Advertisement

The Future: Combination Systemic Therapy for Hepatocellular Carcinoma

  • Ahmed O. Kaseb
  • Melanie B. Thomas
Chapter

Abstract

Hepatocellular carcinoma (HCC) is a potentially curable tumor by surgical resection, local ablation, or liver transplantation. However, the majority of patients with HCC present with advanced stage disease, which is most commonly, accompanied by severe background liver disease. Hence, curative treatments are feasible for only a small fraction of patients with localized disease.

Keywords

HCC systemic therapy Carcinogenic pathways in HCC Growth factors Combination systemic therapy SHARP trial EGFR and VEGF pathways Sorafenib 

References

  1. 1.
    Lang L (2008) FDA approves sorafenib for patients with inoperable liver cancer. Gastroenterology 134:379Google Scholar
  2. 2.
    Simonetti RG, Liberati A, Angiolini C et al (1997) Treatment of hepatocellular carcinoma: a systematic review of randomized controlled trials. Ann Oncol 8:117–136CrossRefPubMedGoogle Scholar
  3. 3.
    Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390CrossRefPubMedGoogle Scholar
  4. 4.
    Yao DF, Dong ZZ, Yao M (2007) Specific molecular markers in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 6:241–247PubMedGoogle Scholar
  5. 5.
    Marongiu F, Doratiotto S, Montisci S et al (2008) Liver repopulation and carcinogenesis: two sides of the same coin? Am J Pathol 172:857–864CrossRefPubMedGoogle Scholar
  6. 6.
    Varnholt H (2008) The role of microRNAs in primary liver cancer. Ann Hepatol 7:104–113PubMedGoogle Scholar
  7. 7.
    McGivern DR, Lemon SM (2009) Tumor suppressors, chromosomal instability, and hepatitis C virus-associated liver cancer. Annu Rev Pathol 4:399–415CrossRefPubMedGoogle Scholar
  8. 8.
    Pang RW, Poon RT (2007) From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 72(Suppl 1):30–44CrossRefPubMedGoogle Scholar
  9. 9.
    Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 19:7–16Google Scholar
  10. 10.
    Tovar V, Villanueva A, Llovet JM (2007) [Cell biology and genetics in liver cancer]. Gastroenterol Hepatol 30:360–369CrossRefPubMedGoogle Scholar
  11. 11.
    Calvisi DF, Pinna F, Ladu S et al (2008) Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis 29:1639–1647CrossRefPubMedGoogle Scholar
  12. 12.
    Tam KH, Yang ZF, Lau CK et al (2009) Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma. Cancer Lett 273:201–209CrossRefPubMedGoogle Scholar
  13. 13.
    Ladu S, Calvisi DF, Conner EA et al (2008) E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology 135:1322–1332CrossRefPubMedGoogle Scholar
  14. 14.
    Lang SA, Moser C, Fichnter-Feigl S et al (2009) Targeting heat-shock protein 90 improves efficacy of rapamycin in a model of hepatocellular carcinoma in mice. Hepatology 49: 523–532CrossRefPubMedGoogle Scholar
  15. 15.
    Huynh H, Ngo VC, Koong HN et al (2009) Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol MedGoogle Scholar
  16. 16.
    Treiber G (2009) mTOR inhibitors for hepatocellular cancer: a forward-moving target. Expert Rev Anticancer Ther 9: 247–261CrossRefPubMedGoogle Scholar
  17. 17.
    Tanaka S, Arii S (2009) Molecularly targeted therapy for hepatocellular carcinoma. Cancer Sci 100:1–8CrossRefPubMedGoogle Scholar
  18. 18.
    Rizell M, Andersson M, Cahlin C et al (2008) Effects of the mTOR inhibitor sirolimus in patients with hepatocellular and cholangiocellular cancer. Int J Clin Oncol 13:66–70CrossRefPubMedGoogle Scholar
  19. 19.
    Monaco AP (2009) The role of mTOR inhibitors in the management of posttransplant malignancy. Transplantation 87:157–163CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas MB, Chadha R, Glover K et al (2007) Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 110:1059–1067CrossRefPubMedGoogle Scholar
  21. 21.
    Philip PA, Mahoney MR, Allmer C et al (2005) Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 23:6657–6663CrossRefPubMedGoogle Scholar
  22. 22.
    Finn RS, Zhu AX (2009) Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev Anticancer Ther 9: 503–509CrossRefPubMedGoogle Scholar
  23. 23.
    Siegel AB, Cohen EI, Ocean A et al (2008) Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 26:2992–2998CrossRefPubMedGoogle Scholar
  24. 24.
    Bukowski RM (2008) What role do combinations of interferon and targeted agents play in the first-line therapy of metastatic renal cell carcinoma? Clin Genitourin Cancer 6:S14–S21CrossRefPubMedGoogle Scholar
  25. 25.
    Chowdhury S, Larkin JM, Gore ME (2008) Recent advances in the treatment of renal cell carcinoma and the role of targeted therapies. Eur J Cancer 44:2152–2161CrossRefPubMedGoogle Scholar
  26. 26.
    Kruck S, Kuczyk MA, Gakis G et al (2008) Novel therapeutic options in metastatic renal cancer – review and post ASCO 2007 update. Rev Recent Clin Trials 3:212–216CrossRefPubMedGoogle Scholar
  27. 27.
    Papaetis GS, Karapanagiotou LM, Pandha H et al (2008) Targeted therapy for advanced renal cell cancer: cytokines and beyond. Curr Pharm Des 14:2229–2251CrossRefPubMedGoogle Scholar
  28. 28.
    Rini BI, Flaherty K (2008) Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol Oncol 26:543–549PubMedGoogle Scholar
  29. 29.
    Wysocki PJ, Zolnierek J, Szczylik C et al (2008) Targeted therapy of renal cell cancer. Curr Opin Investig Drugs 9:570–575PubMedGoogle Scholar
  30. 30.
    Wong SF (2005) Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther 27:684–694CrossRefPubMedGoogle Scholar
  31. 31.
    Folprecht G, Lutz MP, Schoffski P et al (2006) Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma. Ann Oncol 17:450–456CrossRefPubMedGoogle Scholar
  32. 32.
    Rougier P, Lepere C (2005) Second-line treatment of patients with metastatic colorectal cancer. Semin Oncol 32:S48–S54CrossRefPubMedGoogle Scholar
  33. 33.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342CrossRefPubMedGoogle Scholar
  34. 34.
    Fernando NH, Hurwitz HI (2004) Targeted therapy of colorectal cancer: clinical experience with bevacizumab. Oncologist 9(Suppl 1):11–18CrossRefPubMedGoogle Scholar
  35. 35.
    Hurwitz HI, Fehrenbacher L, Hainsworth JD et al (2005) Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23:3502–3508CrossRefPubMedGoogle Scholar
  36. 36.
    Simkens L, Tol J, Koopman M et al (2008) Current questions in the treatment of advanced colorectal cancer: the CAIRO studies of the Dutch Colorectal Cancer Group. Clin Colorectal Cancer 7:105–109CrossRefPubMedGoogle Scholar
  37. 37.
    Azad NS, Posadas EM, Kwitkowski VE et al (2008) Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol 26:3709–3714CrossRefPubMedGoogle Scholar
  38. 38.
    Hirata A, Ogawa S, Kometani T et al (2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62:2554–2560PubMedGoogle Scholar
  39. 39.
    Viloria-Petit A, Crombet T, Jothy S et al (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61:5090–5101PubMedGoogle Scholar
  40. 40.
    Ciardiello F, Troiani T, Bianco R et al (2006) Interaction between the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor (VEGF) pathways: a rational approach for multi-target anticancer therapy. Ann Oncol 17(Suppl 7):vii109–vii114CrossRefPubMedGoogle Scholar
  41. 41.
    Pastorelli D, Cartei G, Zustovich F et al (2006) Gemcitabine and liposomal doxorubicin in biliary and hepatic carcinoma (HCC) chemotherapy: preliminary results and review of the literature. Ann Oncol 17(Suppl 5): v153–v157CrossRefPubMedGoogle Scholar
  42. 42.
    Thomas MB, Morris JS, Chadha R et al (2009) Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 27:843–850CrossRefPubMedGoogle Scholar
  43. 43.
    Sun W, Haller DG, Mykulowycz K et al (2007) Combination of capecitabine, oxaliplatin with bevacizumab in treatment of advanced hepatocellular carcinoma (HCC): a phase II study. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I, vol 25, No. 18S (June 20 Supplement), Abstract No. 4574Google Scholar
  44. 44.
    Zhu AX, Blaszkowsky LS, Ryan DP et al (2006) Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:1898–1903CrossRefPubMedGoogle Scholar
  45. 45.
    Louafi S, Boige V, Ducreux M et al (2007) Gemcitabine plus oxaliplatin (GEMOX) in patients with advanced hepatocellular carcinoma (HCC): results of a phase II study. Cancer 109:1384–1390CrossRefPubMedGoogle Scholar
  46. 46.
    O’Neil BH, Bernard SA, Goldberg RM et al (2008) Phase II study of oxaliplatin, capecitabine, and cetuximab in advanced hepatocellular carcinoma. J Clin Oncol, 2008 Gastrointestinal Cancers Symposium, Abstract No. 228Google Scholar
  47. 47.
    Abou-Alfa GK, Johnson P, Knox J et al (2008) Final results from a phase II (PhII), randomized, double-blind study of sorafenib plus doxorubicin (S+D) versus placebo plus doxorubicin (P+D) in patients (pts) with advanced hepatocellular carcinoma (AHCC). J Clin Oncol, 2008 ASCO Annual Meeting, vol 26:(May 20 Suppl), Abstract No. 4603Google Scholar
  48. 48.
    Hsu C, Yang T, Hsu C et al (2008) Phase II study of bevacizumab (A) plus capecitabine (X) in patients (pts) with advanced/metastatic hepatocellular carcinoma (HCC): final report. J Clin Oncol, 2008 Gastrointestinal Cancers Symposium, Abstract No. 128Google Scholar
  49. 49.
    Mellor HR, Callaghan R (2008) Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 81:275–300CrossRefPubMedGoogle Scholar
  50. 50.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603CrossRefPubMedGoogle Scholar
  51. 51.
    Suzuki C, Jacobsson H, Hatschek T et al (2008) Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics 28:329–344CrossRefPubMedGoogle Scholar
  52. 52.
    Kharuzhyk S, Fabel M, von Tengg-Kobligk H et al (2008) Image-based evaluation of tumor response to treatment: where is radiology today? Exp Oncol 30:181–189PubMedGoogle Scholar
  53. 53.
    Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 42:1031–1039CrossRefPubMedGoogle Scholar
  54. 54.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada.[see comment]. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  55. 55.
    Barros Costa RL (2009) Targeted therapy: comprehensive review. Am J Hosp Palliat Care 26:137–146CrossRefPubMedGoogle Scholar
  56. 56.
    Gervais DA, Kalva S, Thabet A (2009) Percutaneous image-guided therapy of intra-abdominal malignancy: imaging evaluation of treatment response. Abdom Imaging 34:593–609Google Scholar
  57. 57.
    Chen K, Li ZB, Wang H et al (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235–2244CrossRefPubMedGoogle Scholar
  58. 58.
    Jiang HJ, Zhang ZR, Shen BZ et al (2008) Functional CT for assessment of early vascular physiology in liver tumors. Hepatobiliary Pancreat Dis Int 7:497–502PubMedGoogle Scholar
  59. 59.
    Juanyin J, Tracy K, Zhang L et al (2009) Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin Exp Metastasis, 2009Google Scholar
  60. 60.
    Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26:4012–4021CrossRefPubMedGoogle Scholar
  61. 61.
    Stadler WM (2007) The randomized discontinuation trial: a phase II design to assess growth-inhibitory agents. Mol Cancer Ther 6:1180–1185CrossRefPubMedGoogle Scholar
  62. 62.
    Karrison TG, Maitland ML, Stadler WM et al (2007) Design of phase II cancer trials using a continuous endpoint of change in tumor size: application to a study of sorafenib and erlotinib in non small-cell lung cancer. J Natl Cancer Inst 99:1455–1461CrossRefPubMedGoogle Scholar
  63. 63.
    Rubinstein L, Crowley J, Ivy P et al (2009) Randomized phase II designs. Clin Cancer Res 15:1883–1890CrossRefPubMedGoogle Scholar
  64. 64.
    Shen Y, Hsu C, Hsu C et al (2008) Phase II study of sorafenib plus tegafur/uracil (UFT) in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol, 2008 ASCO Annual Meeting, vol 26:(May 20 Suppl), Abstract No. 15664Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmed O. Kaseb
    • 1
  • Melanie B. Thomas
    • 2
  1. 1.Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Division of Hematology/Oncology, Department of MedicineMedical University of South Carolina, Hollings Cancer CenterCharlestonUSA

Personalised recommendations