Skip to main content

The Significance of Minicolumnar Size Variability in Autism

A Perspective from Comparative Anatomy

  • Chapter
Autism

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Recent postmortem studies indicate the presence of diminished minicolumnar size in the cortex of patients with autism as compared to controls. A diminution in minicolumnar width in autism restricts the absolute span of this module’s variability in both size and associated circuitry. Anatomically, minicolumns can be divided into cell core and peripheral neuropil space compartments. Development of the pyramidal cell core is constrained by radial cell migration and their attendant radially oriented axons and dendrite bundles. A major portion of a minicolumn’s variability resides in its peripheral neuropil space where its constituent cells and process are more heterogeneous regarding their sources. This heterogeneity may have provided brains, in both evolution and development, with a way of adapting the function of minicolumns within specific networks. We surmise that minicolumnar variability is the result of genetic and epigenetic influences that provide for combinatorial diversity within overlapping networks resulting in behavioral flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K. Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry 2007;61(4):458.

    Article  PubMed  Google Scholar 

  2. Herbert MR, Ziegler DA, Makris N, et al. Localization of white matter volume increase in autism and developmental language disorder. Annals Neurology 2004;55(4):530–540.

    Article  Google Scholar 

  3. Bauman M, Kemper T. The Neurobiology of Autism, 2nd ed. Baltimore, MD: The Johns Hopkins University Press; 1996.

    Google Scholar 

  4. Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985;35(6):866–874.

    PubMed  CAS  Google Scholar 

  5. Bailey A, Luthert P, Dean A, et al. A clinicopathological study of autism. Brain 1998;121(5):889–905.

    Article  PubMed  Google Scholar 

  6. Piven J, Arndt S, Bailey J, Havercamp S, Andreasen N, Palmer P. An MRI study of brain size in autism. American Journal of Psychiatry 1995;152(8):1145–1149.

    PubMed  CAS  Google Scholar 

  7. Casanova MF, van Kooten IA, Switala AE, et al. Minicolumnar abnormalities in autism. ACTA Neuropathologica (Berlin) 2006;112(3):287–303.

    Article  Google Scholar 

  8. Hutsler JJ, Love T, Zhang H. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biological Psychiatry 2007;61(4):449.

    Article  PubMed  Google Scholar 

  9. Casanova MF. The minicolumnopathy of autism: a link between migraine and gastrointestinal symptoms. Medical Hypothesis 2008;70(1):73–80.

    Google Scholar 

  10. Casanova M, Buxhoeveden D, Switala A, Roy E. Minicolumnar pathology in autism. Neurology 2002;58(3):428–432.

    PubMed  Google Scholar 

  11. Casanova MF, Switala AE. Minicolumnar morphometry: computerized image analysis. In: Casanova MF, (ed.) Neocortical Modularity and the Cell Minicolumn. New York, NY: Nova Science Publishers, Inc.; 2005:161–180.

    Google Scholar 

  12. Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. Journal of Child Neurology 2002;17(7):515–521.

    Article  PubMed  Google Scholar 

  13. Casanova MF, Van Kooten IA, Switala AE, et al. Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research 2006;6(3–4):127–133.

    Google Scholar 

  14. Buxhoeveden D, Casanova MF. Accelerated maturation in brains of patients with Down syndrome. Journal of Intellectual Disability Research 2004;48(Pt 7):704–705.

    Article  PubMed  Google Scholar 

  15. Buxhoeveden DP, Casanova MF. The minicolumn hypothesis in neuroscience. Brain 2002;125(5):935–951.

    Article  PubMed  Google Scholar 

  16. Northcutt RG, Kaas JH. The emergence and evolution of mammalian neocortex. Trends in Neurosciences 1995;18(9):373.

    Article  PubMed  CAS  Google Scholar 

  17. Mountcastle VB. The columnar organization of the neocortex. Brain 1997;120(4):701–722.

    Article  PubMed  Google Scholar 

  18. Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends in Neurosciences 1995;18(9):383.

    Article  PubMed  CAS  Google Scholar 

  19. Streidter GF. Principles of Brain Evolution. Sunderland, MA: Sinauer Associates, Inc.; 2005.

    Google Scholar 

  20. Feldman ML, Peters A. A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Research 1974;77(1):55.

    Article  PubMed  CAS  Google Scholar 

  21. Peters A, Sethares C. Layer IVA of rhesus monkey primary visual cortex. Cerebral Cortex 1991;1(6):445–462.

    Article  PubMed  CAS  Google Scholar 

  22. DeFelipe J, Hendry SHC, Hashikawa T, Molinari M, Jones EG. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 1990;37(3):655.

    Article  PubMed  CAS  Google Scholar 

  23. Peters A. The organization of the primary visual cortex in the macaque. In: Peters A, Rockland KS, (eds.) Primary Visual Cortex in Primates. New York: Plenum Press; 1994:1–35.

    Google Scholar 

  24. Peters A, Cifuentes JM, Sethares C. The organization of pyramidal cells in area 18 of the rhesus monkey. Cerebral Cortex 1997;7(5):405–421.

    Article  PubMed  CAS  Google Scholar 

  25. Peters A, Sethares C. Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. Journal of Comparative Neurology 1996;365(2):232–255.

    Article  PubMed  CAS  Google Scholar 

  26. Buxhoeveden D, Casanova MF. Encephalization, minicolumns, and hominid evolution. In: Casanova M, (ed.) Neocortical Modularity and the Cell Minicolumn. New York, NY: Nova Science Publishers, Inc.; 2005:117–136.

    Google Scholar 

  27. Hendry SH, Schwark HD, Jones EG, Yan J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. Journal of Neuroscience 1987;7(5):1503–1519.

    PubMed  CAS  Google Scholar 

  28. Reisin HD, Colombo JA. Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cellular and Molecular Neurobiology 2002;22(5–6):633–644.

    Article  PubMed  CAS  Google Scholar 

  29. Colombo JA, Hartig W, Lipina S, Bons N. Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys. Anatomy and Embryology (Berlin) 1998;197(5):369–376.

    Article  CAS  Google Scholar 

  30. Colombo JA, Sherwood CC, Hof PR. Interlaminar astroglial processes in the cerebral cortex of great apes. Anatomy and Embryology (Berlin) 2004;208(3):215–218.

    Article  Google Scholar 

  31. Yáñez IB, Muñoz A, Contreras J, Gonzalez J, Rodriguez-Veiga E, DeFelipe J. Double bouquet cell in the human cerebral cortex and a comparison with other mammals. Journal of Comparative Neurology 2005;486(4):344–360.

    Article  PubMed  Google Scholar 

  32. del Rio MR, DeFelipe J. Double bouquet cell axons in the human temporal neocortex: relationship to bundles of myelinated axons and colocalization of calretinin and calbindin D-28 k immunoreactivities. Journal of Chemical Neuroanatomy 1997;13(4):243.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson B, Southern BD, Powers RE. Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. Neuropsychiatry, Neuropsychology, and Behavioural Neurology 1999;12(4):247–254.

    CAS  Google Scholar 

  34. Hutsler JJ, Gazzaniga MS. Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features. Cerebral Cortex 1996;6(2):260–270.

    Article  PubMed  CAS  Google Scholar 

  35. Seldon HL. Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Research 1981;229(2):295.

    Article  PubMed  CAS  Google Scholar 

  36. Buxhoeveden D, Lefkowitz W, Loats P, Armstrong E. The linear organization of cell columns in human and nonhuman anthropoid Tpt cortex. Anatomy and Embryology 1996;194(1):23.

    Article  PubMed  CAS  Google Scholar 

  37. Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF. Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex. Brain Behavior and Evolution 2001;57(6):349–358.

    Article  CAS  Google Scholar 

  38. Creutzfeldt OD. Generality of the functional structure of the neocortex. Naturwissenschaften 1977;64(10):507–517.

    Article  PubMed  CAS  Google Scholar 

  39. Rockel AJ, Hiorns RW, Powell TPS. The basic uniformity in structure of the neocortex. Brain 1980;103(2):221–244.

    Article  PubMed  CAS  Google Scholar 

  40. Beaulieu C. Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Research 1993;609(1–2):284.

    Article  PubMed  CAS  Google Scholar 

  41. Skoglund TS, Pascher R, Berthold CH. Aspects of the quantitative analysis of neurons in the cerebral cortex. Journal of Neuroscience Methods 1996;70(2):201.

    Article  PubMed  CAS  Google Scholar 

  42. Jerison HJ. Evolution of the Brain and Intelligence. New York: Academic Press; 1973.

    Google Scholar 

  43. Von Economo CF, Koskinas GN. Die Cytoarchitektonic der Hirnrinde des erwachsenen Menschen. Wien: Springer; 1925.

    Google Scholar 

  44. Haug H. Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). The American Journal of Anatomy 1987;180(2):126–142.

    Article  PubMed  CAS  Google Scholar 

  45. Stolzenburg JU, Reichenbach A, Neumann M. Size and density of glial and neuronal cells within the cerebral neocortex of various insectivorian species. GLIA 1989;2(2):78–84.

    Article  PubMed  CAS  Google Scholar 

  46. White EL, Peters A. Cortical modules in the posteromedial barrel subfield (Sml) of the mouse. Journal of Comparative Neurology 1993;334(1):86–96.

    Article  PubMed  CAS  Google Scholar 

  47. Kaschube M, Wolf F, Geisel T, Lowel S. Genetic influence on quantitative features of neocortical architecture. Journal of Neuroscience 2002;22(16):7206–7217.

    PubMed  CAS  Google Scholar 

  48. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005;433(7026):597–603.

    Article  PubMed  CAS  Google Scholar 

  49. Galuske RAW, Schlote W, Bratzke H, Singer W. Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 2000;289(5486):1946–1949.

    Article  PubMed  CAS  Google Scholar 

  50. Stroud CE. Reliability of majority voting based VLSI fault-tolerant circuits. IEEE Transactions VLSI Systems 1994;2:516–521.

    Article  Google Scholar 

  51. Baldwin JM. A new factor in evolution. The American Naturalist 1896;30:441–451.

    Article  Google Scholar 

  52. Krubitzer L, Kaas J. The evolution of the neocortex in mammals: how is phenotypic diversity generated? Current Opinion in Neurobiology 2005;15(4):444.

    Article  PubMed  CAS  Google Scholar 

  53. Cantalupo C, Hopkins WD. Asymmetric Broca’s area in great apes. Nature 2001;414(6863):505.

    Article  PubMed  CAS  Google Scholar 

  54. Gannon PJ, Holloway RL, Broadfield DC, Braun AR. Asymmetry of chimpanzee planum temporale: humanlike pattern of wernicke's brain language area homolog. Science 1998;279(5348):220–222.

    Article  PubMed  CAS  Google Scholar 

  55. Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR. Variability of Broca's area homologue in African great apes: implications for language evolution. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 2003;271(2):276–285.

    PubMed  Google Scholar 

  56. McCulloch WS. Agatha Tyche of nervous nets – the lucky reckoners. In: Warren S. McCulloch. Embodiments of mind. Cambridge: MIT Press, 1965;203–215. Reprint of: National Physical Laboratory. Mechanisation of thought processes. London: H.M. Stationery Office, 1959;611–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Casanova, M.F. (2008). The Significance of Minicolumnar Size Variability in Autism. In: Autism. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-489-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-489-0_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-488-3

  • Online ISBN: 978-1-60327-489-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics