Skip to main content

Tetrahydrobiopterin Deficiency

  • Chapter
  • First Online:
Oxidative Stress and Free Radical Damage in Neurology

Abstract

Tetrahydrobiopterin has been well described as an essential cofactor for the synthesis of the neurotransmitters dopamine, norepinephrine, and serotonin. A delicate balance of tetrahydrobiopterin is also crucial for the maintenance of the oxidative environment within cells through its involvement in the nitric oxide synthase system. Failure of this system results in the production of large amounts of free radicals that serve to impair the mitochondrial electron transport chain and ultimately decrease cellular production of ATP. Tetrahydrobiopterin deficiency has been linked to many neurological disorders including atypical phenylketonuria, dystonia, Parkinson’s disease, Alzheimer’s disease, depression, and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foxton RH, Land JM, Heales SJR. Tetrahydrobiopterin availability in Parkinson’s and Alzheimer’s disease; potential pathogenic mechanisms. Neurochem Res. 2007;32:751–6.

    Article  CAS  PubMed  Google Scholar 

  2. Heales SJ, Blair JA, Meinschad C, Ziegler I. Inhibition of monocyte luminol-dependent chemiluminescence by tetrahydrobiopterin, and the free radical oxidation of tetrahydrobiopterin, dihydrobiopterin, and dihydroneopterin. Cell Biochem Funct. 1988;6:191–5.

    Article  CAS  PubMed  Google Scholar 

  3. Koshimura K, Murakami Y, Tanaka J, Kato Y. The role of 6R-tetrahydrobiopterin in the nervous system. Prog Neurobiol. 2000;61:415–38.

    Article  CAS  PubMed  Google Scholar 

  4. Thony B, Auerback G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347:1–16.

    Article  CAS  PubMed  Google Scholar 

  5. Gross SS, Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem. 1992;267:25722–9.

    CAS  PubMed  Google Scholar 

  6. Dal Pra I, Chiarini A, Nemeth EF, et al. Roles of Ca2+ and the Ca2+-sensing receptor (CASR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes. J Cell Biochem. 2005;96:428–38.

    Article  CAS  PubMed  Google Scholar 

  7. Moens AL, Kass DA. Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease. J Cardiovasc Phamacol. 2007;50:238–46.

    Article  CAS  Google Scholar 

  8. Kaufman S. Studies on the mechanism of the enzymatic conversion of pheylalanine to tyrosine. J Biol Chem. 1959;234:2677–82.

    CAS  PubMed  Google Scholar 

  9. Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–7.

    CAS  PubMed  Google Scholar 

  10. Lovenberg W, Jequier E, Sjoerdsma. Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science. 1967;155:217–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bec N, Gorren AFC, Mayer B, et al. The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase. J Inorg Biochem. 2000;81:207–11.

    Article  CAS  PubMed  Google Scholar 

  12. Lam AAJ, Hyland K, Heales SJR. Tetrahydrobiopterin availability, nitric oxide metabolism and glutathione status in the hph-1 mouse; implications for the pathogenesis and treatment of tetrahydrobiopterin deficiency states. J Inherit Metab Dis. 2007;30:256–62.

    Article  CAS  PubMed  Google Scholar 

  13. Kwon NS, Nathan CF, Stuehr DJ. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989;264:20496–501.

    CAS  PubMed  Google Scholar 

  14. Dunbar AY, Jenkins GJ, Jianmongkol S, Nakatsuka M, Lowe ER, Lau M, Osawa Y. Tetrahydrobiopterin protects against guanabenz-mediated inhibition of neuronal nitric-oxide synthase in vitro and in vivo. Drug Metab Dispos. 2006;34:1448–56.

    Article  CAS  PubMed  Google Scholar 

  15. Gorren AC, Mayer B. Tetrahydrobiopterin in nitric oxide synthesis: a novel biological role for pteridines. Curr Drug Metab. 2002;3:133–57.

    Article  CAS  PubMed  Google Scholar 

  16. Heales SJR, Canevari L, Brand MP, et al. Cerebrospinal fluid nitrite plus nitrate correlates with tetrahydrobiopterin concentration. J Inherit Metab Dis. 1999;22:221–3.

    Article  CAS  PubMed  Google Scholar 

  17. Tayeh MA, Marletta MA. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989;264:19654–8.

    CAS  PubMed  Google Scholar 

  18. Vasquez-Vivar J, Kalyanaraman B, Martasek P. The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res. 2003;37:121–127.

    Article  CAS  PubMed  Google Scholar 

  19. Wei CC, Wang ZQ, Wang Q, et al. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase. J Biol Chem. 2001;276:315–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rafferty SP, Boyington JC, Kulansky R, et al. Stoichiometric arginine binding in the oxygenase domain of inducible nitric oxide synthase requires a single molecule of tetrahydrobiopterin per dimer. Biochem Biophys Res Commun. 1999;257:344–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hara Y, Teramoto K, Ishidate K, et al. Cytoprotective function of tetrahydrobiopterin in rat liver ischemia/reperfusion injury. Surgery (St. Louis). 2006;139:377–84.

    PubMed  Google Scholar 

  22. Berka V, Wang LH, Tsai AL. Oxygen-induced radical intermediates in the nNOS oxygenase domain regulated by L-arginine, tetrahydrobiopterin, and thiol. Biochemistry. 2008;47:405–20.

    Article  CAS  PubMed  Google Scholar 

  23. Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Phamacol Ther. 2003;99:45–53.

    Article  CAS  Google Scholar 

  24. Brand MP, Helaes SJR, Land JM, et al. Tetrahydrobiopterin deficiency and nitric oxide metabolism in the hph-1 mouse. J Inherit Metab Dis. 1995;18:33–9.

    Article  CAS  PubMed  Google Scholar 

  25. Cosentino F, Barker JE, Brand MP, et al. Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:496–502.

    CAS  PubMed  Google Scholar 

  26. Bendall JK, Alp NJ, Warrick N, et al. Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial targeted GTP cyclohydrolase 1 and eNOS overexpression. Circ Res. 2005;97:864–71.

    Article  CAS  PubMed  Google Scholar 

  27. Pou S, Pou WS, Bredt DS, et al. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992;267:24173–6.

    CAS  PubMed  Google Scholar 

  28. Choi HJ, Lee SY, Cho Y, et al. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson’s disease. Neurochem Int. 2006;48:255–62.

    Article  CAS  PubMed  Google Scholar 

  29. Heales SJR, Bolanos JP. Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem Int. 2002;40:469–74.

    Article  CAS  PubMed  Google Scholar 

  30. Bolanos JP, Peuchen S, Heales SJR, et al. Nitric oxide mediated inhibition of the mitochondrial electron transport chain in cultured astrocytes. J Neurochem. 1994;63:910–6.

    Article  CAS  PubMed  Google Scholar 

  31. Bolanos JP, Heales SJR, Land JM, et al. Effect of peroxynitrite on the mitochondrial respiratory chain; differential effects of neurons and astrocytes in primary culture. J Neurochem. 1995;64:1965–72.

    Article  CAS  PubMed  Google Scholar 

  32. Butler IJ, Holtzman NA, Kaufman S, et al. Phenylketonuria due to deficiency of dihydropteridine reductase. Pediatr Res. 1975;9:348.

    Google Scholar 

  33. Kaufman S, Holtzman NA, Milstien S, et al. Phenylketonuria due to a deficiency of dihydropteridine reductase. N Engl J Med. 1975;293:785–90.

    Article  CAS  PubMed  Google Scholar 

  34. Ponzone A, Spada M, Ferraris S, et al. Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev. 2004;24:127–50.

    Article  CAS  PubMed  Google Scholar 

  35. Segawa M, Nomura Y, Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol. 2003;54:S32–45.

    Article  CAS  PubMed  Google Scholar 

  36. Hahn H, Trant MR, Brownstein MJ, et al. Neurologic and psychiatric manifestations in a family with a mutation in exon 2 of the guanosine triphosphate-cyclohydrolase gene. Arch Neurol. 2001;58:749–55.

    Article  CAS  PubMed  Google Scholar 

  37. Segawa M, Nomura Y. Hereditary progressive dystonia with marked diurnal fluctuation. Pathophysiological importance of the age of onset. Adv Neurol. 1993;60:568–76.

    CAS  PubMed  Google Scholar 

  38. Assman B, Kohler M, Hoffman GF, et al. Selective decrease in central nervous system serotonin turnover in children with dopa-nonresponsive dystonia. Pediatr Res. 2002;52:91–4.

    Article  Google Scholar 

  39. Chae SW, Bang YJ, Kim KM, et al. Role of cyclooxygenase-2 in tetrahydrobiopterin-induced dopamine oxidation. Biochem Biophys Res Commun. 2007;359:735–41.

    Article  CAS  PubMed  Google Scholar 

  40. Kim ST, Choi JH, Chang JW, et al. Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system. J Neurochem. 2005;95:89–98.

    Article  CAS  PubMed  Google Scholar 

  41. Fujishiro K, Hagihara M, Takahashi A, Nagatsu T. Concentrations of neopterin and biopterin in the cerebrospinal fluid of patients with Parkinson’s disease. Biochem Med Metab Biol. 1990;44:97–100.

    Article  CAS  PubMed  Google Scholar 

  42. Kay AD, Milstien S, Kaufman S, et al. Cerebrospinal fluid biopterin is decreased in Alzheimer’s disease. Arch Neurol. 1986;43:996–9.

    CAS  PubMed  Google Scholar 

  43. Choi JH, Jang YJ, Kim JH, et al. Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress. Mol Pharmacol. 2000;58:633–40.

    CAS  PubMed  Google Scholar 

  44. Choi HJ, Kim SW, Lee SY, et al. Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease. J Neurochem. 2003;86:143–52.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SY, Moon Y, Choi DH, et al. Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: relevance to Parkinson’s disease. Neurobiol Dis. 2007;24:112–20.

    Article  Google Scholar 

  46. Miura H, Kitagami T, Ozaki N. Suppressive effect of paroxetine, a selective serotonin uptake inhibitor, on tetrahydrobiopterin levels and dopamine as well as serotonin turnover in the mesoprefrontal system of mice. Synapse. 2007;61:698–706.

    Article  CAS  PubMed  Google Scholar 

  47. Richardson MA, Read LL, Clelland CLT, et al. Evidence for a tetrahydrobiopterin deficit in schizophrenia. Neuropsychobiology. 2005;52:190–201.

    Article  CAS  PubMed  Google Scholar 

  48. Tegeder I, Costigan M, Griffin RS, et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat Med. 2006;12:1269–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koenig, M.K., Butler, I.J. (2011). Tetrahydrobiopterin Deficiency. In: Gadoth, N., Göbel, H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-514-9_13

Download citation

Publish with us

Policies and ethics