Skip to main content

Potential Role of Oxidative Damage in Neurological Manifestations of Acute Intermittent Porphyria

  • Chapter
  • First Online:
  • 1268 Accesses

Abstract

Accumulation of 5-aminolevulinic acid (ALA) is the main defect in acute porphyria and the most likely potential candidate to cause acute neurological manifestations during an acute porphyric attack via multiple direct and indirect mechanisms. ALA is a potential endogenous source of reactive oxygen species (ROS). After administration of ALA or inducers of ALA-synthase in in vitro conditions or in animal models, the main pro-oxidants detected have been superoxide, hydrogen peroxide, hydroxyl radicals, and 4,5-dioxovaleric acid (DOVA), which has produced oxidative damage (OD) to lipids, proteins, and DNA. At the organelle level, ALA-induced OD affects the permeability of the biological membranes, probably as a result of protein polymerization and lipid peroxidation. In vitro exposure to ALA has caused OD to Schwann cells and inhibited myelin formation. Magnetic resonance imaging (MRI) of patients with acute intermittent porphyria (AIP) who suffer from severe reversible posterior encephalopathy syndrome (PRES) during the acute attack shows features of impaired permeability of the blood–brain barrier (BBB); this could be the result of oxidative stress (OS) allowing neurotoxins such as ALA to damage neurons. Peripheral demyelination found in heterozygote or homozygote patients with AIP could be caused by direct OD caused by ALA, which produces pro-oxidants that may affect Schwann cells and myelin. Because ALA is not the most potent pro-oxidant, the OD is only a minor contributor to the neurological manifestations of AIP in general. It could, however, explain the fact that encephalopathy and peripheral demyelination are present only during severe attacks of AIP, in which the high level of serum ALA results in significant auto-oxidation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIP:

Acute intermittent porphyria

ALA:

5-Aminolevulinic acid

ALAS:

ALA synthase

BBB:

Blood–brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DHPY:

3,6-Dihydropyrazine-2,5-dipropanoic acid

DOVA:

4,5-Dioxovaleric acid

GABA:

Gamma amino butyric acid

HCP:

Hereditary coproporphyria

HMBS:

Hydroxymethylbilane synthase

MRI:

Magnetic resonance imaging

OD:

Oxidative damage

OS:

Oxidative stress

PBG:

Porphobilinogen

PNP:

Peripheral neuropathy, polyneuropathy

ROS:

Reactive oxygen species

SIADH:

Syndrome of inadequate secretion of antidiuretic hormone

VP:

Variegate porphyria

References

  1. Kauppinen R. Porphyrias. Lancet. 2005;365:241–52.

    CAS  PubMed  Google Scholar 

  2. Pischik E, Kauppinen R. Neurological manifestations of acute intermittent porphyria. Cell Mol Biol (Noisy-le-grand). 2009;55:72–83.

    CAS  Google Scholar 

  3. Meyer UA, Schuurmans MM, Lindberg RL. Acute porphyrias: pathogenesis of neurological manifestations. Semin Liver Dis. 1998;18:43–52.

    Article  CAS  PubMed  Google Scholar 

  4. Kauppinen R, von und zu Fraunberg M. Molecular and biochemical studies of acute intermittent porphyria in 196 patients and their families. Clin Chem. 2002;48:1891–900.

    CAS  PubMed  Google Scholar 

  5. Poh-Fitzpatrick MB. Molecular and cellular mechanisms of porphyrin photosensitization. Photodermatology. 1986;3:148–57.

    CAS  PubMed  Google Scholar 

  6. von und zu Fraunberg M, Timonen K, Mustajoki P, et al. Clinical and biochemical characteristics and genotype–phenotype correlation in Finnish variegate porphyria patients. Eur J Hum Genet. 2002;10:649–57.

    Article  CAS  PubMed  Google Scholar 

  7. Bechara EJ, Dutra F, Cardoso VE, et al. The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:88–110.

    Article  PubMed  CAS  Google Scholar 

  8. Strand LJ, Felsher BF, Redeker AG, et al. Heme biosynthesis in intermittent acute prophyria: decreased hepatic conversion of porphobilinogen to porphyrins and increased delta aminolevulinic acid synthetase activity. Proc Natl Acad Sci U S A. 1970;67:1315–20.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer UA, Strand LJ, Doss M, et al. Intermittent acute porphyria – demonstration of genetic defect in porphobilinogen metabolism. N Engl J Med. 1972;286:1277–82.

    Article  CAS  PubMed  Google Scholar 

  10. Sassa S, Solish G, Levere RD, et al. Studies in porphyria. IV. Expression of the gene defect of acute intermittent porphyria in cultured human skin fibroblasts and amniotic cells: prenatal diagnosis of the porphyric trait. J Exp Med. 1975;142:722–31.

    Article  CAS  PubMed  Google Scholar 

  11. Sassa S, Zalar GL, Kappas A. Studies in porphyria. VII. Induction of uroporphyrinogen-I synthase and expression of the gene defect of acute intermittent porphyria in mitogen-stimulated human lymphocytes. J Clin Invest. 1978;61:499–508.

    Article  CAS  PubMed  Google Scholar 

  12. Fraser DJ, Podvinec M, Kaufmann MR, et al. Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR). J Biol Chem. 2002;277:34717–26.

    Article  CAS  PubMed  Google Scholar 

  13. Handschin C, Lin J, Rhee J, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell. 2005;122:505–15.

    Article  CAS  PubMed  Google Scholar 

  14. Rodgers PA, Stevenson DK. Developmental biology of heme oxygenase. Clin Perinatol. 1990;17:275–91.

    CAS  PubMed  Google Scholar 

  15. Hift RJ, Meissner PN. An analysis of 112 acute porphyric attacks in Cape Town, South Africa: evidence that acute intermittent porphyria and variegate porphyria differ in susceptibility and severity. Medicine (Baltim). 2005;84:48–60.

    Article  Google Scholar 

  16. Mustajoki P, Nordmann Y. Early administration of heme arginate for acute porphyric attacks. Arch Intern Med. 1993;153:2004–8.

    Article  CAS  PubMed  Google Scholar 

  17. Jover R, Hoffmann F, Scheffler-Koch V, et al. Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital. Eur J Biochem. 2000;267:7128–37.

    Article  CAS  PubMed  Google Scholar 

  18. Loots JM, Becker DM, Meyer BJ, et al. The effect of porphyrin precursors on monosynaptic reflex activity in the isolated hemisected frog spinal cord. J Neural Transm. 1975;36:71–81.

    Article  CAS  PubMed  Google Scholar 

  19. Percy VA, Lamm MCTaljaard JJDelta-aminolaevulinic acid uptake, toxicity, and effect on [14C]gamma-aminobutyric acid uptake into neurons and glia in culture. J Neurochem. 1981;36:69–76.

    Article  CAS  PubMed  Google Scholar 

  20. Cutler MG, Mair J, Moore MR. Pharmacological activities of delta-aminolaevulinic acid, protoporphyrin IX and haemin in isolated preparations of rabbit gastric fundus and jejunum J Auton Pharmacol. 1990;10:119–26.

    Article  CAS  PubMed  Google Scholar 

  21. Sardh E, Harper P, Andersson DE, et al. Plasma porphobilinogen as a sensitive biomarker to monitor the clinical and therapeutic course of acute intermittent porphyria attacks. Eur J Intern Med. 2009;20:201–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mustajoki P, Timonen K, Gorchein A, et al. Sustained high plasma 5-aminolevulinic acid concentration in a volunteer: no porphyric symptoms. Eur J Clin Invest. 1992;22:407–11.

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda H, Casas A, Batlle A. Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. Int J Biochem Cell Biol. 2005;37:272–6.

    Article  CAS  PubMed  Google Scholar 

  24. Adhikari A, Penatti CA, Resende RR, et al. 5-Aminolevulinate and 4,5-dioxovalerate ions decrease GABA(A) receptor density in neuronal cells, synaptosomes and rat brain. Brain Res. 2006;1093:95–104.

    Article  CAS  PubMed  Google Scholar 

  25. Brennan MJ, Cantrill RC. Delta-aminolaevulinic acid and amino acid neurotransmitters. Mol Cell Biochem. 1981;38:49–58.

    Article  CAS  PubMed  Google Scholar 

  26. Princ FG, Juknat AA, Amitrano AA, et al. Effect of reactive oxygen species promoted by delta-aminolevulinic acid on porphyrin biosynthesis and glucose uptake in rat cerebellum. Gen Pharmacol. 1998;31:143–8.

    Article  CAS  PubMed  Google Scholar 

  27. Oteiza PI, Bechara EJ. 5-Aminolevulinic acid induces lipid peroxidation in cardiolipin-rich liposomes. Arch Biochem Biophys. 1993;305:282–7.

    Article  CAS  PubMed  Google Scholar 

  28. Vercesi AE, Castilho RF, Meinicke AR, et al. Oxidative damage of mitochondria induced by 5-aminolevulinic acid: role of Ca2+ and membrane protein thiols. Biochim Biophys Acta. 1994;1188:86–92.

    Article  CAS  PubMed  Google Scholar 

  29. Fraga CG, Onuki J, Lucesoli F, et al. 5-Aminolevulinic acid mediates the in vivo and in vitro formation of 8-hydroxy-2′-deoxyguanosine in DNA. Carcinogenesis (Oxf). 1994;15:2241–4.

    Article  CAS  Google Scholar 

  30. Felitsyn N, McLeod C, Shroads AL, et al. The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J Neurochem. 2008;106:2068–79.

    CAS  PubMed  Google Scholar 

  31. Hunter GA, Rivera E, Ferreira GC. Supraphysiological concentrations of 5-aminolevulinic acid dimerize in solution to produce superoxide radical anions via a protonated dihydropyrazine intermediate. Arch Biochem Biophys. 2005;437:128–37.

    Article  CAS  PubMed  Google Scholar 

  32. Onuki J, Rech CM, Medeiros MH, et al. Genotoxicity of 5-aminolevulinic and 4,5-dioxovaleric acids in the Salmonella/microsuspension mutagenicity assay and SOS chromotest. Environ Mol Mutagen. 2002;40:63–70.

    Article  CAS  PubMed  Google Scholar 

  33. Velosa AC, Baader WJ, Stevani CV, et al. 1,3-Diene probes for detection of triplet carbonyls in biological systems. Chem Res Toxicol. 2007;20:1162–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lee JC, Son YO, Choi KC, et al. Hydrogen peroxide induces apoptosis of BJAB cells due to formation of hydroxyl radicals via intracellular iron-mediated Fenton chemistry in glucose oxidase-mediated oxidative stress. Mol Cells. 2006;22:21–9.

    CAS  PubMed  Google Scholar 

  35. Timmins GS, Liu KJ, Bechara EJ, et al. Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO* and SO4*. Free Radic Biol Med. 1999;27:329–33.

    Article  CAS  PubMed  Google Scholar 

  36. Ummus RE, Onuki J, Dornemann D, et al. Measurement of 4,5-dioxovaleric acid by high-performance liquid chromatography and fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999;729:237–43.

    Article  CAS  PubMed  Google Scholar 

  37. Lelli SM, San Martin de Viale LC, Mazzetti MB. Response of glucose metabolism enzymes in an acute porphyria model. Role of reactive oxygen species. Toxicology. 2005;216:49–58.

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez JA, Martinez Mdel C, Gerez E, et al. Heme oxygenase, aminolevulinate acid synthetase and the antioxidant system in the brain of mice treated with porphyrinogenic drugs. Cell Mol Biol (Noisy-le-grand). 2005;51:487–94.

    CAS  Google Scholar 

  39. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49:481–93.

    CAS  PubMed  Google Scholar 

  40. Piao ZH, Yoon SR, Kim MS, et al. VDUP1 potentiates Ras-mediated angiogenesis via ROS production in endothelial cells. Cell Mol Biol (Noisy-le-grand). 2009;55:1096–103.

    Google Scholar 

  41. Calabrese V, Lodi R, Tonon C, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005;233:145–62.

    Article  CAS  PubMed  Google Scholar 

  42. Mitra S, Abraham E. Participation of superoxide in neutrophil activation and cytokine production. Biochim Biophys Acta. 2006;1762:732–41.

    CAS  PubMed  Google Scholar 

  43. Demasi M, Penatti CA, DeLuca R, et al. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implication in neuropsychiatric manifestation in porphyrias. Free Radic Biol Med. 1996;20:291–9.

    Article  CAS  PubMed  Google Scholar 

  44. Rocha ME, Dutra F, Bandy B, et al. Oxidative damage to ferritin by 5-aminolevulinic acid. Arch Biochem Biophys. 2003;409:349–56.

    Article  CAS  PubMed  Google Scholar 

  45. Hermes-Lima M, Castilho RF, Valle VG, et al. Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid. Biochim Biophys Acta. 1992;1180:201–6.

    CAS  PubMed  Google Scholar 

  46. Rocha ME, Bandy B, Costa CA, et al. Iron mobilization by succinylacetone methyl ester in rats. A model study for hereditary tyrosinemia and porphyrias characterized by 5-aminolevulinic acid overload. Free Radic Res. 2000;32:343–53.

    Article  CAS  PubMed  Google Scholar 

  47. Monteiro HP, Abdalla DS, Augusto O, et al. Free radical generation during d-aminolevulinic acid autooxidaation: induction by hemoglobin and connections with porphyrinopathies. Arch Biochem Biophys. 1989;271:206–16.

    Article  CAS  PubMed  Google Scholar 

  48. Mattson MP. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci. 2004;1012:37–50.

    Article  CAS  PubMed  Google Scholar 

  49. Hermes-Lima M. How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Radic Biol Med. 1995;19:381–90.

    Article  CAS  PubMed  Google Scholar 

  50. Douki T, Onuki J, Medeiros MH, et al. DNA alkylation by 4,5-dioxovaleric acid, the final oxidation product of 5-aminolevulinic acid. Chem Res Toxicol. 1998;11:150–7.

    Article  PubMed  Google Scholar 

  51. Penatti CA, Bechara EJ, Demasi M. Delta-aminolevulinic acid-induced synaptosomal Ca2+ uptake and mitochondrial permeabilization. Arch Biochem Biophys. 1996;335:53–60.

    Article  CAS  PubMed  Google Scholar 

  52. Medeiros MH, Marchiori PE, Bechara EJ. Superoxide dismutase, glutathione peroxidase, and catalase activities in the erythrocytes of patients with intermittent acute porphyria. Clin Chem. 1982;28:242–3.

    CAS  PubMed  Google Scholar 

  53. Ferrer MD, Tauler P, Sureda A, et al. Enzyme antioxidant defences and oxidative damage in red blood cells of variegate porphyria patients. Redox Rep. 2009;14:69–74.

    Article  CAS  PubMed  Google Scholar 

  54. Brown SB. The role of light in the treatment of non-melanoma skin cancer using methyl aminolevulinate. J Dermatol Treat. 2003;14 (suppl 3):11–4.

    CAS  Google Scholar 

  55. Friesen SA, Hjortland GO, Madsen SJ, et al. 5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). Int J Oncol. 2002;21:577–82.

    CAS  PubMed  Google Scholar 

  56. Frank J, Lambert C, Biesalski HK, et al. Intensified oxidative and nitrosative stress following combined ALA-based photodynamic therapy and local hyperthermia in rat tumors. Int J Cancer. 2003;107:941–8.

    Article  CAS  PubMed  Google Scholar 

  57. Wahlin S, Srikanthan N, Hamre B, et al. Protection from phototoxic injury during surgery and endoscopy in erythropoietic protoporphyria. Liver Transplant. 2008;14:1340–6.

    Article  Google Scholar 

  58. von und zu Fraunberg M, Pischik E, Udd L, et al. Clinical and biochemical characteristics and genotype-phenotype correlation in 143 Finnish and Russian patients with acute intermittent porphyria. Medicine (Baltim). 2005;84:35–47.

    Article  CAS  Google Scholar 

  59. Pischik E, Bulyanitsa A, Kazakov V, et al. Clinical features predictive of a poor prognosis in acute porphyria [letter]. J Neurol. 2004;251:1538–41.

    Article  PubMed  Google Scholar 

  60. Percy VA, Shanley BC. Porphyrin precursors in blood, urine and cerebrospinal fluid in acute porphyria. South Afr Med J. 1977;52:219.

    CAS  Google Scholar 

  61. Gorchein A, Webber R. d-Aminolaevulinic acid in plasma, cerebrospinal fluid, saliva and erythrocytes: studies in normal, uraemic and porphyric subjects. Clin Sci. 1987;72:103–12.

    CAS  PubMed  Google Scholar 

  62. King PH, Bragdon AC MRI reveals multiple reversible cerebral lesions in an attack of acute intermittent porphyria. Neurology. 1991;41:1300–2.

    CAS  PubMed  Google Scholar 

  63. Aggarwal A, Quint DJ, Lynch JP. MR imaging of porphyric encephalopathy. Am J Roentgenol. 1994;162:1218–20.

    CAS  Google Scholar 

  64. Kupferschmidt H, Bont A, Schnorf H, et al. Transient cortical blindness and bioccipital brain lesions in two patients with acute intermittent porphyria. Ann Intern Med. 1995;123:598–600.

    CAS  PubMed  Google Scholar 

  65. Black KS, Mirsky P, Kalina P, et al. Angiographic demonstration of reversible cerebral vasospasm in porphyric encephalopathy. Am J Neuroradiol. 1995;16:1650–2.

    CAS  PubMed  Google Scholar 

  66. Susa S, Daimon M, Morita Y, et al. Acute intermittent porphyria with central pontine myelinolysis and cortical laminar necrosis. Neuroradiology. 1999;41:835–9.

    Article  CAS  PubMed  Google Scholar 

  67. Garg MK, Mohaparto AK, Dugal JS, et al. Cortical blindness in acute intermittent porphyria. J Assoc Physicians India. 1999;47:727–9.

    CAS  PubMed  Google Scholar 

  68. Utz N, Kinkel B, Hedde JP, et al. MR imaging of acute intermittent porphyria mimicking reversible posterior leukoencephalopathy syndrome. Neuroradiology. 2001;43:1059–62.

    Article  CAS  PubMed  Google Scholar 

  69. Yen PS, Chen CJ, Lui CC, et al. Diffusion-weighted magnetic resonance imaging of porphyric encephalopathy: a case report. Eur Neurol. 2002;48:119–21.

    Article  PubMed  Google Scholar 

  70. Celik M, Forta H, Dalkilic T, et al. MRI reveals reversible lesions resembling posterior reversible encephalopathy in porphyria. Neuroradiology. 2002;44:839–41.

    Article  CAS  PubMed  Google Scholar 

  71. Engelhardt K, Trinka E, Franz G, et al. Refractory status epilepticus due to acute hepatic porphyria in a pregnant woman: induced abortion as the sole therapeutic option? Eur J Neurol. 2004;11:693–7.

    Article  CAS  PubMed  Google Scholar 

  72. Maramattom BV, Zaldivar RA, Glynn SM, et al. Acute intermittent porphyria presenting as a diffuse encephalopathy. Ann Neurol. 2005;57:581–4.

    Article  PubMed  Google Scholar 

  73. Wessels T, Blaes F, Rottger C, et al. Cortical amaurosis and status epilepticus with acute porphyria. Nervenarzt. 2005;76:992–5, 7–8.

    Article  CAS  PubMed  Google Scholar 

  74. Neal CR, Hunter AJ, Harper SJ, et al. Plasma from women with severe pre-eclampsia increases microvascular permeability in an animal model in vivo. Clin Sci (Lond). 2004;107:399–405.

    Article  CAS  Google Scholar 

  75. Smith KJ, Kapoor R, Felts PA. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol. 1999;9:69–92.

    Article  CAS  PubMed  Google Scholar 

  76. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev. 2006;22:257–73.

    Article  CAS  PubMed  Google Scholar 

  77. Ridley A. The neuropathy of acute intermittent porphyria. Q J Med. 1969;38:307–33.

    CAS  PubMed  Google Scholar 

  78. Albers JW, Robertson WC, Daube JR. Electrodiagnostic findings in acute porphyric neuropathy. Muscle Nerve. 1978;1:292–6.

    Article  CAS  PubMed  Google Scholar 

  79. Barohn RJ, Sanchez JA, Anderson KE. Acute peripheral neuropathy due to hereditary coproporphyria. Muscle Nerve. 1994;17:793–9.

    Article  CAS  PubMed  Google Scholar 

  80. Defanti CA, Sghirlanzoni A, Bottacchi E, et al. Porphyric neuropathy: a clinical, neurophysiological and morphological study. Ital J Neurol Sci. 1985;6:521–6.

    Article  CAS  PubMed  Google Scholar 

  81. Flugel KA, Druschky K-F. Electromyogram and nerve conduction in patients with acute intermittent porphyria. J Neurol. 1977;214:265–79.

    Article  Google Scholar 

  82. King PH, Petersen NE, Rakhra R, et al. Porphyria presenting with bilateral radial motor neuropathy: evidence of a novel gene mutation. Neurology. 2002;58:1118–21.

    CAS  PubMed  Google Scholar 

  83. Maytham DV, Eales L. Electrodiagnostic findings in porphyria. J Lab Clin Med. 1971;17:99–100.

    Google Scholar 

  84. Nagler W. Peripheral neuropathy in acute intermittent porphyrias. Arch Phys Med Rehabil. 1971;52:426–31.

    CAS  PubMed  Google Scholar 

  85. Reichenmiller HE, Zysno EA. Neuropsychiatrische Strörungen bei vier Fällen von akuter intermittierender Porphyrie. Verhandl Dtsch Gesellsch Med. 1970:748–52.

    Google Scholar 

  86. Stein JA, Tschudy DP. Acute intermittent porphyria: a clinical and biochemical study of 46 patients. Medicine (Baltim). 1970;49:1–16.

    CAS  Google Scholar 

  87. Wochnik-Dyjas D, Niewiadomska M, Kostrzewska E. Porphyric polyneuropathy and its pathogenesis in the light of electrophysiological investigations. J Neurol Sci. 1978;35:243–56.

    Article  CAS  PubMed  Google Scholar 

  88. Zimmerman EA, Lovelace R. The etiology of the neuropathy in acute intermittent porphyria. Trans Am Neurol Assoc. 1968;93:294–6.

    CAS  PubMed  Google Scholar 

  89. Kasper LD, Braunwald E, Fauci A, et al. Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2005.

    Google Scholar 

  90. Denny-Brown D, Sciarra D. Changes in the nervous system in acute porphyria. Brain. 1945;68:1–16.

    Article  Google Scholar 

  91. Gibson JB, Goldberg A. The neuropathology of acute porphyria. J Pathol Bacteriol. 1956;71:495–506.

    Article  CAS  PubMed  Google Scholar 

  92. Hierons R. Changes in the nervous system in acute porphyria. Brain. 1957;80:176–92.

    Article  CAS  PubMed  Google Scholar 

  93. Anzil AP, Dozhic S. Peripheral nerve changes in porphyric neuropathy: findings in sural nerve biopsy. Acta Neuropathol. 1978;42:121–6.

    Article  CAS  PubMed  Google Scholar 

  94. Suarez JI, Cohen ML, Larkin J, et al. Acute intermittent porphyria: clinicopathological correlation. Report of a case and review of the literature. Neurology. 1997;48:1678–83.

    CAS  PubMed  Google Scholar 

  95. Pischik E. Neurological manifestations and molecular genetics of acute intermittent porphyria in North Western Russia. Helsinki: University of Helsinki; 2006.

    Google Scholar 

  96. Solis C, Martinez-Bermejo A, Naidich TP, et al. Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol. 2004;61:1764–70.

    Article  PubMed  Google Scholar 

  97. Juknat AA, Kotler ML, Quaglino A, et al. Necrotic cell death induced by delta-aminolevulinic acid in mouse astrocytes. Protective role of melatonin and other antioxidants. J Pineal Res. 2003;35:1–11.

    Article  CAS  PubMed  Google Scholar 

  98. Karbownik M, Reiter RJ. Melatonin protects against oxidative stress caused by delta-aminolevulinic acid: implications for cancer reduction. Cancer Invest. 2002;20:276–86.

    Article  CAS  PubMed  Google Scholar 

  99. Noriega GO, Tomaro ML, del Batlle AM. Bilirubin is highly effective in preventing in vivo delta-aminolevulinic acid-induced oxidative cell damage. Biochim Biophys Acta. 2003;1638:173–8.

    CAS  PubMed  Google Scholar 

  100. Huang WC, Juang SW, Liu IM, et al. Changes of superoxide dismutase gene expression and activity in the brain of streptozotocin-induced diabetic rats. Neurosci Lett. 1999;275:28–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pischik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pischik, E., Kauppinen, R. (2011). Potential Role of Oxidative Damage in Neurological Manifestations of Acute Intermittent Porphyria. In: Gadoth, N., Göbel, H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-514-9_16

Download citation

Publish with us

Policies and ethics