Skip to main content

Secondary Causes of Osteoporosis

  • Chapter
  • First Online:
Bone Densitometry in Clinical Practice

Part of the book series: Current Clinical Practice ((CCP))

  • 1470 Accesses

Abstract

A general knowledge of secondary causes of bone loss and osteoporosis is useful and necessary in the practice of densitometry. It must be remembered that the bone density study provides information on the density of the bone at that moment only. It does not, by itself, identify any magnitude of bone loss and certainly cannot be used to identify the cause of any suspected bone loss. It is a single snapshot in time, telling the physician what the bone density is that day, but not how or why it got that way. Because of this, any time that the bone density is classified as low or osteoporotic, an evaluation of the patient for secondary causes of bone loss is appropriate. This evaluation would be performed by the patient’s treating physician, and the extent of the evaluation would be guided by his or her knowledge of the patient. If the patient is well known to the physician, a review of the patient’s medical records may be all that is warranted. It is also possible that additional testing or inquiry may be necessary to exclude causes of bone loss and conditions other than postmenopausal or age-related osteoporosis, as specific interventions may be necessary for successful treatment. Even if the densitometrist is not the treating physician, he or she may still be called upon to render an opinion as to the possible differential diagnoses for suspected bone loss and any appropriate evaluations necessary to exclude those possibilities. The International Society for Clinical Densitometry (ISCD) recommended in 2003 (1) that bone density reports contain a reminder to the referring physician that a “medical evaluation for secondary causes of low BMD may be appropriate.” Specific recommendations regarding the nature of such an evaluation were considered optional. The ability to make specific recommendations, however, is desirable and often necessary in order to assist the referring physician.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chapter 3 for a discussion of the z-score.

  2. 2.

    Strictly speaking, the range is from ––1.96 to +1.96; however, this is generally rounded to ––2 to +2.

  3. 3.

    See Chapter 1 for a discussion of the older techniques of single- and dual-photon absorptiometry.

  4. 4.

    To convert nmol/L to ng/ml, multiply the nmol/L value by 2.496.

  5. 5.

    Looser’s zones (pseudo-fractures) are focal accumulations of osteoid, which occur in cortical bone perpendicular to the long axis of the bone. They may be bilateral and symmetrical.

  6. 6.

    See Chapter 2 for a discussion of naming conventions for radial and forearm sites.

References

  1. Indications and reporting for dual-energy x-ray absorptiometry. J Clin Densitom 2004;7(1):37–44.

    Google Scholar 

  2. Tannenbaum C, Clark J, Schwartzman K et al. Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab 2002;87(10)4431–4437.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson BE, Lucasey B, Robinson RG, Lukert BP. Contributing diagnoses in osteoporosis. The value of a complete medical evaluation. Arch Intern Med 1989;149(5)1069–1072.

    Article  CAS  Google Scholar 

  4. Brown JP, Ioannidis G, Adachi JD et al. Secondary causes of osteoporosis in patients registered in the Canadian Database of Osteoporosis and Osteopenia (CANDOO). J Bone Miner Res 2002;17:S261.

    Google Scholar 

  5. Freitag A, Barzel US. Differential diagnosis of osteoporosis. Gerontology 2002;48(2)98–102.

    Article  PubMed  CAS  Google Scholar 

  6. Haden ST, Fuleihan GE, Angell JE, Cotran NM, LeBoff MS. Calcidiol and PTH levels in women attending an osteoporosis program. Calcif Tissue Int 1999;64(4)275–279.

    Article  PubMed  CAS  Google Scholar 

  7. Deutschmann HA, Weger M, Weger W, Kotanko P, Deutschmann MJ, Skrabal F. Search for occult secondary osteoporosis: impact of identified possible risk factors on bone mineral density. J Intern Med 2002;252(5)389–397.

    Article  PubMed  CAS  Google Scholar 

  8. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. 1–30. 2008. Washington, D.C., National Osteoporosis Foundation.

    Google Scholar 

  9. Personal communication from Marjorie M. Luckey.

    Google Scholar 

  10. Hodgson SF, Watts NB, Bilezikian JP et al. American Association of Clinical Endocrinologists 2001 Medical Guidelines for Clinical Practice for the Prevention and Management of Postmenopausal Osteoporosis. Endocr Pract 2001;7(4)293–312.

    Google Scholar 

  11. Hodgson SF, Watts NB, Bilezikian JP et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the prevention and treatment of postmenopausal osteoporosis: 2001 edition, with selected updates for 2003. Endocr Pract 2003;9(6)544–564.

    PubMed  Google Scholar 

  12. Wagman, RB, Marcus R. Beyond bone mineral density—navigating the laboratory assessment of patients with osteoporosis. J Clin Endocrinol Metab 2002;87(10)4429–4430.

    Article  PubMed  CAS  Google Scholar 

  13. Jamal SA, Leiter RE, Bayoumi AM, Bauer DC, Cummings SR. Clinical utility of laboratory testing in women with osteoporosis. Osteoporos Int 2005;16(5)534–540.

    Article  PubMed  Google Scholar 

  14. Black DM, Reiss TF, Nevitt MC, Cauley J, Darpf D, Cummings SR. Design of the Fracture Intervention Trial. Osteoporos Int 1993;S3:S29–S39.

    Article  Google Scholar 

  15. WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO, editor. [843], 1–129. 1994. Geneva. WHO Technical Report Series.

    Google Scholar 

  16. Management of osteoporosis in postmenopausal women: 2006 position statement of The North American Menopause Society. Menopause 2006;13(3)340–367.

    Google Scholar 

  17. Lewiecki EM. Nonresponders to osteoporosis therapy. J Clin Densitom 2003;6(4)307–314.

    Article  PubMed  Google Scholar 

  18. Ebeling PR. Clinical practice. Osteoporosis in men. N Engl J Med 2008;358(14)1474–1482.

    Article  PubMed  CAS  Google Scholar 

  19. Campion JM, Maricic MJ. Osteoporosis in men. Am Fam Physician 2003;67(7)1521–1526.

    PubMed  Google Scholar 

  20. Tuck S, Francis R. Osteoporosis in men. In: Arden N, editor. Osteoporosis. London: Remedica; 2006; 163–;183.

    Google Scholar 

  21. Orwoll ES. The clinical evaluation of osteoporosis in men. In: Orwoll ES, editor. Osteoporosis in Men: The Effects of Gender on Skeletal Health. San Diego: Academic Press; 1999;527–552.

    Chapter  Google Scholar 

  22. Parfitt AM. Osteomalacia and related disorders. In: Avioli LV, Krane SM, editors. Metabolic bone disease and clinically related disorders. 2nd ed. Philadelphia: WB Saunders; 1990;329–396.

    Google Scholar 

  23. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for calcium, magnesium, phosphorus, vitamin D, and fluoride. 1997. Washington, D.C., National Academy Press.

    Google Scholar 

  24. Heaney RP. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr 2004;80(6 Suppl):1706S–1709S.

    PubMed  CAS  Google Scholar 

  25. Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos Int 2005;16(7)713–716.

    Article  PubMed  CAS  Google Scholar 

  26. Holick MF, Siris ES, Binkley N et al. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 2005;90(6)3215–3224.

    Article  PubMed  CAS  Google Scholar 

  27. Binkley N, Novotny R, Krueger D et al. Low vitamin D status despite abundant sun exposure. J Clin Endocrinol Metab 2007;92(6)2130–2135.

    Article  PubMed  CAS  Google Scholar 

  28. Chapuy MC, Preziosi P, Maamer M et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 1997;7(5)439–443.

    Article  PubMed  CAS  Google Scholar 

  29. Simonelli C, Weiss TW, Morancey J, Swanson L, Chen YT. Prevalence of vitamin D inadequacy in a minimal trauma fracture population. Curr Med Res Opin 2005;21(7)1069–1074.

    Article  PubMed  CAS  Google Scholar 

  30. Geller JL, Hu B, Reed S, Mirocha J, Adams JS. Increase in bone mass after correction of vitamin D insufficiency in bisphosphonate-treated patients. Endocr Pract 2008;14(3)293–297.

    PubMed  Google Scholar 

  31. Deane A, Constancio L, Fogelman I, Hampson G. The impact of vitamin D status on changes in bone mineral density during treatment with bisphosphonates and after discontinuation following long-term use in post-menopausal osteoporosis. BMC Musculoskelet Disord 2007;8:3.

    Article  PubMed  Google Scholar 

  32. Adami S, Giannini S, Bianchi G et al. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int 2008;doi. 10.1007/s00198-008-0650-y.

    Google Scholar 

  33. Binkley N, Krueger D, Cowgill CS et al. Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J Clin Endocrinol Metab 2004;89(7)3152–3157.

    Article  PubMed  CAS  Google Scholar 

  34. Carter GD, Carter R, Jones J, Berry J. How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 2004;50(11)2195–2197.

    Article  PubMed  CAS  Google Scholar 

  35. Hollis BW. Editorial: The determination of circulating 25-hydroxyvitamin D: no easy task. J Clin Endocrinol Metab 2004;89(7)3149–3151.

    Article  PubMed  CAS  Google Scholar 

  36. Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004;89(11)5387–5391.

    Article  PubMed  CAS  Google Scholar 

  37. Disorders of mineral metabolism. In: Beers E, Berkow R, editors. The Merck Manual of Geriatrics. 3rd ed. Whitehouse Station: Merck Research Laboratories,2000;572–583.

    Google Scholar 

  38. Larsson L, Magnusson P. Ionized calcium or corrected total calcium? J Bone Miner Res 2003;18(8)1554–1555.

    Article  PubMed  CAS  Google Scholar 

  39. Heaney RP, Recker RR, Ryan RA. Urinary calcium in perimenopausal women: normative values. Osteoporos Int 1999;9(1)13–18.

    Article  PubMed  CAS  Google Scholar 

  40. Steinbach HL, Noetzli M. Roentgen appearance of the skeleton in osteomalacia and rickets. Am J Radiol 1964;91:955.

    CAS  Google Scholar 

  41. Bilezikian JP, Silverberg SJ. Clinical practice. Asymptomatic primary hyperparathyroidism. N Engl J Med 2004;350(17)1746–1751.

    Article  PubMed  CAS  Google Scholar 

  42. Bilezikian JP, Potts JT, Jr., Fuleihan G et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Clin Endocrinol Metab 2002;87(12)5353–5361.

    Article  PubMed  CAS  Google Scholar 

  43. Green PH, Cellier C. Celiac disease. N Engl J Med 2007;357(17)1731–1743.

    Article  PubMed  CAS  Google Scholar 

  44. Fasano A, Berti I, Gerarduzzi T et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 2003;163(3)286–292.

    Article  PubMed  Google Scholar 

  45. Rostom A, Murray JA, Kagnoff MF. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology 2006;131(6)1981–2002.

    Article  PubMed  Google Scholar 

  46. Vitoria JC, Arrieta A, Arranz C et al. Antibodies to gliadin, endomysium, and tissue transglutaminase for the diagnosis of celiac disease. J Pediatr Gastroenterol Nutr 1999;29(5)571–574.

    Article  PubMed  CAS  Google Scholar 

  47. AGA Institute Medical Position Statement on the Diagnosis and Management of Celiac Disease. Gastroenterology 2006;131(6)1977–1980.

    Google Scholar 

  48. Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc 2002;77(5)453–468.

    PubMed  Google Scholar 

  49. Alto WA, Clarcq L. Cutaneous and systemic manifestations of mastocytosis. Am Fam Physician 1999;59(11)3047–3060.

    PubMed  CAS  Google Scholar 

  50. Rajkumar SV, Kyle RA. Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 2005;80(10)1371–1382.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Lou Bonnick MD, FACP .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonnick, S.L. (2010). Secondary Causes of Osteoporosis. In: Bone Densitometry in Clinical Practice. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-499-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-499-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-498-2

  • Online ISBN: 978-1-60327-499-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics