Skip to main content

Oxidative Stress in Multiple Sclerosis Pathology and Therapeutic Potential of Nrf2 Activation

  • Chapter
  • First Online:
Book cover Oxidative Stress and Free Radical Damage in Neurology

Abstract

Reactive oxygen species contribute to the formation and persistence of multiple sclerosis (MS) lesions by acting on distinct pathological processes. To counteract the detrimental effects of reactive oxygen species, the central nervous system is endowed with a protective mechanism consisting of enzymatic and nonenzymatic antioxidants. Expression of most antioxidant enzymes is regulated through the transcription factor nuclear factor-E2-related factor (Nrf2), and antioxidant response elements (ARE) in the genes encoding enzymatic antioxidants and are induced by oxidative stress. In brain tissue of MS patients, enhanced expression of Nrf2/ARE-regulated antioxidants suggests the occurrence of oxidative stress in these lesions. Antioxidant therapy may therefore represent an attractive treatment of MS. Several studies have shown that antioxidant therapy is beneficial in vitro and in vivo in animal models for MS. However, the use of exogenous antioxidants for MS treatment has drawbacks, as large amounts of antioxidants are required to achieve functional antioxidant levels in the central nervous system. Therefore, the induction of endogenous antioxidant enzymes by activators of the Nrf2/ARE pathway may be an interesting approach to obtain sufficient levels of antioxidants to interfere with pathological processes underlying MS lesion formation. Here we discuss and summarize the biological role, regulation, and potential therapeutic effects of endogenous antioxidant enzymes in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hafler DA. Multiple sclerosis. J Clin Invest. 2004;113(6):788–94.

    PubMed  CAS  Google Scholar 

  2. Keegan BM, Noseworthy JH. Multiple sclerosis. Annu Rev Med. 2002;53:285–302.

    Article  PubMed  CAS  Google Scholar 

  3. Frohman EM, Racke MK, Raine CS. Multiple sclerosis: the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–55.

    Article  PubMed  CAS  Google Scholar 

  4. Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol. 2005;26(3):572–7.

    PubMed  Google Scholar 

  5. Bo L, Geurts JJ, Mork SJ, van der Valk P. Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl. 2006;183:48–50.

    Article  PubMed  CAS  Google Scholar 

  6. Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64(12):1101–7.

    Article  PubMed  Google Scholar 

  7. Bruck W, Stadelmann C. The spectrum of multiple sclerosis: new lessons from pathology. Curr Opin Neurol. 2005;18(3):221–4.

    Article  PubMed  Google Scholar 

  8. Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD. Macrophages and neurodegeneration. Brain Res Brain Res Rev. 2005;48(2):185–95.

    Article  PubMed  CAS  Google Scholar 

  9. Ruuls SR, Bauer J, Sontrop K, Huitinga I, ‘t Hart BA, Dijkstra CD. Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol. 1995;56(2):207–17.

    Article  PubMed  CAS  Google Scholar 

  10. Benveniste EN. Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 1998;9(3–4):259–75.

    Article  PubMed  CAS  Google Scholar 

  11. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.

    Article  PubMed  Google Scholar 

  12. Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, Van Der Pol SM, Hendrikx EM, et al. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol. 2006;177(4):2630–7.

    PubMed  CAS  Google Scholar 

  13. van der Goes A, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, Adamson P, et al. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J. 2001;15(10):1852–4.

    PubMed  CAS  Google Scholar 

  14. Smith KJ, Kapoor R, Felts PA. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol. 1999;9(1):69–92.

    PubMed  CAS  Google Scholar 

  15. Smith KJ, Kapoor R, Hall SM, Davies M. Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol. 2001;49(4):470–6.

    Article  PubMed  CAS  Google Scholar 

  16. van der Goes A, Brouwer J, Hoekstra K, Roos D, Van den Berg TK, Dijkstra CD. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol. 1998;92(1–2):67–75.

    Article  PubMed  CAS  Google Scholar 

  17. van Meeteren ME, Hendriks JJ, Dijkstra CD, van Tol EA. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem Pharmacol. 2004;67(5):967–75.

    Article  PubMed  CAS  Google Scholar 

  18. Kalman B, Laitinen K, Komoly S. The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2007;188(1–2):1–12.

    Article  PubMed  CAS  Google Scholar 

  19. Kalman B, Leist TP. A mitochondrial component of neurodegeneration in multiple sclerosis. Neuromol Med. 2003;3(3):147–58.

    Article  CAS  Google Scholar 

  20. Kalman B. Role of mitochondria in multiple sclerosis. Curr Neurol Neurosci Rep. 2006;6(3):244–52.

    Article  PubMed  CAS  Google Scholar 

  21. Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, et al. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci. 2000;177(2):95–103.

    Article  PubMed  CAS  Google Scholar 

  22. Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 2008;131(7):1722–35.

    Article  PubMed  Google Scholar 

  23. Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J. Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J Biol Chem. 2006;281(42):31950–62.

    Article  PubMed  CAS  Google Scholar 

  24. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol. 2004;251(3):261–8.

    PubMed  CAS  Google Scholar 

  25. van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EA. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr. 2005;59(12):1347–61.

    Article  PubMed  CAS  Google Scholar 

  26. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42(2):153–64.

    Article  PubMed  CAS  Google Scholar 

  27. Karg E, Klivenyi P, Nemeth I, Bencsik K, Pinter S, Vecsei L. Nonenzymatic antioxidants of blood in multiple sclerosis. J Neurol. 1999;246(7):533–9.

    Article  PubMed  CAS  Google Scholar 

  28. Greco A, Minghetti L, Sette G, Fieschi C, Levi G. Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology. 1999;53(8):1876–9.

    PubMed  CAS  Google Scholar 

  29. Calabrese V, Raffaele R, Cosentino E, Rizza V. Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis. Int J Clin Pharmacol Res. 1994;14(4):119–23.

    PubMed  CAS  Google Scholar 

  30. Ferretti G, Bacchetti T, Principi F, Di Ludovico F, Viti B, Angeleri VA, et al. Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler. 2005;11(6):677–82.

    Article  PubMed  CAS  Google Scholar 

  31. Koch M, Ramsaransing GS, Arutjunyan AV, Stepanov M, Teelken A, Heersema DJ, et al. Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J Neurol. 2006;253(4):483–7.

    Article  PubMed  CAS  Google Scholar 

  32. Liu JS, Zhao ML, Brosnan CF, Lee SC. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol. 2001;158(6):2057–66.

    PubMed  CAS  Google Scholar 

  33. Diaz-Sanchez M, Williams K, DeLuca GC, Esiri MM. Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol. 2006;111(4):289–99.

    Article  PubMed  CAS  Google Scholar 

  34. Jack C, Antel J, Bruck W, Kuhlmann T. Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis. Glia. 2007;55(9):926–34.

    Article  PubMed  Google Scholar 

  35. Vladimirova O, O’Connor J, Cahill A, Alder H, Butunoi C, Kalman B. Oxidative damage to DNA in plaques of MS brains. Mult Scler. 1998;4(5):413–8.

    PubMed  CAS  Google Scholar 

  36. Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A. Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res. 2005;81(5):687–95.

    Article  PubMed  CAS  Google Scholar 

  37. Connor JR. Iron regulation in the brain at the cell and molecular level. Adv Exp Med Biol. 1994;356:229–38.

    PubMed  CAS  Google Scholar 

  38. Juurlink BH, Thorburne SK, Hertz L. Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia. 1998;22(4):371–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity. J Immunol. 2000;165(11):6511–8.

    PubMed  CAS  Google Scholar 

  40. Hendriks JJ, Alblas J, Van Der Pol SM, van Tol EA, Dijkstra CD, de Vries HE. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med. 2004;200(12):1667–72.

    Article  PubMed  CAS  Google Scholar 

  41. Carlson NG, Rose JW. Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs. 2006;20(6):433–41.

    Article  PubMed  CAS  Google Scholar 

  42. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003;8(4):379–91.

    Article  PubMed  CAS  Google Scholar 

  43. Dringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res. 2005;79(1-2):157–65.

    Article  PubMed  CAS  Google Scholar 

  44. McCord JM, Edeas MA. SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother. 2005;59(4):139–42.

    Article  PubMed  CAS  Google Scholar 

  45. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62(18):5196–203.

    PubMed  CAS  Google Scholar 

  46. Kim YJ, Ahn JY, Liang P, Ip C, Zhang Y, Park YM. Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res. 2007;67(2):546–54.

    Article  PubMed  CAS  Google Scholar 

  47. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000;275(21):16023–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, et al. Different faces of the heme–heme oxygenase system in inflammation. Pharmacol Rev. 2003;55(3):551–71.

    Article  PubMed  CAS  Google Scholar 

  49. Li Y, Jaiswal AK. Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem. 1992;267(21):15097–104.

    PubMed  CAS  Google Scholar 

  50. Jaiswal AK. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med. 2000;29(3–4):254–62.

    Article  PubMed  CAS  Google Scholar 

  51. Iskander K, Li J, Han S, Zheng B, Jaiswal AK. NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J Biol Chem. 2006;281(41):30917–24.

    Article  PubMed  CAS  Google Scholar 

  52. Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med. 2005;26(4–5):340–52.

    Article  PubMed  CAS  Google Scholar 

  53. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    PubMed  CAS  Google Scholar 

  54. McCord JM. Iron- and manganese-containing superoxide dismutases: structure, distribution, and evolutionary relationships. Adv Exp Med Biol. 1976;74:540–50.

    PubMed  CAS  Google Scholar 

  55. Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA. 1982;79(24):7634–8.

    Article  PubMed  CAS  Google Scholar 

  56. Maier CM, Chan PH. Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist. 2002;8(4):323–34.

    Article  PubMed  CAS  Google Scholar 

  57. Delacourte A, Defossez A, Ceballos I, Nicole A, Sinet PM. Preferential localization of copper zinc superoxide dismutase in the vulnerable cortical neurons in Alzheimer’s disease. Neurosci Lett. 1988;92(3):247–53.

    Article  PubMed  CAS  Google Scholar 

  58. Ceballos I, Javoy-Agid F, Delacourte A, Defossez A, Lafon M, Hirsch E, et al. Neuronal localization of copper-zinc superoxide dismutase protein and mRNA within the human hippocampus from control and Alzheimer’s disease brains. Free Radic Res Commun. 1991;12–13(pt 2):571–80.

    Article  PubMed  Google Scholar 

  59. Liu XH, Kato H, Nakata N, Kogure K, Kato K. An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain Res. 1993;625(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  60. Matsuyama T, Michishita H, Nakamura H, Tsuchiyama M, Shimizu S, Watanabe K, et al. Induction of copper-zinc superoxide dismutase in gerbil hippocampus after ischemia. J Cereb Blood Flow Metab. 1993;13(1):135–44.

    PubMed  CAS  Google Scholar 

  61. Tajouri L, Mellick AS, Ashton KJ, Tannenberg AE, Nagra RM, Tourtellotte WW, et al. Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. Brain Res Mol Brain Res. 2003;119(2):170–83.

    Article  PubMed  CAS  Google Scholar 

  62. Qi X, Guy J, Nick H, Valentine J, Rao N. Increase of manganese superoxide dismutase, but not of Cu/Zn-SOD, in experimental optic neuritis. Invest Ophthalmol Vis Sci. 1997;38(6):1203–12.

    PubMed  CAS  Google Scholar 

  63. Guy J, Ellis EA, Hope GM, Rao NA. Antioxidant enzymes reduce loss of blood-brain barrier integrity in experimental optic neuritis. Arch Ophthalmol. 1989;107(9):1359–63.

    PubMed  CAS  Google Scholar 

  64. Guy J, Ellis EA, Hope GM, Rao NA. Influence of antioxidant enzymes in reduction of optic disc edema in experimental optic neuritis. J Free Radic Biol Med. 1986;2(5–6):349–57.

    Article  PubMed  CAS  Google Scholar 

  65. Shimizu K, Rajapakse N, Horiguchi T, Payne RM, Busija DW. Neuroprotection against hypoxia-ischemia in neonatal rat brain by novel superoxide dismutase mimetics. Neurosci Lett. 2003;346(1–2):41–4.

    Article  PubMed  CAS  Google Scholar 

  66. Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther. 2003;3(1):127–39.

    Article  PubMed  CAS  Google Scholar 

  67. Singh I, Paintlia AS, Khan M, Stanislaus R, Paintlia MK, Haq E, et al. Impaired peroxisomal function in the central nervous system with inflammatory disease of experimental autoimmune encephalomyelitis animals and protection by lovastatin treatment. Brain Res. 2004;1022(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  68. Guy J, Ellis EA, Hope GM, Rao NA. Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr Eye Res. 1989;8(5):467–77.

    Article  PubMed  CAS  Google Scholar 

  69. Guy J, Qi X, Hauswirth WW. Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proc Natl Acad Sci USA. 1998;95(23):13847–52.

    Article  PubMed  CAS  Google Scholar 

  70. Guy J, Qi X, Wang H, Hauswirth WW. Adenoviral gene therapy with catalase suppresses experimental optic neuritis. Arch Ophthalmol. 1999;117(11):1533–9.

    PubMed  CAS  Google Scholar 

  71. Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA. 1982;79(24):7634–8.

    Article  PubMed  CAS  Google Scholar 

  72. Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem. 1998;273(11):6297–302.

    Article  PubMed  CAS  Google Scholar 

  73. Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem. 2000;275(27):20346–54.

    Article  PubMed  CAS  Google Scholar 

  74. Hofmann B, Hecht HJ, Flohe L. Peroxiredoxins. Biol Chem. 2002;383(3-4):347–64.

    Article  PubMed  CAS  Google Scholar 

  75. Sarafian TA, Verity MA, Vinters HV, Shih CC, Shi L, Ji XD, et al. Differential expression of peroxiredoxin subtypes in human brain cell types. J Neurosci Res. 1999;56(2):206–12.

    PubMed  CAS  Google Scholar 

  76. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 2003;967(1–2):152–60.

    Article  PubMed  CAS  Google Scholar 

  77. Schreibelt G, van Horssen J, Haseloff RF, Reijerkerk A, Van Der Pol SM, Nieuwenhuizen O, et al. Protective effects of peroxiredoxin-1 at the injured blood-brain barrier. Free Radic Biol Med. 2008;45(3):256–64.

    Article  PubMed  CAS  Google Scholar 

  78. Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, et al. Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest. 2007;117(2):438–47.

    Article  PubMed  CAS  Google Scholar 

  79. Liu Y, Zhu B, Luo L, Li P, Paty DW, Cynader MS. Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. Neuroreport. 2001;12(9):1841–5.

    Article  PubMed  CAS  Google Scholar 

  80. Chakrabarty A, Emerson MR, LeVine SM. Heme oxygenase-1 in SJL mice with experimental allergic encephalomyelitis. Mult Scler. 2003;9(4):372–81.

    Article  PubMed  CAS  Google Scholar 

  81. Stahnke T, Stadelmann C, Netzler A, Bruck W, Richter-Landsberg C. Differential upregulation of heme oxygenase-1 (HSP32) in glial cells after oxidative stress and in demyelinating disorders. J Mol Neurosci. 2007;32(1):25–37.

    Article  PubMed  CAS  Google Scholar 

  82. Mehindate K, Sahlas DJ, Frankel D, Mawal Y, Liberman A, Corcos J, et al. Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis. J Neurochem. 2001;77(5):1386–95.

    Article  PubMed  CAS  Google Scholar 

  83. Emerson MR, LeVine SM. Heme oxygenase-1 and NADPH cytochrome P450 reductase expression in experimental allergic encephalomyelitis: an expanded view of the stress response. J Neurochem. 2000;75(6):2555–62.

    PubMed  CAS  Google Scholar 

  84. Liu Y, Zhu B, Wang X, Luo L, Li P, Paty DW, et al. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: implications for the role of oxidative stress in the development of multiple sclerosis. J Neuroimmunol. 2003;139(1–2):27–35.

    Article  PubMed  CAS  Google Scholar 

  85. Liu Y, Liu J, Tetzlaff W, Paty DW, Cynader MS. Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis. Free Radic Biol Med. 2006;40(6):960–7.

    Article  PubMed  CAS  Google Scholar 

  86. Beyer RE, Segura-Aguilar J, di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, et al. The two-electron quinone reductase DT-diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes. Mol Aspects Med. 1997;18(Suppl. 1):S15–S23.

    Article  Google Scholar 

  87. Cadenas E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem Pharmacol. 1995;49(2):127–40.

    Article  PubMed  CAS  Google Scholar 

  88. Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, et al. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol. 2004;65(5):1238–47.

    Article  PubMed  CAS  Google Scholar 

  89. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129(1-2):77–97.

    Article  PubMed  CAS  Google Scholar 

  90. Siegel D, Ross D. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic Biol Med. 2000;29(3-4):246–53.

    Article  PubMed  CAS  Google Scholar 

  91. Schultzberg M, Segura-Aguilar J, Lind C. Distribution of DT diaphorase in the rat brain: biochemical and immunohistochemical studies. Neuroscience. 1988;27(3):763–76.

    Article  PubMed  CAS  Google Scholar 

  92. van Muiswinkel FL, de Vos RA, Bol JG, Andringa G, Jansen Steur EN, Ross D, et al. Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging. 2004;25(9):1253–62.

    Article  PubMed  CAS  Google Scholar 

  93. van Horssen J, Schreibelt G, Bo L, Montagne L, Drukarch B, van Muiswinkel FL, et al. NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radic Biol Med. 2006;41(2):311–7.

    Article  PubMed  CAS  Google Scholar 

  94. SantaCruz KS, Yazlovitskaya E, Collins J, Johnson J, DeCarli C. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol Aging. 2004;25(1):63–9.

    Article  PubMed  CAS  Google Scholar 

  95. Long DJ, Jaiswal AK. NRH:quinone oxidoreductase 2 (NQO2). Chem Biol Interact. 2000;129(1-2):99–112.

    Article  PubMed  CAS  Google Scholar 

  96. Wierinckx A, Breve J, Mercier D, Schultzberg M, Drukarch B, Van Dam AM. Detoxication enzyme inducers modify cytokine production in rat mixed glial cells. J Neuroimmunol. 2005;166(1-2):132–43.

    Article  PubMed  CAS  Google Scholar 

  97. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60.

    Article  PubMed  CAS  Google Scholar 

  98. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem. 2005;280(24):22925–36.

    Article  PubMed  CAS  Google Scholar 

  99. Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005;25(44):10321–35.

    Article  PubMed  CAS  Google Scholar 

  100. Zhao J, Moore AN, Redell JB, Dash PK. Enhancing expression of Nrf2-driven genes protects the blood–brain barrier after brain injury. J Neurosci. 2007;27(38):10240–8.

    Article  PubMed  CAS  Google Scholar 

  101. Zhao J, Kobori N, Aronowski J, Dash PK. Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett. 2006;393(2–3):108–12.

    Article  PubMed  CAS  Google Scholar 

  102. Chen XL, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des. 2004;10(8):879–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from “The Dutch Foundation of MS Research,” The Netherlands (project numbers 05–567 MS and 05–358c MS (J. van Horssen) and MS 02–358 (H.E. de Vries), and the Institute for Clinical and Experimental Neurosciences, VU University Medical Center, Amsterdam, The Netherlands (G. Schreibelt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack van Horssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Vries, H.E., Schreibelt, G., van Horssen, J. (2011). Oxidative Stress in Multiple Sclerosis Pathology and Therapeutic Potential of Nrf2 Activation. In: Gadoth, N., Göbel, H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-514-9_5

Download citation

Publish with us

Policies and ethics