Skip to main content

Immunopathogenesis of Graves’ Disease

  • Chapter
  • First Online:
Immunoendocrinology: Scientific and Clinical Aspects

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Graves’ disease (GD) was one of the first human autoimmune diseases to be characterized following the discovery of thyroid-stimulating antibodies in hyperthyroid patients in 1956 (1  ). GD is now known to be the most common cause of hyperthyroidism between the ages of 20 and 50 years. In females, the annual incidence ranges from 15 to 200 per 100,000 per year (2  ). The rates observed in males are about one tenth of those in females, and the disease is more common in iodine-sufficient regions (3  ). The hyperactivity of the thyroid gland is due to the presence of thyroid stimulating antibodies, and these are now known to recognize and activate the thyroid-stimulating hormone receptor (TSHR). These TSHR stimulating antibodies increase the growth and the function of the thyroid follicular cells, leading to the excessive production of thyroid hormones (both T3 and T4) and symptoms of tachycardia, anxiety, and weight loss among others. Pathologically, the disease is characterized by a heterogeneous lymphocytic infiltration of the thyroid parenchyma as well as infiltration of retroorbital and dermal tissues (4–6  ) (see Chap. 31). Transplacental antibody transferred to the infants of affected mothers during pregnancy can induce symptoms similar to the mother by causing neonatal Graves’ disease (7, 8  ). Similarly, antibodies from patients with GD when injected into experimental animals and even humans can induce thyroid activation (9  ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams DD, Purves HD. Abnormal responses in the assay of thyrotropin. Proc Univ Otago Med Sch 1956;34:11–12.

    Google Scholar 

  2. Vanderpump MP, Tunbridge WM, French JM, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 1995;43:55–68.

    Article  CAS  Google Scholar 

  3. McIver B, Morris JC. The pathogenesis of Graves’ disease. Endocrinol Metab Clin North Am 1998;27:73–89.

    Article  PubMed  CAS  Google Scholar 

  4. Bahn RS, Heufelder AE. Pathogenesis of Graves’ ophthalmopathy. N Engl J Med 1993;329:1468–1475.

    Article  PubMed  CAS  Google Scholar 

  5. LiVolsi VA. The pathology of autoimmune thyroid disease: a review. Thyroid 1994;4:333–339.

    Article  PubMed  CAS  Google Scholar 

  6. Martin A, Goldsmith NK, Friedman EW, Schwartz AE, Davies TF, Roman SH. Intrathyroidal accumulation of T cell phenotypes in autoimmune thyroid disease. Autoimmunity 1990;6:269–281.

    Article  PubMed  CAS  Google Scholar 

  7. McKenzie JM, Zakarija M. Fetal and neonatal hyperthyroidism and hypothyroidism due to maternal TSH receptor antibodies. Thyroid 1992;2:155–159.

    Article  PubMed  CAS  Google Scholar 

  8. Volpe R. Thyrotropin receptor autoantibodies. In: Peter JB, Shoenfeld Y, eds. Autoantibodies. Amsterdam: Elsevier, 1996:822–829.

    Chapter  Google Scholar 

  9. Rees SB, McLachlan SM, Furmaniak J. Autoantibodies to the thyrotropin receptor. Endocr Rev 1988;9:106–121.

    Article  Google Scholar 

  10. Davies TF. Infection and autoimmune thyroid disease. J Clin Endocrinol Metab 2008;93:674–676.

    Article  PubMed  CAS  Google Scholar 

  11. Bahn RS, Dutton CM, Natt N, Joba W, Spitzweg C, Heufelder AE. Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in Graves’ ophthalmopathy. J Clin Endocrinol Metab 1998;83:998–1002.

    Article  PubMed  CAS  Google Scholar 

  12. Latif R, Morshed SA, Zaidi M, Davies TF. Impact of TSH and TSH receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin North Am 2009;38(2):319–341.

    Article  PubMed  CAS  Google Scholar 

  13. Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J Clin Invest 2005;115:1972–1983.

    Article  PubMed  CAS  Google Scholar 

  14. Misrahi M, Ghinea N, Sar S, et al. Processing of the precursors of the human thyroid-stimulating hormone receptor in various eukaryotic cells (human thyrocytes, transfected L cells and baculovirus-infected insect cells). Eur J Biochem 1994;222:711–719.

    Article  PubMed  CAS  Google Scholar 

  15. Chazenbalk GD, Pichurin P, Chen CR, et al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Invest 2002;110:209–217.

    PubMed  CAS  Google Scholar 

  16. Kajita Y, Rickards CR, Buckland PR, Howells RD, Rees SB. Analysis of thyrotropin receptors by photoaffinity labelling. Orientation of receptor subunits in the cell membrane. Biochem J 1985;227:413–420.

    PubMed  CAS  Google Scholar 

  17. Loosfelt H, Pichon C, Jolivet A, et al. Two-subunit structure of the human thyrotropin receptor. Proc Natl Acad Sci USA 1992;89:3765–3769.

    Article  PubMed  CAS  Google Scholar 

  18. Vlase H, Davies TF. Insights into the molecular mechanisms of the autoimmune thyroid diseases. In: Eisenbarth GS, ed. Endocrine and Organ Specific Autoimmunity. California: R.G. Landes Co., 1999:98–132.

    Google Scholar 

  19. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol 2001;2:764–766.

    Article  PubMed  CAS  Google Scholar 

  20. Caturegli P, Kimura H, Rocchi R, Rose NR. Autoimmune thyroid disease. Curr Opin Rheumatol 2007;19:44–48.

    Article  PubMed  Google Scholar 

  21. Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol 2008;20(6):632–638.

    Article  PubMed  CAS  Google Scholar 

  22. Ando T, Latif R, Pritsker A, Moran T, Nagayama Y, Davies TF. A monoclonal thyroid-stimulating antibody. J Clin Invest 2002;110:1667–1674.

    PubMed  CAS  Google Scholar 

  23. Ando T, Davies TF. Monoclonal antibodies to the thyrotropin receptor. Clin Dev Immunol 2005;12:137–143.

    Article  PubMed  CAS  Google Scholar 

  24. Ando T, Latif R, Davies TF. Antibody-induced modulation of TSH receptor post-translational processing. J Endocrinol 2007;195:179–186.

    Article  PubMed  CAS  Google Scholar 

  25. Morshed SA, Latif R, Davies TF. Characterization of thyrotropin receptor antibody-induced signaling cascades. Endocrinology 2009;150:519–529.

    Article  PubMed  CAS  Google Scholar 

  26. Gilbert JA, Kalled SL, Moorhead J, et al. Treatment of autoimmune hyperthyroidism in a murine model of Graves’ disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 2006;147:4561–4568.

    Article  PubMed  CAS  Google Scholar 

  27. Lai Kwan LQ, King Hung KO, Zheng BJ, Lu L. Local BAFF gene silencing suppresses Th17-cell generation and ameliorates autoimmune arthritis. Proc Natl Acad Sci USA 2008;105:14993–14998.

    Article  Google Scholar 

  28. Salvi M, Vannucchi G, Campi I, et al. Efficacy of rituximab treatment for thyroid-associated ophthalmopathy as a result of intraorbital B-cell depletion in one patient unresponsive to steroid immunosuppression. Eur J Endocrinol 2006;154:511–517.

    Article  PubMed  CAS  Google Scholar 

  29. Davies TF, Bobovnikova Y, Weiss M, Vlase H, Moran T, Graves PN. Development and characterization of monoclonal antibodies specific for the murine thyrotropin receptor. Thyroid 1998;8:693–701.

    Article  PubMed  CAS  Google Scholar 

  30. Sanders J, Jeffreys J, Depraetere H, et al. Characteristics of a human monoclonal autoantibody to the thyrotropin receptor: sequence structure and function. Thyroid 2004;14:560–570.

    Article  PubMed  CAS  Google Scholar 

  31. Nagy EV, Burch HB, Mahoney K, Lukes YG, Morris JC, III, Burman KD. Graves’ IgG recognizes linear epitopes in the human thyrotropin receptor. Biochem Biophys Res Commun 1992;188:28–33.

    Article  PubMed  CAS  Google Scholar 

  32. Sanders J, Allen F, Jeffreys J, et al. Characteristics of a monoclonal antibody to the thyrotropin receptor that acts as a powerful thyroid-stimulating autoantibody antagonist. Thyroid 2005;15:672–682.

    Article  PubMed  CAS  Google Scholar 

  33. Sanders J, Chirgadze DY, Sanders P, et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 2007;17:395–410.

    Article  PubMed  CAS  Google Scholar 

  34. Sanders J, Bolton J, Sanders P, et al. Effects of TSH receptor mutations on binding and biological activity of monoclonal antibodies and TSH. Thyroid 2006;16:1195–1206.

    Article  PubMed  CAS  Google Scholar 

  35. Minich WB, Lenzner C, Morgenthaler NG. Antibodies to TSH-receptor in thyroid autoimmune disease interact with monoclonal antibodies whose epitopes are broadly distributed on the receptor. Clin Exp Immunol 2004;136:129–136.

    Article  PubMed  CAS  Google Scholar 

  36. Sanders J, Jeffreys J, Depraetere H, et al. Thyroid-stimulating monoclonal antibodies. Thyroid 2002;12:1043–1050.

    Article  PubMed  Google Scholar 

  37. Schwarz-Lauer L, Pichurin PN, Chen CR, et al. The cysteine-rich amino terminus of the thyrotropin receptor is the immunodominant linear antibody epitope in mice immunized using naked deoxyribonucleic acid or adenovirus vectors. Endocrinology 2003;144:1718–1725.

    Article  PubMed  CAS  Google Scholar 

  38. Ando T, Latif R, Davies TF. Concentration-dependent regulation of thyrotropin receptor function by thyroid-stimulating antibody. J Clin Invest 2004;113:1589–1595.

    PubMed  CAS  Google Scholar 

  39. Ando T, Latif R, Daniel S, Eguchi K, Davies TF. Dissecting linear and conformational epitopes on the native thyrotropin receptor. Endocrinology 2004;145:5185–5193.

    Article  PubMed  CAS  Google Scholar 

  40. Minich WB, Loos U. Detection of functionally different types of pathological autoantibodies against thyrotropin receptor in Graves’ patients sera by luminescent immunoprecipitation analysis. Exp Clin Endocrinol Diabetes 2000;108:110–119.

    Article  PubMed  CAS  Google Scholar 

  41. Kakinuma A, Chazenbalk GD, Tanaka K, Nagayama Y, McLachlan SM, Rapoport B. An N-linked glycosylation motif from the noncleaving luteinizing hormone receptor substituted for the homologous region (Gly367 to Glu369) of the thyrotropin receptor prevents cleavage at its second, downstream site. J Biol Chem 1997;272:28296–28300.

    Article  PubMed  CAS  Google Scholar 

  42. Costagliola S, Rodien P, Many MC, Ludgate M, Vassart G. Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies recognizing the native receptor. J Immunol 1998;160:1458–1465.

    PubMed  CAS  Google Scholar 

  43. Nagayama Y, Kita-Furuyama M, Ando T, et al. A novel murine model of Graves’ hyperthyroidism with intramuscular injection of adenovirus expressing the thyrotropin receptor. J Immunol 2002;168:2789–2794.

    PubMed  CAS  Google Scholar 

  44. Jeffreys J, Depraetere H, Sanders J, et al. Characterization of the thyrotropin binding pocket. Thyroid 2002;12:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  45. Chen CR, McLachlan SM, Rapoport B. Suppression of thyrotropin receptor constitutive activity by a monoclonal antibody with inverse agonist activity. Endocrinology 2007;148:2375–2382.

    Article  PubMed  CAS  Google Scholar 

  46. Nakamura H, Usa T, Motomura M, et al. Prevalence of interrelated autoantibodies in thyroid diseases and autoimmune disorders. J Endocrinol Invest 2008;31:861–865.

    PubMed  CAS  Google Scholar 

  47. Endo T, Kogai T, Nakazato M, Saito T, Kaneshige M, Onaya T. Autoantibody against Na+/I- symporter in the sera of patients with autoimmune thyroid disease. Biochem Biophys Res Commun 1996;224:92–95.

    Article  PubMed  CAS  Google Scholar 

  48. Yoshida A, Hisatome I, Taniguchi S, et al. Pendrin is a novel autoantigen recognized by patients with autoimmune thyroid diseases. J Clin Endocrinol Metab 2009;94(2):442–448.

    Article  PubMed  CAS  Google Scholar 

  49. Pritchard J, Horst N, Cruikshank W, Smith TJ. Igs from patients with Graves’ disease induce the expression of T cell chemoattractants in their fibroblasts. J Immunol 2002;168:942–950.

    PubMed  CAS  Google Scholar 

  50. Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol 2003;170:6348–6354.

    PubMed  CAS  Google Scholar 

  51. Douglas RS, Naik V, Hwang CJ, et al. B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J Immunol 2008;181:5768–5774.

    PubMed  CAS  Google Scholar 

  52. Davies TF, Martin A, Concepcion ES, Graves P, Cohen L, Ben-Nun A. Evidence of limited variability of antigen receptors on intrathyroidal T cells in autoimmune thyroid disease. N Engl J Med 1991;325:238–244.

    Article  PubMed  CAS  Google Scholar 

  53. Davies TF, Martin A, Concepcion ES, et al. Evidence for selective accumulation of intrathyroidal T lymphocytes in human autoimmune thyroid disease based on T cell receptor V gene usage. J Clin Invest 1992;89:157–162.

    Article  PubMed  CAS  Google Scholar 

  54. Dayan CM, Londei M, Corcoran AE, et al. Autoantigen recognition by thyroid-infiltrating T cells in Graves disease. Proc Natl Acad Sci USA 1991;88:7415–7419.

    Article  PubMed  CAS  Google Scholar 

  55. Jackson RA, Haynes BF, Burch WM, Shimizu K, Bowring MA, Eisenbarth GS. Ia+ T cells in new onset Graves’ disease. J Clin Endocrinol Metab 1984;59:187–190.

    Article  PubMed  CAS  Google Scholar 

  56. Wall JR, Baur R, Schleusener H, Bandy-Dafoe P. Peripheral blood and intrathyroidal mononuclear cell populations in patients with autoimmune thyroid disorders enumerated using monoclonal antibodies. J Clin Endocrinol Metab 1983;56:164–169.

    Article  PubMed  CAS  Google Scholar 

  57. Martin A, Nakashima M, Zhou A, Aronson D, Werner AJ, Davies TF. Detection of major T cell epitopes on human thyroid stimulating hormone receptor by overriding immune heterogeneity in patients with Graves’ disease. J Clin Endocrinol Metab 1997;82:3361–3366.

    Article  PubMed  CAS  Google Scholar 

  58. Martin A, Barbesino G, Davies TF. T-cell receptors and autoimmune thyroid disease – signposts for T-cell-antigen driven diseases. Int Rev Immunol 1999;18:111–140.

    Article  PubMed  CAS  Google Scholar 

  59. Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol 2006;24:209–226.

    Article  PubMed  CAS  Google Scholar 

  60. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6:345–352.

    Article  PubMed  CAS  Google Scholar 

  61. McLachlan SM, Nagayama Y, Pichurin PN, et al. The link between Graves’ disease and Hashimoto’s thyroiditis: a role for regulatory T cells. Endocrinology 2007;148:5724–5733.

    Article  PubMed  CAS  Google Scholar 

  62. Saitoh O, Nagayama Y. Regulation of Graves’ hyperthyroidism with naturally occurring CD4+CD25+ regulatory T cells in a mouse model. Endocrinology 2006;147:2417–2422.

    Article  PubMed  CAS  Google Scholar 

  63. Saitoh O, Abiru N, Nakahara M, Nagayama Y. CD8+CD122+ T cells, a newly identified regulatory T subset, negatively regulate Graves’ hyperthyroidism in a murine model. Endocrinology 2007;148:6040–6046.

    Article  PubMed  CAS  Google Scholar 

  64. Marazuela M, Garcia-Lopez MA, Figueroa-Vega N, et al. Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab 2006;91:3639–3646.

    Article  PubMed  CAS  Google Scholar 

  65. Owen CJ, Eden JA, Jennings CE, Wilson V, Cheetham TD, Pearce SH. Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison’s disease in the United Kingdom population. J Mol Endocrinol 2006;37:97–104.

    Article  PubMed  CAS  Google Scholar 

  66. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.

    Article  PubMed  CAS  Google Scholar 

  67. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183:2593–2603.

    Article  PubMed  CAS  Google Scholar 

  68. Lubberts E, Joosten LA, van de Loo FA, Schwarzenberger P, Kolls J, Van Den Berg WB. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm Res 2002;51:102–104.

    Article  PubMed  CAS  Google Scholar 

  69. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 2007;148:32–46.

    Article  PubMed  CAS  Google Scholar 

  70. Bohgaki T, Atsumi T, Koike T. Multiple autoimmune diseases after autologous stem-cell transplantation. N Engl J Med 2007;357:2734–2736.

    Article  PubMed  CAS  Google Scholar 

  71. Bohgaki T, Atsumi T, Koike T. Autoimmune disease after autologous hematopoietic stem cell transplantation. Autoimmun Rev 2008;7:198–203.

    Article  PubMed  Google Scholar 

  72. Baker JR, Jr. The nature of apoptosis in the thyroid and the role it may play in autoimmune thyroid disease. Thyroid 2001;11:245–247.

    Article  PubMed  Google Scholar 

  73. Giordano C, Richiusa P, Bagnasco M, et al. Differential regulation of Fas-mediated apoptosis in both thyrocyte and lymphocyte cellular compartments correlates with opposite phenotypic manifestations of autoimmune thyroid disease. Thyroid 2001;11:233–244.

    Article  PubMed  CAS  Google Scholar 

  74. Stassi G, De MR. Autoimmune thyroid disease: new models of cell death in autoimmunity. Nat Rev Immunol 2002;2:195–204.

    Article  PubMed  CAS  Google Scholar 

  75. Hamilton F, Black M, Farquharson MA, Stewart C, Foulis AK. Spatial correlation between thyroid epithelial cells expressing class II MHC molecules and interferon-gamma-containing lymphocytes in human thyroid autoimmune disease. Clin Exp Immunol 1991;83:64–68.

    Article  PubMed  CAS  Google Scholar 

  76. Blanchard N, Shastri N. Coping with loss of perfection in the MHC class I peptide repertoire. Curr Opin Immunol 2008;20:82–88.

    Article  PubMed  CAS  Google Scholar 

  77. Sawai Y, DeGroot LJ. Binding of human thyrotropin receptor peptides to a Graves’ disease-predisposing human leukocyte antigen class II molecule. J Clin Endocrinol Metab 2000;85:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  78. Mackenzie WA, Davies TF. An intrathyroidal T-cell clone specifically cytotoxic for human thyroid cells. Immunology 1987;61:101–103.

    PubMed  CAS  Google Scholar 

  79. Lira SA, Martin AP, Marinkovic T, Furtado GC. Mechanisms regulating lymphocytic infiltration of the thyroid in murine models of thyroiditis. Crit Rev Immunol 2005;25:251–262.

    Article  PubMed  CAS  Google Scholar 

  80. Martin AP, Coronel EC, Sano G, et al. A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J Immunol 2004;173:4791–4798.

    PubMed  CAS  Google Scholar 

  81. Kita-Furuyama M, Nagayama Y, Pichurin P, McLachlan SM, Rapoport B, Eguchi K. Dendritic cells infected with adenovirus expressing the thyrotrophin receptor induce Graves’ hyperthyroidism in BALB/c mice. Clin Exp Immunol 2003;131:234–240.

    Article  PubMed  CAS  Google Scholar 

  82. Kabel PJ, Voorbij HA, De HM, van der Gaag RD, Drexhage HA. Intrathyroidal dendritic cells. J Clin Endocrinol Metab 1988;66:199–207.

    Article  PubMed  CAS  Google Scholar 

  83. Quadbeck B, Eckstein AK, Tews S, et al. Maturation of thyroidal dendritic cells in Graves’ disease. Scand J Immunol 2002;55:612–620.

    Article  PubMed  CAS  Google Scholar 

  84. Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu Rev Immunol 2004;22:817–890.

    Article  PubMed  CAS  Google Scholar 

  85. Roura-Mir C, Catalfamo M, Cheng TY, et al. CD1a and CD1c activate intrathyroidal T cells during Graves’ disease and Hashimoto’s thyroiditis. J Immunol 2005;174:3773–3780.

    PubMed  CAS  Google Scholar 

  86. Moody DB. TLR gateways to CD1 function. Nat Immunol 2006;7:811–817.

    Article  PubMed  CAS  Google Scholar 

  87. Hutchings P, Rayner DC, Champion BR, et al. High efficiency antigen presentation by thyroglobulin-primed murine splenic B cells. Eur J Immunol 1987;17:393–398.

    Article  PubMed  CAS  Google Scholar 

  88. Brix TH, Christensen K, Holm NV, Harvald B, Hegedus L. A population-based study of Graves’ disease in Danish twins. Clin Endocrinol (Oxf) 1998;48:397–400.

    Article  CAS  Google Scholar 

  89. Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med 2008;359:2849–2850.

    Article  PubMed  CAS  Google Scholar 

  90. Tomer Y, Menconi F, Davies TF, et al. Dissecting genetic heterogeneity in autoimmune thyroid diseases by subset analysis. J Autoimmun 2007;29:69–77.

    Article  PubMed  CAS  Google Scholar 

  91. Hansen PS, Brix TH, Iachine I, Sorensen TI, Kyvik KO, Hegedus L. Genetic and environmental interrelations between measurements of thyroid function in a healthy Danish twin population. Am J Physiol Endocrinol Metab 2007;292:E765–E770.

    Article  PubMed  CAS  Google Scholar 

  92. Prummel MF, Strieder T, Wiersinga WM. The environment and autoimmune thyroid diseases. Eur J Endocrinol 2004;150:605–618.

    Article  PubMed  CAS  Google Scholar 

  93. Pacini F, Vorontsova T, Molinaro E, et al. Prevalence of thyroid autoantibodies in children and adolescents from Belarus exposed to the Chernobyl radioactive fallout. Lancet 1998;352:763–766.

    Article  PubMed  CAS  Google Scholar 

  94. DeGroot LJ. Radioiodine and the immune system. Thyroid 1997;7:259–264.

    Article  PubMed  CAS  Google Scholar 

  95. Braverman LE. The physiology and pathophysiology of iodine and the thyroid. Thyroid 2001;11:405.

    Article  PubMed  CAS  Google Scholar 

  96. Stanbury JB, Ermans AE, Bourdoux P, et al. Iodine-induced hyperthyroidism: occurrence and epidemiology. Thyroid 1998;8:83–100.

    Article  PubMed  CAS  Google Scholar 

  97. Bartalena L, Martino E, Marcocci C, et al. More on smoking habits and Graves’ ophthalmopathy. J Endocrinol Invest 1989;12:733–737.

    PubMed  CAS  Google Scholar 

  98. Chiovato L, Pinchera A. Stressful life events and Graves’ disease. Eur J Endocrinol 1996;134:680–682.

    Article  PubMed  CAS  Google Scholar 

  99. Bach JF. The protective effect of infections on immune disorders. J Pediatr Gastroenterol Nutr 2005;40 Suppl 1:S8.

    Article  PubMed  Google Scholar 

  100. Kondrashova A, Reunanen A, Romanov A, et al. A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med 2005;37:67–72.

    Article  PubMed  Google Scholar 

  101. Nagayama Y, McLachlan SM, Rapoport B, Oishi K. Graves’ hyperthyroidism and the hygiene hypothesis in a mouse model. Endocrinology 2004;145:5075–5079.

    Article  PubMed  CAS  Google Scholar 

  102. Salaun B, Romero P, Lebecque S. Toll-like receptors’ two-edged sword: when immunity meets apoptosis. Eur J Immunol 2007;37:3311–3318.

    Article  PubMed  CAS  Google Scholar 

  103. Penhale WJ, Young PR. The influence of the normal microbial flora on the susceptibility of rats to experimental autoimmune thyroiditis. Clin Exp Immunol 1988;72:288–292.

    PubMed  CAS  Google Scholar 

  104. Matsuda T, Tomita M, Uchihara JN, et al. Human T cell leukemia virus type I-infected patients with Hashimoto’s thyroiditis and Graves’ disease. J Clin Endocrinol Metab 2005;90:5704–5710.

    Article  PubMed  CAS  Google Scholar 

  105. Akeno N, Blackard JT, Tomer Y. HCV E2 protein binds directly to thyroid cells and induces IL-8 production: a new mechanism for HCV induced thyroid autoimmunity. J Autoimmun 2008;31(4):339–344.

    Article  PubMed  CAS  Google Scholar 

  106. Tozzoli R, Barzilai O, Ram M, et al. Infections and autoimmune thyroid diseases: parallel detection of antibodies against pathogens with proteomic technology. Autoimmun Rev 2008;8:112–115.

    Article  PubMed  CAS  Google Scholar 

  107. Valtonen VV, Ruutu P, Varis K, Ranki M, Malkamaki M, Makela PH. Serological evidence for the role of bacterial infections in the pathogenesis of thyroid diseases. Acta Med Scand 1986;219:105–111.

    Article  PubMed  CAS  Google Scholar 

  108. Luo G, Fan JL, Seetharamaiah GS, et al. Immunization of mice with Yersinia enterocolitica leads to the induction of antithyrotropin receptor antibodies. J Immunol 1993;151:922–928.

    PubMed  CAS  Google Scholar 

  109. Tomer Y, Davies TF. Infection, thyroid disease, and autoimmunity. Endocr Rev 1993;14:107–120.

    PubMed  CAS  Google Scholar 

  110. Heyma P, Harrison LC, Robins-Browne R. Thyrotrophin (TSH) binding sites on Yersinia enterocolitica recognized by immunoglobulins from humans with Graves’ disease. Clin Exp Immunol 1986;64:249–254.

    PubMed  CAS  Google Scholar 

  111. Gangi E, Kapatral V, El-Azami El-Idrissi M, Martinez O, Prabhakar BS. Characterization of a recombinant Yersinia enterocolitica lipoprotein; implications for its role in autoimmune response against thyrotropin receptor. Autoimmunity 2004;37:515–520.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang H, Kaur I, Niesel DW, et al. Lipoprotein from Yersinia enterocolitica contains epitopes that cross-react with the human thyrotropin receptor. J Immunol 1997;158:1976–1983.

    PubMed  CAS  Google Scholar 

  113. Benvenga S, Santarpia L, Trimarchi F, Guarneri F. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid 2006;16:225–236.

    Article  PubMed  CAS  Google Scholar 

  114. Barbesino G, Tomer Y, Concepcion ES, Davies TF, Greenberg DA. Linkage analysis of candidate genes in autoimmune thyroid disease. II. Selected gender-related genes and the X-chromosome. International Consortium for the Genetics of Autoimmune Thyroid Disease. J Clin Endocrinol Metab 1998;83:3290–3295.

    Article  PubMed  CAS  Google Scholar 

  115. Barbesino G, Tomer Y, Concepcion E, Davies TF, Greenberg DA. Linkage analysis of candidate genes in autoimmune thyroid disease: 1. Selected immunoregulatory genes. International Consortium for the Genetics of Autoimmune Thyroid Disease. J Clin Endocrinol Metab 1998;83:1580–1584.

    Article  PubMed  CAS  Google Scholar 

  116. Brix TH, Knudsen GP, Kristiansen M, Kyvik KO, Orstavik KH, Hegedus L. High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endocrinol Metab 2005;90:5949–5953.

    Article  PubMed  CAS  Google Scholar 

  117. Benhaim RD, Davies TF. Increased risk of Graves’ disease after pregnancy. Thyroid 2005;15:1287–1290.

    Article  Google Scholar 

  118. Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab 2002;87:3315–3320.

    Article  PubMed  CAS  Google Scholar 

  119. Bülow Pedersen I, Laurberg P, Knudsen N, et al. Increase in incidence of hyperthyroidism predominantly occurs in young people after iodine fortification of salt in Denmark. J Clin Endocrinol Metab 2006;91:3830–3834.

    Article  PubMed  CAS  Google Scholar 

  120. Laurberg P, Pedersen KM, Hreidarsson A, Sigfusson N, Iversen E, Knudsen PR. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J Clin Endocrinol Metab 1998;83:765–769.

    Article  PubMed  CAS  Google Scholar 

  121. Li HS, Jiang HY, Carayanniotis G. Modifying effects of iodine on the immunogenicity of thyroglobulin peptides. J Autoimmun 2007;28:171–176.

    Article  PubMed  CAS  Google Scholar 

  122. Ruwhof C, Drexhage HA. Iodine and thyroid autoimmune disease in animal models. Thyroid 2001;11:427–436.

    Article  PubMed  CAS  Google Scholar 

  123. O’Sullivan AJ, Lewis M, Diamond T. Amiodarone-induced thyrotoxicosis: left ventricular dysfunction is associated with increased mortality. Eur J Endocrinol 2006;154:533–536.

    Article  PubMed  CAS  Google Scholar 

  124. Knysz B, Bolanowski M, Klimczak M, Gladysz A, Zwolinska K. Graves’ disease as an immune reconstitution syndrome in an HIV-1-positive patient commencing effective antiretroviral therapy: case report and literature review. Viral Immunol 2006;19:102–107.

    Article  PubMed  CAS  Google Scholar 

  125. Prummel MF, Laurberg P. Interferon-alpha and autoimmune thyroid disease. Thyroid 2003;13:547–551.

    Article  PubMed  CAS  Google Scholar 

  126. El Fassi D, Banga JP, Gilbert JA, Padoa C, Hegedus L, Nielsen CH. Treatment of Graves’ disease with rituximab specifically reduces the production of thyroid stimulating autoantibodies. Clin Immunol 2008;130(3):252–258.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morshed, S.A., Latif, R., Davies, T.F. (2011). Immunopathogenesis of Graves’ Disease. In: Eisenbarth, G. (eds) Immunoendocrinology: Scientific and Clinical Aspects. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-478-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-478-4_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-477-7

  • Online ISBN: 978-1-60327-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics