Skip to main content

Advanced Lipid Testing

  • Chapter
  • First Online:
Book cover Hyperlipidemia in Primary Care

Part of the book series: Current Clinical Practice ((CCP))

  • 825 Accesses

Abstract

A high serum cholesterol is a well-established major risk factor for coronary heart disease (CHD). Evidence that supports the lipid hypothesis includes research in animal models, epidemiological studies, studies of genetic forms of hyperlipidemia, and laboratory and clinical trials of cholesterol-lowering therapy. Low-density lipoprotein cholesterol (LDL-C) is the major atherogenic lipoprotein and has been designated the primary target of therapy by the National Cholesterol Education Program (NCEP) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106(25):3143–421.

    Google Scholar 

  2. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    PubMed  CAS  Google Scholar 

  3. DeLong DM, DeLong ER, Wood PD, Lippel K, Rifkind BM. A comparison of methods for the estimation of plasma low- and very low-density lipoprotein cholesterol. The Lipid Research Clinics Prevalence Study. JAMA. 1986;256(17):2372–7.

    Article  PubMed  CAS  Google Scholar 

  4. Branchi A, Rovellini A, Torri A, Sommariva D. Accuracy of calculated serum low-density lipoprotein cholesterol for the assessment of coronary heart disease risk in NIDDM patients. Diabetes Care. 1998;21(9):1397–402.

    Article  PubMed  CAS  Google Scholar 

  5. Wilson PW, Zech LA, Gregg RE, et al. Estimation of VLDL cholesterol in hyperlipidemia. Clin Chim Acta. 1985;151(3):285–91.

    Article  PubMed  CAS  Google Scholar 

  6. Nauck M, Warnick GR, Rifai N. Methods for measurement of LDL-cholesterol: a critical assessment of direct measurement by homogeneous assays versus calculation. Clin Chem. 2002;48(2):236–54.

    PubMed  CAS  Google Scholar 

  7. Friday KE. Specialized lipid profiles. Curr Atheroscler Rep. 2002;4(5):359–62.

    Article  PubMed  Google Scholar 

  8. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982;23(1):97–104.

    PubMed  CAS  Google Scholar 

  9. Sniderman A, Shapiro S, Marpole D, Skinner B, Teng B, Kwiterovich Jr PO. Association of coronary atherosclerosis with hyperapobetalipoproteinemia [increased protein but normal cholesterol levels in human plasma low density (beta) lipoproteins]. Proc Natl Acad Sci USA. 1980;77(1):604–8.

    Article  PubMed  CAS  Google Scholar 

  10. Roheim PS, Asztalos BF. Clinical significance of lipoprotein size and risk for coronary atherosclerosis. Clin Chem. 1995;41(1):147–52.

    PubMed  CAS  Google Scholar 

  11. Campos H, Blijlevens E, McNamara JR, et al. LDL particle size distribution. Results from the Framingham Offspring Study. Arterioscler Thromb. 1992;12(12):1410–9.

    Article  PubMed  CAS  Google Scholar 

  12. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506.

    Article  PubMed  CAS  Google Scholar 

  13. Kathiresan S, Otvos JD, Sullivan LM, et al. Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation. 2006;113(1):20–9.

    Article  PubMed  CAS  Google Scholar 

  14. Selby JV, Austin MA, Newman B, et al. LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation. 1993;88(2):381–7.

    PubMed  CAS  Google Scholar 

  15. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA. 1996;276(11):875–81.

    Article  PubMed  CAS  Google Scholar 

  16. Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA. 1996;276(11):882–8.

    Article  PubMed  CAS  Google Scholar 

  17. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 1997;95(1):69–75.

    PubMed  CAS  Google Scholar 

  18. Austin MA. Triglyceride, small, dense low-density lipoprotein, and the atherogenic lipoprotein phenotype. Curr Atheroscler Rep. 2000;2(3):200–7.

    Article  PubMed  CAS  Google Scholar 

  19. Koba S, Hirano T, Kondo T, et al. Significance of small dense low-density lipoproteins and other risk factors in patients with various types of coronary heart disease. Am Heart J. 2002;144(6):1026–35.

    Article  PubMed  CAS  Google Scholar 

  20. Arsenault BJ, Lemieux I, Despres JP, et al. Cholesterol levels in small LDL particles predict the risk of coronary heart disease in the EPIC-Norfolk prospective population study. Eur Heart J. 2007;28(22):2770–7.

    Article  PubMed  CAS  Google Scholar 

  21. Miller BD, Alderman EL, Haskell WL, Fair JM, Krauss RM. Predominance of dense low-density lipoprotein particles predicts angiographic benefit of therapy in the Stanford Coronary Risk Intervention Project. Circulation. 1996;94(9):2146–53.

    PubMed  CAS  Google Scholar 

  22. Zambon A, Hokanson JE, Brown BG, Brunzell JD. Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density. Circulation. 1999;99(15):1959–64.

    PubMed  CAS  Google Scholar 

  23. Azadbakht L, Mirmiran P, Hedayati M, Esmaillzadeh A, Shiva N, Azizi F. Particle size of LDL is affected by the National Cholesterol Education Program (NCEP) step II diet in dyslipidaemic adolescents. Br J Nutr. 2007;98(1):134–9.

    Article  PubMed  CAS  Google Scholar 

  24. Goulet J, Lamarche B, Charest A, et al. Effect of a nutritional intervention promoting the Mediterranean food pattern on electrophoretic characteristics of low-density lipoprotein particles in healthy women from the Quebec City metropolitan area. Br J Nutr. 2004;92(2):285–93.

    Article  PubMed  CAS  Google Scholar 

  25. Barakat HA, Carpenter JW, McLendon VD, et al. Influence of obesity, impaired glucose tolerance, and NIDDM on LDL structure and composition. Possible link between hyperinsulinemia and atherosclerosis. Diabetes. 1990;39(12):1527–33.

    Article  PubMed  CAS  Google Scholar 

  26. Caixas A, Ordonez-Llanos J, de Leiva A, Payes A, Homs R, Perez A. Optimization of glycemic control by insulin therapy decreases the proportion of small dense LDL particles in diabetic patients. Diabetes. 1997;46(7):1207–13.

    Article  PubMed  CAS  Google Scholar 

  27. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28(7):1547–54.

    Article  PubMed  CAS  Google Scholar 

  28. Superko HR, Krauss RM. Differential effects of nicotinic acid in subjects with different LDL subclass patterns. Atherosclerosis. 1992;95(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  29. Guerin M, Bruckert E, Dolphin PJ, Turpin G, Chapman MJ. Fenofibrate reduces plasma cholesteryl ester transfer from HDL to VLDL and normalizes the atherogenic, dense LDL profile in combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1996;16(6):763–72.

    Article  PubMed  CAS  Google Scholar 

  30. Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113(12):1556–63.

    Article  PubMed  CAS  Google Scholar 

  31. Caslake MJ, Stewart G, Day SP, et al. Phenotype-dependent and -independent actions of rosuvastatin on atherogenic lipoprotein subfractions in hyperlipidaemia. Atherosclerosis. 2003;171(2):245–53.

    Article  PubMed  CAS  Google Scholar 

  32. Sirtori CR, Calabresi L, Pisciotta L, et al. Effect of statins on LDL particle size in patients with familial combined hyperlipidemia: a comparison between atorvastatin and pravastatin. Nutr Metab Cardiovasc Dis. 2005;15(1):47–55.

    Article  PubMed  Google Scholar 

  33. Kulkarni KR, Garber DW, Marcovina SM, Segrest JP. Quantification of cholesterol in all lipoprotein classes by the VAP-II method. J Lipid Res. 1994;35(1):159–68.

    PubMed  CAS  Google Scholar 

  34. Kulkarni KR, Garber DW, Jones MK, Segrest JP. Identification and cholesterol quantification of low density lipoprotein subclasses in young adults by VAP-II methodology. J Lipid Res. 1995;36(11):2291–302.

    PubMed  CAS  Google Scholar 

  35. Kuller L, Arnold A, Tracy R, et al. Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the cardiovascular health study. Arterioscler Thromb Vasc Biol. 2002;22(7):1175–80.

    Article  PubMed  CAS  Google Scholar 

  36. Rosenson RS, Otvos JD, Freedman DS. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. Am J Cardiol. 2002;90(2):89–94.

    Article  PubMed  CAS  Google Scholar 

  37. Blake GJ, Otvos JD, Rifai N, Ridker PM. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;106(15):1930–7.

    Article  PubMed  CAS  Google Scholar 

  38. Cromwell WC, Otvos JD, Keyes MJ, et al. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study – implications for LDL management. J Clin Lipidol. 2007;1:583–92.

    Article  PubMed  Google Scholar 

  39. Cromwell WC, Otvos JD. Heterogeneity of low-density lipoprotein particle number in patients with type 2 diabetes mellitus and low-density lipoprotein cholesterol <100 mg/dl. Am J Cardiol. 2006;98(12):1599–602.

    Article  PubMed  CAS  Google Scholar 

  40. Cui Y, Blumenthal RS, Flaws JA, et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161(11):1413–9.

    Article  PubMed  CAS  Google Scholar 

  41. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE. Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA. 2005;294(3):326–33.

    Article  PubMed  CAS  Google Scholar 

  42. Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation. 2005;112(22):3375–83.

    Article  PubMed  CAS  Google Scholar 

  43. Ingelsson E, Schaefer EJ, Contois JH, et al. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA. 2007;298(7):776–85.

    Article  PubMed  CAS  Google Scholar 

  44. Lu W, Resnick HE, Jablonski KA, et al. Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes: the strong heart study. Diabetes Care. 2003;26(1):16–23.

    Article  PubMed  Google Scholar 

  45. Liu J, Sempos C, Donahue RP, Dorn J, Trevisan M, Grundy SM. Joint distribution of non-HDL and LDL cholesterol and coronary heart disease risk prediction among individuals with and without diabetes. Diabetes Care. 2005;28(8):1916–21.

    Article  PubMed  Google Scholar 

  46. Bittner V, Hardison R, Kelsey SF, Weiner BH, Jacobs AK, Sopko G. Non-high-density lipoprotein cholesterol levels predict five-year outcome in the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 2002;106(20):2537–42.

    Article  PubMed  CAS  Google Scholar 

  47. Abate N, Vega GL, Grundy SM. Variability in cholesterol content and physical properties of lipoproteins containing apolipoprotein B-100. Atherosclerosis. 1993;104(1–2):159–71.

    Article  PubMed  CAS  Google Scholar 

  48. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet. 2001;358(9298):2026–33.

    Article  PubMed  CAS  Google Scholar 

  49. Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Quebec cardiovascular study. Circulation. 1996;94(3):273–8.

    PubMed  CAS  Google Scholar 

  50. Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2001;104(10):1108–13.

    Article  PubMed  CAS  Google Scholar 

  51. Sniderman AD. How, when, and why to use apolipoprotein B in clinical practice. Am J Cardiol. 2002;90(8A):48i–54i.

    Article  PubMed  CAS  Google Scholar 

  52. Gotto Jr AM, Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation. 2000;101(5):477–84.

    PubMed  CAS  Google Scholar 

  53. Kastelein JJ, van der Steeg WA, Holme I, et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation. 2008;117(23):3002–9.

    Article  PubMed  CAS  Google Scholar 

  54. Brunzell JD, Davidson M, Furberg CD, et al. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care. 2008;31(4):811–22.

    Article  PubMed  CAS  Google Scholar 

  55. Contois JH, McNamara JR, Lammi-Keefe CJ, Wilson PW, Massov T, Schaefer EJ. Reference intervals for plasma apolipoprotein B determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study. Clin Chem. 1996;42(4):515–23.

    PubMed  CAS  Google Scholar 

  56. Ballantyne CM, Bertolami M, Hernandez Garcia HR, et al. Achieving LDL cholesterol, non-HDL cholesterol, and apolipoprotein B target levels in high-risk patients: measuring Effective Reductions in Cholesterol Using Rosuvastatin therapY (MERCURY) II. Am Heart J. 2006;151(5):975.e1–9.

    Article  CAS  Google Scholar 

  57. Koschinsky ML. Lipoprotein(a) and atherosclerosis: new perspectives on the mechanism of action of an enigmatic lipoprotein. Curr Atheroscler Rep. 2005;7(5):389–95.

    Article  PubMed  CAS  Google Scholar 

  58. Sorrentino MJ, Vielhauer C, Eisenbart JD, Fless GM, Scanu AM, Feldman T. Plasma lipoprotein (a) protein concentration and coronary artery disease in black patients compared with white patients. Am J Med. 1992;93(6):658–62.

    Article  PubMed  CAS  Google Scholar 

  59. Bhatnagar D, Anand IS, Durrington PN, et al. Coronary risk factors in people from the Indian subcontinent living in west London and their siblings in India. Lancet. 1995;345(8947):405–9.

    Article  PubMed  CAS  Google Scholar 

  60. Geethanjali FS, Jose VJ, Kanagasabapathy AS. Lipoprotein (a) phenotypes in south Indian patients with coronary artery disease. Indian Heart J. 2002;54(1):50–3.

    PubMed  CAS  Google Scholar 

  61. Sharobeem KM, Patel JV, Ritch AE, Lip GY, Gill PS, Hughes EA. Elevated lipoprotein (a) and apolipoprotein B to AI ratio in South Asian patients with ischaemic stroke. Int J Clin Pract. 2007;61(11):1824–8.

    Article  PubMed  CAS  Google Scholar 

  62. Scanu AM. Lp(a) lipoprotein–coping with heterogeneity. N Engl J Med. 2003;349(22):2089–90.

    Article  PubMed  CAS  Google Scholar 

  63. Marcovina SM, Albers JJ, Scanu AM, et al. Use of a reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). Clin Chem. 2000;46(12):1956–67.

    PubMed  CAS  Google Scholar 

  64. Danesh J, Collins R, Peto R. Lipoprotein(a) and coronary heart disease. Meta-analysis of prospective studies. Circulation. 2000;102(10):1082–5.

    PubMed  CAS  Google Scholar 

  65. Marcovina SM, Koschinsky ML. Evaluation of lipoprotein(a) as a prothrombotic factor: progress from bench to bedside. Curr Opin Lipidol. 2003;14(4):361–6.

    Article  PubMed  CAS  Google Scholar 

  66. Chapman MJ, Goldstein S, Lagrange D, Laplaud PM. A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J Lipid Res. 1981;22(2):339–58.

    PubMed  CAS  Google Scholar 

  67. Anderson DW, Nichols AV, Forte TM, Lindgren FT. Particle distribution of human serum high density lipoproteins. Biochim Biophys Acta. 1977;493(1):55–68.

    PubMed  CAS  Google Scholar 

  68. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58(3):342–74.

    Article  PubMed  CAS  Google Scholar 

  69. van der Steeg WA, Holme I, Boekholdt SM, et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol. 2008;51(6):634–42.

    Article  PubMed  CAS  Google Scholar 

  70. Rader DJ, Hoeg JM, Brewer Jr HB. Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease. Ann Intern Med. 1994;120(12):1012–25.

    PubMed  CAS  Google Scholar 

  71. Thompson A, Danesh J. Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: a literature-based meta-analysis of prospective studies. J Intern Med. 2006;259(5):481–92.

    Article  PubMed  CAS  Google Scholar 

  72. McQueen MJ, Hawken S, Wang X, et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet. 2008;372(9634):224–33.

    Article  PubMed  CAS  Google Scholar 

  73. Yeh ET, Willerson JT. Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation. 2003;107(3):370–1.

    Article  PubMed  Google Scholar 

  74. Albert MA, Glynn RJ, Ridker PM. Plasma concentration of C-reactive protein and the calculated Framingham Coronary Heart Disease Risk Score. Circulation. 2003;108(2):161–5.

    Article  PubMed  CAS  Google Scholar 

  75. Koenig W, Lowel H, Baumert J, Meisinger C. C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany. Circulation. 2004;109(11):1349–53.

    Article  PubMed  Google Scholar 

  76. Wilson PW, Nam BH, Pencina M, D’Agostino Sr RB, Benjamin EJ, O’Donnell CJ. C-reactive protein and risk of cardiovascular disease in men and women from the Framingham Heart Study. Arch Intern Med. 2005;165(21):2473–8.

    Article  PubMed  CAS  Google Scholar 

  77. Folsom AR, Chambless LE, Ballantyne CM, et al. An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the atherosclerosis risk in communities study. Arch Intern Med. 2006;166(13):1368–73.

    Article  PubMed  CAS  Google Scholar 

  78. Lloyd-Jones DM, Tian L. Predicting cardiovascular risk: so what do we do now? Arch Intern Med. 2006;166(13):1342–4.

    Article  PubMed  Google Scholar 

  79. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344(26):1959–65.

    Article  PubMed  CAS  Google Scholar 

  80. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336(14):973–9.

    Article  PubMed  CAS  Google Scholar 

  81. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107(3):363–9.

    Article  PubMed  Google Scholar 

  82. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282(22):2131–5.

    Article  PubMed  CAS  Google Scholar 

  83. McLaughlin T, Abbasi F, Lamendola C, et al. Differentiation between obesity and insulin resistance in the association with C-reactive protein. Circulation. 2002;106(23):2908–12.

    Article  PubMed  CAS  Google Scholar 

  84. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107(3):391–7.

    Article  PubMed  Google Scholar 

  85. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1998;98(9):839–44.

    PubMed  CAS  Google Scholar 

  86. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med. 1994;331(7):417–24.

    Article  PubMed  CAS  Google Scholar 

  87. Rebuzzi AG, Quaranta G, Liuzzo G, et al. Incremental prognostic value of serum levels of troponin T and C-reactive protein on admission in patients with unstable angina pectoris. Am J Cardiol. 1998;82(6):715–9.

    Article  PubMed  CAS  Google Scholar 

  88. Biasucci LM, Liuzzo G, Grillo RL, et al. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation. 1999;99(7):855–60.

    PubMed  CAS  Google Scholar 

  89. Kinlay S, Schwartz GG, Olsson AG, et al. High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation. 2003;108(13):1560–6.

    Article  PubMed  CAS  Google Scholar 

  90. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.

    Article  PubMed  CAS  Google Scholar 

  91. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511.

    Article  PubMed  Google Scholar 

  92. Ridker PM. Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation. 2003;108(19):2292–7.

    Article  PubMed  Google Scholar 

  93. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25(5):923–31.

    Article  PubMed  CAS  Google Scholar 

  94. Lerman A, McConnell JP. Lipoprotein-associated phospholipase A2: a risk marker or a risk factor? Am J Cardiol. 2008;101(12A):11F–22F.

    Article  PubMed  CAS  Google Scholar 

  95. Packard CJ, O’Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med. 2000;343(16):1148–55.

    Article  PubMed  CAS  Google Scholar 

  96. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004;109(7):837–42.

    Article  PubMed  CAS  Google Scholar 

  97. Corson MA, Jones PH, Davidson MH. Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker. Am J Cardiol. 2008;101(12A):41F–50F.

    Article  PubMed  CAS  Google Scholar 

  98. Khuseyinova N, Imhof A, Rothenbacher D, et al. Association between Lp-PLA2 and coronary artery disease: focus on its relationship with lipoproteins and markers of inflammation and hemostasis. Atherosclerosis. 2005;182(1):181–8.

    Article  PubMed  CAS  Google Scholar 

  99. Mohler III ER, Ballantyne CM, Davidson MH, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2008;51(17):1632–41.

    Article  PubMed  CAS  Google Scholar 

  100. Serruys PW, Garcia-Garcia HM, Buszman P, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118(11):1172–82.

    Article  PubMed  CAS  Google Scholar 

  101. Malinow MR. Hyperhomocyst(e)inemia. A common and easily reversible risk factor for occlusive atherosclerosis. Circulation. 1990;81(6):2004–6.

    Article  PubMed  CAS  Google Scholar 

  102. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995;274(13):1049–57.

    Article  PubMed  CAS  Google Scholar 

  103. Folsom AR, Nieto FJ, McGovern PG, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 1998;98(3):204–10.

    PubMed  CAS  Google Scholar 

  104. Kaul S, Zadeh AA, Shah PK. Homocysteine hypothesis for atherothrombotic cardiovascular disease: not validated. J Am Coll Cardiol. 2006;48(5):914–23.

    Article  PubMed  CAS  Google Scholar 

  105. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110(2):227–39.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Sorrentino MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sorrentino, M.J. (2011). Advanced Lipid Testing. In: Sorrentino, M. (eds) Hyperlipidemia in Primary Care. Current Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-502-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-502-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-501-9

  • Online ISBN: 978-1-60327-502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics