Skip to main content

Embryology and Development of the Ductal Plate

  • Chapter
  • First Online:
Book cover Fibrocystic Diseases of the Liver

Part of the book series: Clinical Gastroenterology ((CG))

  • 911 Accesses

Summary

Proper development of both the intrahepatic and the extrahepatic biliary tracts is critical to the proper functions of the liver related to bile production and excretion. Many disorders that result in fibrocystic disease of the liver have, at their origin, a defect in the early development of the liver. In particular, disordered development of the ductal plate can lead to severely debilitating hepatobiliary disorders such as biliary atresia and fibrocystic disease of the liver. In this chapter, I review current knowledge of the embryological development of the extrahepatic and intrahepatic biliary trees with a focus on the genes and molecular pathways that have recently been shown to play critical roles in biliary development. Although the identification of the genetic pathways involved in biliary development is still quite incomplete, recent progress has shown that there are a number of transcription factors and signaling pathways that regulate both hepatoblast differentiation and biliary morphogenesis. Building on this exciting new knowledge will provide new avenues for both the diagnosis and the treatment of debilitating diseases that, up to this point, have no definitive treatment or cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaret KS. Liver specification and early morphogenesis. Mech Dev 2000;92(1), 83–88.

    Article  CAS  PubMed  Google Scholar 

  2. Chalmers AD, Slack JM. Development of the gut in Xenopus laevis. Dev Dyn 1998;212(4), 509–521.

    Article  CAS  PubMed  Google Scholar 

  3. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 2005;280(1), 87–99.

    Article  CAS  PubMed  Google Scholar 

  4. Zaret KS. Genetic programming of liver and pancreas progenitors: Lessons for stem-cell differentiation. Nat Rev Genet 2008;9(5), 329–340.

    Article  CAS  PubMed  Google Scholar 

  5. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science 2008;322(5907), 1490–1494.

    Article  CAS  PubMed  Google Scholar 

  6. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 1999;284(5422), 1998–2003.

    Article  CAS  PubMed  Google Scholar 

  7. Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 2001;15(15), 1998–2009.

    Article  CAS  PubMed  Google Scholar 

  8. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007;134(12), 2207–2217.

    Article  CAS  PubMed  Google Scholar 

  9. Deutsch G, Jung J, Zheng M et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 2001;128(6), 871–881.

    CAS  PubMed  Google Scholar 

  10. Chen Y, Pan FC, Brandes N et al. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol 2004;271(1), 144–160.

    Article  CAS  PubMed  Google Scholar 

  11. Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature 2005;435(7044), 944–947.

    Article  CAS  PubMed  Google Scholar 

  12. Lokmane L, Haumaitre C, Garcia-Villalba P et al. Crucial role of vHNF1 in vertebrate hepatic specification. Development 2008;135(16), 2777–2786.

    Article  CAS  PubMed  Google Scholar 

  13. Bort R, Signore M, Tremblay K et al. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 2006;290(1), 44–56.

    Article  CAS  PubMed  Google Scholar 

  14. Margagliotti S, Clotman F, Pierreux CE et al. The Onecut transcription factors HNF-6/OC-1 and OC-2 regulate early liver expansion by controlling hepatoblast migration. Dev Biol 2007;311(2), 579–589.

    Article  CAS  PubMed  Google Scholar 

  15. Sosa-Pineda B, Wigle JT, Oliver G. Hepatocyte migration during liver development requires Prox1. Nat Genet 2000;25(3), 254–255.

    Article  CAS  PubMed  Google Scholar 

  16. Van Eyken P, Sciot R, Desmet V. Intrahepatic bile duct development in the rat: A cytokeratin-immunohistochemical study. Lab Invest 1988;59(1), 52–59.

    PubMed  Google Scholar 

  17. Lemaigre FP. Development of the biliary tract. Mech Dev 2003;120(1), 81–87.

    Article  CAS  PubMed  Google Scholar 

  18. Shiojiri N. Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech 1997;39(4), 328–335.

    Article  CAS  PubMed  Google Scholar 

  19. Strick-Marchand H, Weiss MC. Inducible differentiation and morphogenesis of bipotential liver cell lines from wild-type mouse embryos. Hepatology 2002;36(4 Pt 1), 794–804.

    CAS  PubMed  Google Scholar 

  20. Strick-Marchand H, Weiss MC. Embryonic liver cells and permanent lines as models for hepatocyte and bile duct cell differentiation. Mech Dev 2003;120(1), 89–98.

    Article  CAS  PubMed  Google Scholar 

  21. Clotman F, Lannoy VJ, Reber M et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002;129(8), 1819–1828.

    CAS  PubMed  Google Scholar 

  22. Coffinier C, Gresh L, Fiette L et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development 2002;129(8), 1829–1838.

    CAS  PubMed  Google Scholar 

  23. Matthews RP, Lorent K, Russo P, Pack M. The zebrafish onecut gene hnf-6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 2004;274(2), 245–259.

    Article  CAS  PubMed  Google Scholar 

  24. Shiojiri N, Takeshita K, Yamasaki H, Iwata T. Suppression of C/EBP alpha expression in biliary cell differentiation from hepatoblasts during mouse liver development. J Hepatol 2004;41(5), 790–798.

    Article  CAS  PubMed  Google Scholar 

  25. Yamasaki H, Sada A, Iwata T et al. Suppression of C/EBPalpha expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development 2006;133(21), 4233–4243.

    Article  CAS  PubMed  Google Scholar 

  26. Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE. T-box genes in vertebrate development. Ann Rev Genetics 2005;39, 219–239.

    Article  CAS  Google Scholar 

  27. Lüdtke TH, Christoffels VM, Petry M, Kispert A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 2009;49(3), 969–978.

    Article  PubMed  Google Scholar 

  28. Suzuki A, Sekiya S, Büscher D et al. Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development 2008;135(9), 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  29. Brummelkamp TR, Kortlever RM, Lingbeek M et al. TBX-3, the gene mutated in Ulnar-Mammary Syndrome, is a negative regulator of p19ARF and inhibits senescence. J Biol Chem 2002;277(8), 6567–6572.

    Article  CAS  PubMed  Google Scholar 

  30. Krupczak-Hollis K, Wang X, Kalinichenko VV et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 2004;276(1), 74–88.

    Article  CAS  PubMed  Google Scholar 

  31. Clotman F, Jacquemin P, Plumb-Rudewiez N et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 2005;19(16), 1849–1854.

    Article  CAS  PubMed  Google Scholar 

  32. Ader T, Norel R, Levoci L, Rogler LE. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev 2006;123(2), 177–194.

    Article  CAS  PubMed  Google Scholar 

  33. Ehebauer M, Hayward P, Arias AM. Notch, a universal arbiter of cell fate decisions. Science 2006;314(5804), 1414–1415.

    Article  CAS  PubMed  Google Scholar 

  34. Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: Repressors and oscillators that orchestrate embryogenesis. Development 2007;134(7), 1243–1251.

    Article  CAS  PubMed  Google Scholar 

  35. Alagille D, Estrada A, Hadchouel M et al. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): Review of 80 cases. J Pediatr 1987;110(2), 195–200.

    Article  CAS  PubMed  Google Scholar 

  36. Emerick KM, Rand EB, Goldmuntz E et al. Features of Alagille syndrome in 92 patients: Frequency and relation to prognosis. Hepatology 1999;29(3), 822–829.

    Article  CAS  PubMed  Google Scholar 

  37. McDaniell R, Warthen DM, Sanchez-Lara PA et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006;79(1), 169–173.

    Article  CAS  PubMed  Google Scholar 

  38. Geisler F, Nagl F, Mazur PK et al. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 2008;48(2), 607–616.

    Article  CAS  PubMed  Google Scholar 

  39. Kodama Y, Hijikata M, Kageyama R et al. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 2004;127(6), 1775–1786.

    Article  CAS  PubMed  Google Scholar 

  40. Lozier J, McCright B, Gridley T. Notch signaling regulates bile duct morphogenesis in mice. PLoS ONE 2008;3(3), e1851.

    Article  PubMed  Google Scholar 

  41. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002;129(4), 1075–1082.

    CAS  PubMed  Google Scholar 

  42. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 2004;117(Pt 15), 3165–3174.

    Article  CAS  PubMed  Google Scholar 

  43. Zong Y, Panikkar A, Xu J et al. Notch signaling controls liver development by regulating biliary differentiation. Development 2009;136(10), 1727–1739.

    Article  CAS  PubMed  Google Scholar 

  44. Han H, Tanigaki K, Yamamoto N et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 2002;14(6), 637–645.

    Article  CAS  PubMed  Google Scholar 

  45. Bogue CW, Ganea GR, Sturm E et al. Hex expression suggests a role in the development and function of organs derived from foregut endoderm. Dev Dyn 2000;219(1), 84–89.

    Article  CAS  PubMed  Google Scholar 

  46. Thomas PQ, Brown A, Beddington RS. Hex: A homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 1998;125(1), 85–94.

    CAS  PubMed  Google Scholar 

  47. Denson LA, Karpen SJ, Bogue CW, Jacobs HC. Divergent homeobox gene hex regulates promoter of the Na(+)-dependent bile acid cotransporter. Am J Physiol Gastrointest Liver Physiol 2000;279(2), G347–G355.

    CAS  PubMed  Google Scholar 

  48. Keng VW, Fujimori KE, Myint Z et al. Expression of Hex mRNA in early murine postimplantation embryo development. FEBS Lett 1998;426(2), 183–186.

    Article  CAS  PubMed  Google Scholar 

  49. Parviz F, Matullo C, Garrison WD et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 2003;34(3), 292–296.

    Article  CAS  PubMed  Google Scholar 

  50. Hunter MP, Wilson CM, Jiang X et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 2007;308(2), 355–367.

    Article  CAS  PubMed  Google Scholar 

  51. Yanai M, Tatsumi N, Hasunuma N et al. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev Dyn 2008;237(5), 1268–1283.

    Article  CAS  PubMed  Google Scholar 

  52. Micsenyi A, Tan X, Sneddon T et al. Beta-catenin is temporally regulated during normal liver development. Gastroenterology 2004;126(4), 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  53. Monga SP, Monga HK, Tan X et al. Beta-catenin antisense studies in embryonic liver cultures: Role in proliferation, apoptosis, and lineage specification. Gastroenterology 2003;124(1), 202–216.

    Article  CAS  PubMed  Google Scholar 

  54. Hussain SZ, Sneddon T, Tan X et al. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res 2004;292(1), 157–169.

    Article  CAS  PubMed  Google Scholar 

  55. Tan X, Yuan Y, Zeng G et al. Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 2008;47(5), 1667–1679.

    Article  CAS  PubMed  Google Scholar 

  56. Decaens T, Godard C, de Reyniès A et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 2008;47(1), 247–258.

    Article  CAS  PubMed  Google Scholar 

  57. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec Hoboken, NJ: 2007 2008;291(6), 628–635.

    Article  CAS  Google Scholar 

  58. Fukuda A, Kawaguchi Y, Furuyama K et al. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest 2006;116(6), 1484–1493.

    Article  CAS  PubMed  Google Scholar 

  59. Sumazaki R, Shiojiri N, Isoyama S et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet 2004;36(1), 83–87.

    Article  CAS  PubMed  Google Scholar 

  60. Vijayan V, Tan CE. Development of the human intrahepatic biliary system. Ann Acad Med Singap 1999;28(1), 105–108.

    CAS  PubMed  Google Scholar 

  61. Antoniou A, Raynaud P, Cordi S et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; Feb 21. [Epub ahead of print].

    Google Scholar 

  62. Masyuk TV, Huang BQ, Masyuk AI et al. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am J Pathol 2004;165(5), 1719–1730.

    PubMed  Google Scholar 

  63. Masyuk TV, Huang BQ, Ward CJ et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 2003;125(5), 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  64. Mazziotti MV, Willis LK, Heuckeroth RO et al. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology 1999;30(2), 372–378.

    Article  CAS  PubMed  Google Scholar 

  65. Richards WG, Yoder BK, Isfort RJ et al. Oval cell proliferation associated with the murine insertional mutation TgN737Rpw. Am J Pathol 1996;149(6), 1919–1930.

    CAS  PubMed  Google Scholar 

  66. Hou X, Mrug M, Yoder BK et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 2002;109(4), 533–540.

    CAS  PubMed  Google Scholar 

  67. Watnick T, Germino G. From cilia to cyst. Nat Genet 2003;34(4), 355–356.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Q, Taulman PD, Yoder BK. Cystic kidney diseases: All roads lead to the cilium. Physiology (Bethesda, MD) 2004;19, 225–230.

    CAS  Google Scholar 

  69. Cano DA, Murcia NS, Pazour GJ, Hebrok M. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 2004;131(14), 3457–3467.

    Article  CAS  PubMed  Google Scholar 

  70. Gallagher AR, Esquivel EL, Briere TS et al. Biliary and Pancreatic Dysgenesis in Mice Harboring a Mutation in Pkhd1. Am J Pathol 2008;172(2), 417–429.

    Article  CAS  PubMed  Google Scholar 

  71. Clotman F, Libbrecht L, Killingsworth MC et al. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome. Liver Int 2007;28(3), 377–384.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bogue, C.W. (2010). Embryology and Development of the Ductal Plate. In: Murray, K., Larson, A. (eds) Fibrocystic Diseases of the Liver. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60327-524-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-524-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-523-1

  • Online ISBN: 978-1-60327-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics