar 

  47. Hansen SH, Frank SR, Casanova JE. Cloning and characterization of human phosphomannomutase, a mammalian homologue of yeast SEC53. Glycobiology 1997;7, 829–834.

    Article  CAS  PubMed  Google Scholar 

  48. Kjaergaard S, Schwartz M, Skovby F. Congenital disorder of glycosylation type Ia (CDG-Ia): Phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child 2001;85, 236–239.

    Article  CAS  PubMed  Google Scholar 

  49. Grunewald S, Schollen E, Van Schaftingen E et al. High residual activity of PMM2 in patients’ fibroblasts: Possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am J Hum Genet 2001;68, 347–354.

    Article  CAS  PubMed  Google Scholar 

  50. Westphal V, Peterson S, Patterson M et al. Functional significance of PMM2 mutations in mildly affected patients with congenital disorders of glycosylation Ia. Genet Med 2001;3, 393–398.

    Article  CAS  PubMed  Google Scholar 

  51. Di Rocco M, Barone R, Adami A et al. Carbohydrate-deficient glycoprotein syndromes: The Italian experience. J Inherit Metab Dis 2000;23, 391–395.

    Article  PubMed  Google Scholar 

  52. Marquardt T, Hulskamp G, Gehrmann J et al. Severe transient myocardial ischaemia caused by hypertrophic cardiomyopathy in a patient with congenital disorder of glycosylation type Ia. Eur J Pediatr 2002;161, 524–527.

    Article  PubMed  Google Scholar 

  53. Bohles H, Sewell AA, Gebhardt B et al. Hyperinsulinaemic hypoglycaemia – Leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis 2001;24, 858–862.

    Article  CAS  PubMed  Google Scholar 

  54. Panneerselvam K, Freeze HH. Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts. J Clin Invest 1996;97, 1478–1487.

    Article  CAS  PubMed  Google Scholar 

  55. Alton G, Kjaergaard S, Etchison JR et al. Oral ingestion of mannose elevates blood mannose levels: A first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem Mol Med 1997;60, 127–133.

    Article  CAS  PubMed  Google Scholar 

  56. Kjaergaard S, Kristiansson B, Stibler H et al. Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A. Acta Paediatr 1998;87, 884–888.

    Article  CAS  PubMed  Google Scholar 

  57. Mayatepek E, Schroder M, Kohlmuller D et al. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr 1997;86, 1138–1140.

    Article  CAS  PubMed  Google Scholar 

  58. Mayatepek E, Kohlmuller D. Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency. Eur J Pediatr 1998;157, 605–606.

    Article  CAS  PubMed  Google Scholar 

  59. Eklund EA, Freeze HH. The congenital disorders of glycosylation: A multifaceted group of syndromes. NeuroRx 2006;3, 254–263.

    Article  CAS  PubMed  Google Scholar 

  60. Eklund EA, Merbouh N, Ichikawa M et al. Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts. Glycobiology 2005;15, 1084–1093.

    Article  CAS  PubMed  Google Scholar 

  61. Rutschow S, Thiem J, Kranz C, Marquardt T. Membrane-permeant derivatives of mannose-1-phosphate. Bioorg Med Chem 2002;10, 4043–4049.

    Article  CAS  PubMed  Google Scholar 

  62. Harms HK, Zimmer KP, Kurnik K et al. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr 2002;91, 1065–1072.

    Article  CAS  PubMed  Google Scholar 

  63. DeRossi C, Bode L, Eklund EA et al. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem 2006;281, 5916–5927.

    Article  CAS  PubMed  Google Scholar 

  64. Helenius A, Trombetta ES, Hebert DN, Simons JF. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol 1997;7, 193–200.

    Article  CAS  Google Scholar 

  65. Volker C, De Praeter CM, Hardt B et al. Processing of N-linked carbohydrate chains in a patient with glucosidase I deficiency (CDG type IIb). Glycobiology 2002;12, 473–483.

    Article  CAS  PubMed  Google Scholar 

  66. Davila S, Furu L, Gharavi AG et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 2004;36, 575–577.

    Article  CAS  PubMed  Google Scholar 

  67. Sun L, Eklund EA, Van Hove JL et al. Clinical and molecular characterization of the first adult congenital disorder of glycosylation (CDG) type Ic patient. Am J Med Genet A 2005;137, 22–26.

    PubMed  Google Scholar 

  68. Denecke J, Kranz C, Kemming D et al. An activated 5 cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id). Hum Mutat 2004;23, 477–486.

    Article  CAS  PubMed  Google Scholar 

  69. Schollen E, Grunewald S, Keldermans L et al. CDG-Id caused by homozygosity for an ALG3 mutation due to segmental maternal isodisomy UPD3(q21.3-qter). Eur J Med Genet 2005;48, 153–158.

    Article  CAS  PubMed  Google Scholar 

  70. Rimella-Le-Huu A, Henry H, Kern I et al. Congenital disorder of glycosylation type Id (CDG Id): Phenotypic, biochemical and molecular characterization of a new patient. J Inherit Metab Dis 2008; DOI 10.1007/s10545-008-0959-x.

    Google Scholar 

  71. Kranz C, Sun L, Eklund EA et al. CDG-Id in two siblings with partially different phenotypes. Am J Med Genet A 2007;143A, 1414–1420.

    Article  CAS  PubMed  Google Scholar 

  72. Dancourt J, Vuillaumier-Barrot S, de Baulny HO et al. A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings. Pediatr Res 2006;59, 835–839.

    Article  CAS  PubMed  Google Scholar 

  73. Garcia-Silva MT, Matthijs G, Schollen E et al. Congenital disorder of glycosylation (CDG) type Ie. A new patient. J Inherit Metab Dis 2004;27, 591–600.

    Article  CAS  PubMed  Google Scholar 

  74. Kim S, Westphal V, Srikrishna G et al. Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J Clin Invest 2000;105, 191–198.

    Article  CAS  PubMed  Google Scholar 

  75. Schenk B, Imbach T, Frank CG et al. . MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest 2001;108, 1687–1695.

    CAS  PubMed  Google Scholar 

  76. Grubenmann CE, Frank CG, Kjaergaard S et al. . ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg. Hum Mol Genet 2002;11, 2331–2339.

    Article  CAS  PubMed  Google Scholar 

  77. Eklund EA, Newell JW, Sun L et al. Molecular and clinical description of the first US patients with congenital disorder of glycosylation Ig. Mol Genet Metab 2005;84, 25–31.

    Article  CAS  PubMed  Google Scholar 

  78. Di Rocco M, Hennet T, Grubenmann CE et al. Congenital disorder of glycosylation (CDG) Ig: Report on a patient and review of the literature. J Inherit Metab Dis 2005;28, 1162–1164.

    Google Scholar 

  79. Kranz C, Basinger AA, Gucsavas-Calikoglu M et al. Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): Sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality. Am J Med Genet A 2007;143A, 1371–1378.

    Article  CAS  PubMed  Google Scholar 

  80. Eklund EA, Sun L, Westphal V et al. Congenital disorder of glycosylation (CDG)-Ih patient with a severe hepato-intestinal phenotype and evolving central nervous system pathology. J Pediatr 2005;147, 847–850.

    Article  PubMed  Google Scholar 

  81. Schollen E, Frank CG, Keldermans L et al. Clinical and molecular features of three patients with congenital disorders of glycosylation type Ih (CDG-Ih) (ALG8 deficiency). J Med Genet 2004;41, 550–556.

    Article  CAS  PubMed  Google Scholar 

  82. de Koning TJ, Toet M, Dorland L et al. Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis 1998;21, 681–682.

    Article  PubMed  Google Scholar 

  83. Gao N, Lehrman MA. Analyses of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology 2002;12, 353–360.

    Article  CAS  PubMed  Google Scholar 

  84. Weinstein M, Schollen E, Matthijs G et al. CDG-IL: An infant with a novel mutation in the ALG9 gene and additional phenotypic features. Am J Med Genet A 2005;136, 194–197.

    PubMed  Google Scholar 

  85. Imtiaz F, Worthington V, Champion M et al. Genotypes and phenotypes of patients in the UK with carbohydrate-deficient glycoprotein syndrome type 1. J Inherit Metab Dis 2000;23, 162–174.

    Article  CAS  PubMed  Google Scholar 

  86. Tan J, D’Agostaro AF, Bendiak B et al. The human UDP-N-acetylglucosamine: alpha-6-D-mannoside-beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein. Eur J Biochem 1995;231, 317–328.

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Schachter H, Marth JD. Mice with a homozygous deletion of the Mgat2 gene encoding UDP-N-acetylglucosamine: alpha-6-D-mannoside beta1,2-N-acetylglucosaminyltransferase II: A model for congenital disorder of glycosylation type IIa. Biochim Biophys Acta 2002;1573, 301–311.

    CAS  PubMed  Google Scholar 

  88. Van Geet C, Jaeken J, Freson K et al. Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications. J Inherit Metab Dis 2001;24, 477–492.

    Article  PubMed  Google Scholar 

  89. Charuk JH, Tan J, Bernardini M et al. Carbohydrate-deficient glycoprotein syndrome type II. An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS). Eur J Biochem 1995;230, 797–805.

    Article  CAS  PubMed  Google Scholar 

  90. Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 1999;94, 3976–3985.

    CAS  PubMed  Google Scholar 

  91. Yakubenia S, Frommhold D, Scholch D et al. Leukocyte trafficking in a mouse model for leukocyte adhesion deficiency II/congenital disorder of glycosylation IIc. Blood 2008;112, 1472–1481.

    Article  CAS  PubMed  Google Scholar 

  92. Kotani N, Asano M, Iwakura Y, Takasaki S. Knockout of mouse beta 1,4-galactosyltransferase-1 gene results in a dramatic shift of outer chain moieties of N-glycans from type 2 to type 1 chains in hepatic membrane and plasma glycoproteins. Biochem J 2001;357, 827–834.

    Article  CAS  PubMed  Google Scholar 

  93. Zeevaert R, Foulquier F, Jaeken J, Matthijs G. Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab 2008;93, 15–21.

    Article  CAS  PubMed  Google Scholar 

  94. Kingsley DM, Kozarsky KF, Segal M, Krieger M. Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J Cell Biol 1986;102, 1576–1585.

    Article  CAS  PubMed  Google Scholar 

  95. Spaapen LJ, Bakker JA, van der Meer SB et al. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J Inherit Metab Dis 2005;28, 707–714.

    Article  CAS  PubMed  Google Scholar 

  96. Ng BG, Kranz C, Hagebeuk EE et al. Molecular and clinical characterization of a Moroccan Cog7 deficient patient. Mol Genet Metab 2007;91, 201–204.

    Article  CAS  PubMed  Google Scholar 

  97. Morava E, Zeevaert R, Korsch E et al. A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 2007;15, 638–645.

    Article  CAS  PubMed  Google Scholar 

  98. Willig TB, Breton-Gorius J, Elbim C et al. Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes – A new syndrome? Blood 2001;97, 826–828.

    Article  CAS  PubMed  Google Scholar 

  99. Mandato C, Brive L, Miura Y et al. Cryptogenic liver disease in four children: A novel congenital disorder of glycosylation. Pediatr Res 2006;59, 293–298.

    Article  PubMed  Google Scholar 

  100. Miura Y, Tay SK, Aw MM et al. Clinical and biochemical characterization of a patient with congenital disorder of glycosylation (CDG) IIx. J Pediatr 2005;147, 851–853.

    Article  PubMed  Google Scholar 

  101. Butler M, Quelhas D, Critchley AJ et al. Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 2003;13, 601–622.

    Article  CAS  PubMed  Google Scholar 

  102. Freeze HH, Aebi M. Curr Opin Struct Biol 2005;15, 1–9.

    Article  Google Scholar 

  103. Patterson MC, Freeze HH. Disorders of glycosylation. In Swaiman K et al. (eds) Pediatric Neurology, 4th ed, 1999. Amsterdam: Elsevier.

    Google Scholar 

Download references

Acknowledgment

This work was supported by R01 DK55615 and the March of Dimes Foundation grants to HF. The authors wish to dedicate this work to the memory of John “Rocket” Williams who succumbed to complications of CDG-Ia at age 2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eklund, E.A., Freeze, H.H. (2010). Congenital Disorders of Glycosylation and Their Effects on the Liver. In: Murray, K., Larson, A. (eds) Fibrocystic Diseases of the Liver. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60327-524-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-524-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-523-1

  • Online ISBN: 978-1-60327-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics