Skip to main content

Immunopathogenesis of Thyroiditis

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Summary

Thyroiditis consists of a number of different inflammatory processes in thyroid and is caused by a variety of factors. Among the various inflammatory thyroid lesions, Hashimoto’s thyroiditis is the most common, and we will focus on the mechanisms involved in this disease. While extensive studies have been performed to elucidate the immunopathogenesis of Hashimoto’s thyroiditis, the processes underlying this disease are still not fully understood. However, significant progress has been made in areas related to the roles that iodine, CD4+CD25+ regulatory T cells, and apoptosis play in autoimmune-mediated thyroid damage, the defining feature of Hashimoto’s thyroiditis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Weetman AP. Autoimmune thyroid disease. Autoimmunity 2004;37:337–340.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 1997;84:223–243.

    Article  PubMed  CAS  Google Scholar 

  3. Baker JR Jr, Saunders NB, Wartofsky L, Tseng YC, Burman KD. Seronegative Hashimoto thyroiditis with thyroid autoantibody production localized to the thyroid. Ann Intern Med 1988;108:26–30.

    PubMed  Google Scholar 

  4. Vargas MT, Bropnes-Urbina R, Gladman D, Papsin FR, Walfish PG. Antithyroid microsomal autoantibodies and HLA-DR5 are associated with postpartum thyroid dysfunction: evidence supporting an endocrine pathogenesis. J Clin Endocrinol Metab 1988;67:327–333.

    Article  PubMed  CAS  Google Scholar 

  5. Badenhoop K, Schwarz G, Walfish PG, Drummond V, Usadel KH, Bottazzo GF. Susceptibility to thyroid autoimmune disease: molecular analysis of HLA-D region genes identifies new markers for goitrous Hashimoto’s thyroiditis. J Clin Endocrinol Metab 1990;71:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  6. Wan XL, Kimura A, Dong RP, Honda K, Tamai H, Sasazuki T. HLA-A and DRB4 genes in controlling the susceptibility to Hashimoto’s thyroiditis. Hum Immunol 1995;42:131–136.

    Article  PubMed  CAS  Google Scholar 

  7. Thomsen M, Ryder LP, Bech K, Bliddal H, Feldt-Rasmussen U, Molholm J, Kappelgaard E, Nielsen H, Svejgaard A. HLA-D in Hashimoto’s thyroiditis. Tissue Antigens 1983;21:173–175.

    Article  PubMed  CAS  Google Scholar 

  8. Weetman AP. Autoimmune thyroiditis: predisposition and pathogenesis. Clin Endocrinol 1992;36:307–323.

    Article  CAS  Google Scholar 

  9. Onuma H, Ota M, Sugenoya A, et al. Association between HLA and Hashimoto thyroiditis in Japanese. In: Nagataki S, Mori T, Torizuka K, eds. 80 Years of Hashimoto Disease. Amsterdam: Elsevier, 1993:65–68.

    Google Scholar 

  10. Cho BY, Chung JH, Lee HK, Koh C-S. Immunogenetic heterogeneity of atrophic antoimmune thyroiditis according to thyrotropin receptor blocking antibody. In: Nagataki S, Mori T, Torizuka K, eds. 80 Years of Hashimoto Disease. Amsterdam: Elsevier, 1993:45–50.

    Google Scholar 

  11. Cho BY, Chung JH, Shong YK, et al. A strong association between thyrotropin receptor-blocking antibody-positive atrophic autoimmune thyroiditis and HLA-DR8 and HLA-DQB1*0302 in Koreans. J Clin Endocrinol Metab 1993;77:611–615.

    Article  PubMed  CAS  Google Scholar 

  12. Ayadi H, Hadj Kacem H, Rebai A, Farid NR. The genetics of autoimmune thyroid disease. Trends Endocrinol Metab 2004;15:234–239.

    Article  PubMed  CAS  Google Scholar 

  13. Pujol-Borrell R, Todd I, Londei M, Foulis A, Feldmann M, Bottazzo GF. Inappropriate major histocompatibility complex class II expression by thyroid follicular cells in thyroid autoimmune disease and by pancreatic beta cells in type I diabetes. Mol Biol Med 1986;3:159–165.

    PubMed  CAS  Google Scholar 

  14. Bonita RE, Rose NR, Rasooly L, Caturegli P, Burek CL. Kinetics of mononuclear cell infiltration and cytokine expression in iodine-induced thyroiditis in the NOD-H2h4 mouse. Exp Mol Pathol 2003;74:1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Rose NR, Bonita R, Burek CL. Iodine: an environmental trigger of thyroiditis. Autoimmun Rev 2002;1:97–103.

    Article  PubMed  CAS  Google Scholar 

  16. Fountoulakis S, Vartholomatos G, Kolaitis N, Frillingos S, Philippou G, Tsatsoulis A. HLA-DR expressing peripheral T regulatory cells in newly diagnosed patients with different forms of autoimmune thyroid disease. Thyroid 2008;18:1195–2000.

    Article  PubMed  CAS  Google Scholar 

  17. Caturegli P, Kimura H, Rocchi R, Rose NR. Autoimmune thyroid diseases. Curr Opin Rheumatol 2007;19:44–48.

    Article  PubMed  Google Scholar 

  18. Flynn JC, Meroueh C, Snower DP, David CS, Kong YM. Depletion of CD4+CD25+ regulatory T cells exacerbates sodium iodide-induced experimental autoimmune thyroiditis in human leucocyte antigen DR3 (DRB1*0301) transgenic class II-knock-out non-obese diabetic mice. Clin Exp Immunol 2007;147:547–554.

    Article  PubMed  CAS  Google Scholar 

  19. Zois C, Stavrou I, Kalogera C. High prevalence of autoimmune thyroiditis in schoolchildren after elimination of iodine deficiency in northwestern Greece. Thyroid 2003;13:485–489.

    Article  PubMed  Google Scholar 

  20. Bastemir M, Emral R, Erdogan G, Gullu S. High prevalence of thyroid dysfunction and autoimmune thyroiditis in adolescents after elimination of iodine deficiency in the Eastern Black Sea Region of Turkey. Thyroid 2006;16:1265–1271.

    Article  PubMed  CAS  Google Scholar 

  21. Rasooly L, Burek CL, Rose NR. Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin Immunol Immunopathol 1996;81:287–292.

    Article  PubMed  CAS  Google Scholar 

  22. Bagchi N, Brown TR, Sundick RS. Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology 1995;136:5054–5060.

    Article  PubMed  CAS  Google Scholar 

  23. Mooij P, de Wit HJ, Drexhage HA. An excess of dietary iodine accelerates the development of a thyroid-associated lymphoid tissue in autoimmune prone BB rats. Clin Immunol Immunopathol 1993;69:189–198.

    Article  PubMed  CAS  Google Scholar 

  24. Allen EM, Appel MC, Braverman LE. Iodine-induced thyroiditis and hypothyroidism in the hemithyroidectomized BB/W rat. Endocrinology 1987;121:481–485.

    Article  PubMed  CAS  Google Scholar 

  25. Rasooly L, Rose NR, Saboori AM, Ladenson PW, Burek CL. Iodine is essential for human T cell recognition of human thyroglobulin. Autoimmunity 1998;27:213–219.

    Article  PubMed  CAS  Google Scholar 

  26. Saboori AM, Rose NR, Bresler HS, Vladut-Talor M, Burek CL. Iodination of human thyroglobulin (Tg) alters its immunoreactivity. I. Iodination alters multiple epitopes of human Tg. Clin Exp Immunol 1998;113:297–302.

    Article  PubMed  CAS  Google Scholar 

  27. Rayner DC, Champion BR, Cooke A. Thyroglobulin as autoantigen and tolerogen. Immunol Ser 1993;59:359–376.

    PubMed  CAS  Google Scholar 

  28. Sundick RS, Bagchi N, Brown TR. The role of iodine in thyroid autoimmunity: from chickens to humans: a review. Autoimmunity 1992;13:61–68.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson R, McKillop JH, Jenkins C, Thomson JA. In vivo and in vitro studies into the immunological changes following iodine 131 therapy for Graves’ disease. Eur J Nucl Med 1991;18:265–268.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang HY, Li HS, Carayanniotis K, Carayanniotis G. Variable influences of iodine on the T-cell recognition of a single thyroglobulin epitope. Immunology 2007;121:370–376.

    Article  PubMed  CAS  Google Scholar 

  31. Li HS, Jiang HY, Carayanniotis G. Modifying effects of iodine on the immunogenicity of thyroglobulin peptides. J Autoimmun 2007;28:171–176.

    Article  PubMed  Google Scholar 

  32. Burek CL, Rose NR. Autoimmune thyroiditis and ROS. Autoimmun Rev 2008;7:530–537.

    Article  PubMed  CAS  Google Scholar 

  33. Verma S, Hutchings P, Guo J, McLachlan S, Rapoport B, Cooke A. Role of MHC class I expression and CD8(+) T cells in the evolution of iodine-induced thyroiditis in NOD-H2(h4) and NOD mice. Eur J Immunol 2000;30:1191–1202.

    Article  PubMed  CAS  Google Scholar 

  34. Hutchings PR, Verma S, Phillips JM, Harach SZ, Howlett S, Cooke A. Both CD4(+) T cells and CD8(+) T cells are required for iodine accelerated thyroiditis in NOD mice. Cell Immunol 1999;192:113–121.

    Article  PubMed  CAS  Google Scholar 

  35. Fuller BE, Giraldo AA, Waldmann H, Cobbold SP, Kong YC. Depletion of CD4+ and CD8+ cells eliminates immunologic memory of thyroiditogenicity in murine experimental autoimmune thyroiditis. Autoimmunity 1994;19:161–168.

    Article  PubMed  CAS  Google Scholar 

  36. Braley-Mullen H, Sharp GC, Medling B, Tang H. Spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J Autoimmun 1999;12:157–165.

    Article  PubMed  CAS  Google Scholar 

  37. Braley-Mullen H, Yu S. Early requirement for B cells for development of spontaneous ­autoimmune thyroiditis in NOD.H-2h4 mice. J Immunol 2000;165:7262–7269.

    PubMed  CAS  Google Scholar 

  38. Yu S, Dunn R, Kehry MR, Braley-Mullen H. B cell depletion inhibits spontaneous ­autoimmune thyroiditis in NOD.H-2h4 mice. J Immunol 2008;180:7706–7713.

    PubMed  CAS  Google Scholar 

  39. Yu S, Maiti PK, Dyson M, Jain R, Braley-Mullen H. B cell-deficient NOD.H-2h4 mice have CD4+CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis. J Exp Med 2006;203:349–358.

    Article  PubMed  Google Scholar 

  40. Hasselbalch HC. B-cell depletion with rituximab – a targeted therapy for Graves’ disease and autoimmune thyroiditis. Immunol Lett 2003;88:85–86.

    Article  PubMed  CAS  Google Scholar 

  41. Wei WZ, Jacob JB, Zielinski JF, et al. Concurrent induction of antitumor immunity and autoimmune thyroiditis in CD4+ CD25+ regulatory T cell-depleted mice. Cancer Res 2005;65:8471–8478.

    Article  PubMed  CAS  Google Scholar 

  42. Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J Immunol 2005;174:7433–7439.

    PubMed  CAS  Google Scholar 

  43. Gangi E, Vasu C, Cheatem D, Prabhakar BS. IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-­macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol 2005;174:7006–7013.

    PubMed  CAS  Google Scholar 

  44. Nagayama Y, Horie I, Saitoh O, Nakahara M, Abiru N. CD4+CD25+ naturally occurring regulatory T cells and not lymphopenia play a role in the pathogenesis of iodide-induced autoimmune thyroiditis in NOD-H2h4 mice. J Autoimmun 2007;29:195–202.

    Article  PubMed  CAS  Google Scholar 

  45. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  46. Chen Y, Cuda C, Morel L. Genetic determination of T cell help in loss of tolerance to nuclear antigens. J Immunol 2005;174:7692–7702.

    PubMed  CAS  Google Scholar 

  47. Lan RY, Ansari AA, Lian ZX, Gershwin ME. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev 2005;4:351–363.

    Article  PubMed  CAS  Google Scholar 

  48. Torgerson TR. Regulatory T cells in human autoimmune diseases. Springer Semin Immunopathol 2006;28:63–76.

    Article  PubMed  CAS  Google Scholar 

  49. Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ 2007;14:2076–2084.

    Article  PubMed  CAS  Google Scholar 

  50. Hirata S, Matsuyoshi H, Fukuma D, et al. Involvement of regulatory T cells in the experimental autoimmune encephalomyelitis-preventive effect of dendritic cells expressing myelin oligodendrocyte glycoprotein plus TRAIL. J Immunol 2007;178:918–925.

    PubMed  CAS  Google Scholar 

  51. Wang SH, Cao Z, Wolf JM, Van Antwerp M, Baker JR Jr. Death ligand tumor necrosis factor-related apoptosis-inducing ligand inhibits experimental autoimmune thyroiditis. Endocrinology 2005;146:4721–4726.

    Article  PubMed  CAS  Google Scholar 

  52. Nakahara M, Nagayama Y, Saitoh O, Sogawa R, Tone S, Abiru N. Expression of immuno-regulatory molecules by thyrocytes protects NOD-H2h4 mice from developing autoimmune thyroiditis. Endocrinology 2008;150(3):1545–1551.

    Article  PubMed  Google Scholar 

  53. Wang SH, Chen GH, Fan Y, Van Antwerp M, Baker JR Jr. TRAIL inhibits experimental autoimmune thyroiditis by the expansion of CD4+CD25+ regulatory T cells. Endocrinology 2009;150(4):2000–2007.

    Article  PubMed  CAS  Google Scholar 

  54. Marazuela M, Garcia-Lopez MA, Figueroa-Vega N, et al. Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab 2006;91:3639–3646.

    Article  PubMed  CAS  Google Scholar 

  55. Maruoka H, Watanabe M, Matsuzuka F, Takimoto T, Miyauchi A, Iwatani Y. Increased intensities of fas expression on peripheral T-cell subsets in severe autoimmune thyroid disease. Thyroid 2004;14:417–423.

    Article  PubMed  CAS  Google Scholar 

  56. Kasprowicz DJ, Droin N, Soper DM, Ramsdell F, Green DR, Ziegler SF. Dynamic regulation of FoxP3 expression controls the balance between CD4+ T cell activation and cell death. Eur J Immunol 2005;35:3424–3432.

    Article  PubMed  CAS  Google Scholar 

  57. Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001;31:1122–1131.

    Article  PubMed  CAS  Google Scholar 

  58. Baecher-Allan C, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Immunol Rev 2006;212:203–216.

    Article  PubMed  CAS  Google Scholar 

  59. Daniel C, Sartory N, Zahn N, Geisslinger G, Radeke HH, Stein JM. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. J Immunol 2007;178:2458–2468.

    PubMed  CAS  Google Scholar 

  60. Mazziotti G, Sorvillo F, Naclerio C, et al. Type-1 response in peripheral CD4+ and CD8+ T cells from patients with Hashimoto’s thyroiditis. Eur J Endocrinol 2003;148:383–388.

    Article  PubMed  CAS  Google Scholar 

  61. Colin IM, Isaac J, Dupret P, Ledant T, D’Hautcourt JL. Functional lymphocyte subset assessment of the Th1/Th2 profile in patients with autoimmune thyroiditis by flowcytometric analysis of peripheral lymphocytes. J Biol Regul Homeost Agents 2004;18:72–76.

    PubMed  CAS  Google Scholar 

  62. Phenekos C, Vryonidou A, Gritzapis AD, Baxevanis CN, Goula M, Papamichail M. Th1 and Th2 serum cytokine profiles characte­rize patients with Hashimoto’s thyroiditis (Th1) and Graves’ disease (Th2). Neuroimmunomodulation 2004;11:209–213.

    Article  PubMed  CAS  Google Scholar 

  63. Baker JR Jr. Immunologic aspects of endocrine diseases. Ann Intern Med 1988;108:26–30.

    PubMed  Google Scholar 

  64. Bonger U, Finke R, Hegedus L, Hanseb JM, Schleusener H. Cytotoxicity and antithyroid peroxidase antibodies in patients with autoimmune thyroiditis. In: Nagataki S, Mori T, Torizuka K, eds. 80 Years of Hashimoto Disease. Amsterdam: Elsevier, 1993:383–388.

    Google Scholar 

  65. Wang SH, Mezosi E, Wolf JM, et al. IFNgamma sensitization to TRAIL-induced apoptosis in human thyroid carcinoma cells by upregulating Bak expression. Oncogene 2004;23:928–935.

    Article  PubMed  CAS  Google Scholar 

  66. Mezosi E, Wang SH, Utsugi S, et al. Interleukin-1beta and tumor necrosis factor (TNF)-alpha sensitize human thyroid epithelial cells to TNF-related apoptosis-inducing ligand-induced apoptosis through increases in procaspase-7 and bid, and the down-regulation of p44/42 mitogen-activated protein kinase activity. J Clin Endocrinol Metab 2004;89:250–257.

    Article  PubMed  CAS  Google Scholar 

  67. Baker JR Jr. Dying (apoptosing?) for a ­consensus on the Fas death pathway in the thyroid. J Clin Endocrinol Metab 1999;84:2593–2595.

    Article  PubMed  CAS  Google Scholar 

  68. Arscott PL, Baker JR Jr. Apoptosis and thyroiditis. Clin Immunol Immunopathol 1998;87:207–217.

    Article  PubMed  CAS  Google Scholar 

  69. Arscott PL, Knapp J, Rymaszewski M, et al. Fas (APO-1, CD95)-mediated apoptosis in thyroid cells is regulated by a labile protein inhibitor. Endocrinology 1997;138:5019–5027.

    Article  PubMed  CAS  Google Scholar 

  70. Batteux F, Tourneur L, Trebeden H, Charreire J, Chiocchia G. Gene therapy of experimental autoimmune thyroiditis by in vivo administration­ of plasmid DNA coding Fas ligand. J Immunol 1999;162:603–608.

    PubMed  CAS  Google Scholar 

  71. Mezosi E, Wang SH, Utsugi S, et al. Induction and regulation of Fas-mediated apoptosis in human thyroid epithelial cells. Mol Endocrinol 2005;19:804–811.

    Article  PubMed  CAS  Google Scholar 

  72. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS. Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 2003;48:2888–2897.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, S.H., Baker, J.R. (2011). Immunopathogenesis of Thyroiditis. In: Eisenbarth, G. (eds) Immunoendocrinology: Scientific and Clinical Aspects. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-478-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-478-4_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-477-7

  • Online ISBN: 978-1-60327-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics