Skip to main content

Insulin Resistance in States of Energy Excess: Underlying Pathophysiological Concepts

  • Chapter
  • First Online:
Nutrition and Metabolism

Part of the book series: Nutrition and Health ((NH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weyer C, Foley JE, Bogardus PA, Tataranni REP. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type 2 diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    Article  PubMed  CAS  Google Scholar 

  2. Tunstall-Pedoe H. Preventing Chronic Diseases. A Vital Investment: WHO Global Report. Geneva: World Health Organization, 2005, pp 200. CHF 30.00. ISBN 92 4 1563001. Also published on http://www.who.int/chp/chronic_disease_report/en/Int J Epidemiol 2006.

    Google Scholar 

  3. Mokad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes and obesity-related health risk factors 2001. JAMA 2003; 289: 76–79.

    Article  Google Scholar 

  4. Field AE, Coakley EH, Must A, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Int Med 2001; 161: 1581–1586.

    Article  CAS  Google Scholar 

  5. Fulop T, Tessier D, Carpentier A. The metabolic syndrome. Path Biol 2006; 54: 375–386.

    Article  CAS  Google Scholar 

  6. Laclaustra M, Corella D, Ordovas JM. Metabolic syndrome pathophysiology: The role of adipose tissue. Nutr Metab Cardiovasc Dis 2007; 17: 125–139.

    Article  PubMed  CAS  Google Scholar 

  7. Murdolo G, Smith U. The dysregulated adipose tissue: A connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutr Metab Card Dis 2006; 16: S35–S38.

    Article  Google Scholar 

  8. Yang X, Jansson PA, Nagaev I, et al. Evidence of impaired adipogenesis in insulin resistance. Biochem Biophys Res Commun 2004; 317: 1045–1051.

    Article  PubMed  CAS  Google Scholar 

  9. Kiess W, Petzold S, Töpfer M, Garten A, Blüher S, Kapellen Th, Körner A, Kratzsch J. Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab 2008; 22: 135–153.

    Article  PubMed  CAS  Google Scholar 

  10. Sweeney L, Brennan AM, Mantzoros CS. Metabolic syndrome. In Regensteiner J, Reusc J, Stewart J and Veves A. (editors): Diabetes and Exercise. Humana Press 2009 (in press).

    Google Scholar 

  11. Bonadonna RC, Del Prato S, Saccomani MB et al. Transmembrane glucose transport in skeletal muscle of patients with non-insulin dependent diabetes. J Clin Invest 1993; 92: 486–494.

    Article  PubMed  CAS  Google Scholar 

  12. Gastaldelli A, Baldi S, Pettiti M et al. Influence of obesity and type 2 diabetes on gluconeogenesis and output in humans: a quantitative study. Diabetes 2000; 49: 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  13. Virtanen KA, Iozzo P, Hallsten K. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: a positron-emitting tomography study. Diabetes 2005; 54: 2720–2726.

    Article  PubMed  CAS  Google Scholar 

  14. Barb D, Pazaitou-Panayiotou K, Mantzoros CS. Adiponectin: a link between obesity and cancer. Expert Opin Investig Drugs 2006; 15: 917–931.

    Article  PubMed  CAS  Google Scholar 

  15. Knowler WC, Barrett-Conner E, Fowler E, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. NEJM 2002; 346: 393–403

    Article  PubMed  CAS  Google Scholar 

  16. Albu JB, Kovera AJ, Johnson JA. Fat distribution and health in obesity. Ann NY Acad Sci 2000; 904: 491–501.

    Article  PubMed  CAS  Google Scholar 

  17. Zeirath JR, Livingston JN, Thorne J, et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor hosphorylation and intracellular signaling through the insulin receptor substrate-1-pathway. Diabetologia 1998; 41: 1343–1354.

    Article  Google Scholar 

  18. Arner P. Regional differences in protein production by human adipose tissue. Biochem Soc Trans 2001; 29: 72–75.

    Article  PubMed  CAS  Google Scholar 

  19. Motoshima H, Wu X, Sinha MK, et al. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 2002; 87: 5662–5667.

    Article  PubMed  CAS  Google Scholar 

  20. Desprès JP. Is visceral obesity the cause of the metabolic syndrome. Ann Med 2006; 38: 52–63.

    Article  PubMed  CAS  Google Scholar 

  21. Sewter CP, Blows F, Vidal Puig A, O’Rahilly S. Regional differences in the response of human pre-adipocytes to PPARγ and RXRα agonists. Diabetes 2002; 51: 7218–7223.

    Google Scholar 

  22. Bouchard C, Depress JP, Mauriege P. Genetics and nongenetic determinants of regional fat distribution. Endocr Rev 1993; 14: 72–93.

    PubMed  CAS  Google Scholar 

  23. Perusse L, Rice T, Chagnon YC, et al. A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes 2001; 50: 614–621.

    Article  PubMed  CAS  Google Scholar 

  24. Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J Clin Endocrinol Metab 2005; 90: 4542–4548.

    Article  PubMed  CAS  Google Scholar 

  25. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004; 80: 348–356.

    PubMed  CAS  Google Scholar 

  26. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004; 292: 927–934.

    Article  PubMed  CAS  Google Scholar 

  27. Schulze MB, Fung TT, Manson JE, Willett WC, Hu FB. Dietary patterns and changes in body weight in women. Obesity (Silver Spring) 2006; 14: 1444–1453.

    Article  Google Scholar 

  28. Van Dam RM and Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005; 294: 97–104.

    Article  PubMed  CAS  Google Scholar 

  29. Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB. Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 2006; 83: 674–680.

    PubMed  CAS  Google Scholar 

  30. Williams CJ, Fargnoli JL, Hwang JJ, van Dam RM, Blackburn GL, Hu FB, Mantzoros CS. Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study. Diabetes Care 2008; 31: 504–507.

    Article  PubMed  Google Scholar 

  31. Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu FB. Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA 2002; 288: 2554–2560.

    Article  PubMed  Google Scholar 

  32. Blüher M, Bullen JW, Lee JH, et al. Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: Associations with metabolic parameters and insulin resistance and regulation by physical training. J Clin Endocrinol Metab 2006; 91: 2310–2316.

    Article  PubMed  CAS  Google Scholar 

  33. Helmrich SP, Ragland DR, Leung RW et al. Physical activity and reduced occurrence of non-insulin dependent diabetes mellitus. N Engl J Med 1991; 325: 147–152.

    Article  PubMed  CAS  Google Scholar 

  34. Sjostrom CD, Lissner L, Wedel H, et al. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obes Res 1999; 7: 477–484.

    PubMed  CAS  Google Scholar 

  35. Dixon JB, O’Brien PE. Health outcomes of severely obese type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care 2002; 25(2): 358–63.

    Article  PubMed  Google Scholar 

  36. Hoekstra T, Geleijnse JM, Schouten EG, Kok FJ, Kluft C. Relationship of C-reactive protein with components of the metabolic syndrome in normal-weight and overweight elderly. Nutr Metab Cardiovasc Dis 2005; 15: 270–278.

    Article  PubMed  Google Scholar 

  37. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1798–1808.

    Google Scholar 

  38. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    PubMed  CAS  Google Scholar 

  39. Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a disease of the innate immune system: associations of the acute phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40: 1286–1292.

    Article  PubMed  CAS  Google Scholar 

  40. Shai I, Schulze MB, Manson JE, Rexrode KM, Stampfer MJ, Mantzoros C, Hu FB. A prospective study of soluble tumor necrosis factor-alpha receptor II (sTNF-RII) and risk of coronary heart disease among women with type 2 diabetes. Diabetes Care 2005; 28: 1376–1382.

    Article  PubMed  CAS  Google Scholar 

  41. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003; 278: 45777–45784.

    Article  PubMed  CAS  Google Scholar 

  42. Dandona P, Aljada A. A rational approach to pathogenesis and treatment of type 2 diabetes mellitus, insulin resistance, inflammation, and artherosclerosis. Am J Cardiol 2002; 90: 27G–33G.

    Article  PubMed  CAS  Google Scholar 

  43. Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in the pathogenesis of type 2 diabetes mellitus: Peroxismal proliferatiors-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004; 89: 463–478.

    Article  PubMed  CAS  Google Scholar 

  44. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin dependent diabetes. J Clin Invest 1995; 96: 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  45. Paolisso G, Tataranni PA, Foley JE, et al. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 1995; 38: 1213–1217.

    Article  PubMed  CAS  Google Scholar 

  46. Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity. Reversal with intramyocellular fat depletion. Diabetes 2002; 51: 144–151.

    Article  PubMed  CAS  Google Scholar 

  47. Seppala-Lindroos A, Vehkavaara S, Hakkinen A-M, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002; 87: 3023–3028.

    Article  PubMed  CAS  Google Scholar 

  48. Robertson RP, Harmon J, Tran OP, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004; 53: S119–S124.

    Article  PubMed  CAS  Google Scholar 

  49. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333–1346.

    Article  PubMed  CAS  Google Scholar 

  50. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 1996; 45: 273–283.

    Article  Google Scholar 

  51. Shimabukuro M, Zhou YT, Leve M, Unger RH. Fatty acid induced β cell apoptosis. Proc Natl Acad Sci USA 1998; 95: 2498–2502.

    Article  PubMed  CAS  Google Scholar 

  52. Avramoglu RK, Basciano H, Aedli K. Lipid andlipoprotein dysregulation in insulin resistant states. Clin Chim Acta 2006; 368: 1–19.

    Article  PubMed  CAS  Google Scholar 

  53. Mantzoros CS. Syndromes of severe insulin resistance. In De Groot L (editor): Endocrinology, 5th Edition. Philadelphia: Saunders, 2005, pp. 1133–1149.

    Google Scholar 

  54. Ginsberg HN. New perspective on atherogenesis: Role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 2002; 106: 2137–2142.

    Article  PubMed  Google Scholar 

  55. Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol 2001; 280: E827–47.

    CAS  Google Scholar 

  56. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50: 1126–1133.

    Article  PubMed  CAS  Google Scholar 

  57. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chaung LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86: 3815–3819.

    Article  PubMed  CAS  Google Scholar 

  58. Brennan AM, Mantzoros CS. Leptin and adiponectin: Their role in diabetes. Curr Diab Rep 2007; 7: 1–2.

    Article  PubMed  Google Scholar 

  59. Yamauchi T, Kamon J, Waki H, et al. The fat derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    Article  PubMed  CAS  Google Scholar 

  60. Nadler ST, Stoehr JP, Schueler KL, et al. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci 2000; 97: 11371–11376.

    Article  PubMed  CAS  Google Scholar 

  61. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002; 8: 731–737.

    Article  PubMed  CAS  Google Scholar 

  62. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni AP. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

    Article  PubMed  CAS  Google Scholar 

  63. Abbasi F, Chu JW, Mclaughlin T, Lamendola C, Reaven G, Hayden JM, Reaven P. Obesity versus insulin resistance in modulation of plasma adiponectin concentration. Diabetes 2002; 52(suppl 1): A81.

    Google Scholar 

  64. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose – specific protein, adiponectin, in obesity. Biochem Biopys Res Commun 1999; 257: 79–83.

    Article  CAS  Google Scholar 

  65. Hotta K, Funahashi T, Arita Y, et al. Plasma concentration of a novel adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  PubMed  CAS  Google Scholar 

  66. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006; 64: 355–365.

    CAS  Google Scholar 

  67. Spyridopoulos TN, Petridou E, Skalkidou A, Dessypris N, Chrousos GP, Mantzoros CS. and the Obesity and Cancer Oncology Group. Low adiponectin levels are associated with renal cell carcinoma: A case-control study. Int J Cancer 2007; 120: 1573–1578.

    Article  PubMed  CAS  Google Scholar 

  68. Michalakis K, Williams KJ, Mitsiades N, Blakeman J, Balafouta-Tselenis S, Giannopoulos A, Mantzoros CS. Serum adiponectin concentrations and tissue expression of adiponectin receptors are reduced in patients with prostate cancer: A case-control study. Cancer Epidemiol Biomarkers Prev 2007; 16: 308–313.

    Article  PubMed  CAS  Google Scholar 

  69. Korner A, Pazaitou- Panayiotou K, Kelesidis T, et al. Total and high molecular weight adiponectin in breast cancer: in vitro and in vivo studies. J Clin Endocrinol Metab 2007; 92: 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  70. Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros CS Hankinson SE,. Plasma adiponectin concentrations and risk of incident breast cancer J Clin Endocrin Metab 2007; 92: 1510–1516.

    Article  CAS  Google Scholar 

  71. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer 2006; 94: 1221–1225.

    Article  PubMed  CAS  Google Scholar 

  72. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  PubMed  CAS  Google Scholar 

  73. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N. Adiponectin, a new member of the family of soluble defense collagens, negatively regulated the growth of myelmonocytic progenitors and the functions of macrophages. Blood 2000; 96: 1723–1732.

    PubMed  CAS  Google Scholar 

  74. Qi L, van Darn RM, Liu S, Franz M, Mantzoros C, Hu FB. Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 2006; 29: 207–211.

    Article  PubMed  CAS  Google Scholar 

  75. Qi L, Meigs JB, Liu S, Manson JE, Mantzoros C, Hu FB. Dietary fibers and glycemic load, obesity, and plasma adiponectin levels in women with type 2 diabetes. Diabetes Care 2006; 29: 1501–1515.

    Article  PubMed  CAS  Google Scholar 

  76. Manztoros CS, Williams CJ, Manson JE, Meigs JB, Hu FB. Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women. Am J Clin Nutr 2006; 84: 328–335.

    Google Scholar 

  77. Monzillo LU, Hamdy O, Horton ES, et al. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes Res 2003; 11: 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  78. Lindsay RS, Funahashi T, Hanson RL, Matsuwaza Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360: 57–58.

    Article  PubMed  CAS  Google Scholar 

  79. Bullen J, Bluher S, Kelesidis T, Mantzoros CS. Regulation of adiponectin and its receptors in response to development of diet induced obesity in mice. Am J Physiol Endocrinol Metab 2007; 292: E1079–E1086.

    Article  PubMed  CAS  Google Scholar 

  80. Blüher S, Bullen J, Mantzoros C. Altered levels of adiponectin and adiponectin receptors may underlie the effect of ciliary neurotrophic factor (CNTF) to enhance insulin sensitivity in diet induced obese mice. Horm Metab Res 2008; 40: 225–227.

    Article  PubMed  CAS  Google Scholar 

  81. Brennan AM, Mantzoros CS. The role of leptin in human physiology and pathophysiology: emerging clinical applications in leptin deficient states. Nature (Clinical Practice Endocrinology and Metabolism) 2006; 2: 1–5.

    Google Scholar 

  82. Lonnqvist F, Arner P, Nordfors L, Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat Med 1995; 1: 950–993.

    Article  PubMed  CAS  Google Scholar 

  83. Ceddia Rb, William Jr WN, Curi R. Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: Evidence for an effect of leptin on glucose uptake and decarboxylation. Int J Obesity Related Metab Disord 1999; 23: 75–82.

    Article  CAS  Google Scholar 

  84. Kamohara S, Burcelin R, Halaas JL, Freidman JM. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 1997; 389: 374–77.

    Article  PubMed  CAS  Google Scholar 

  85. Muoio DM, Dohm GL. Peripheral metabolic actions of leptin. Best Practice Res Clin Endocrinol Metab 2002; 16: 653–66.

    Article  CAS  Google Scholar 

  86. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401.

    Article  PubMed  CAS  Google Scholar 

  87. Farooqui IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341: 879–884.

    Article  Google Scholar 

  88. Mantzoros CS, Flier JS. Editorial: Leptin as a therapeutic agent-trials and tribulations. J Clin Endocrinol Metab 2000; 85: 4000–4002.

    Article  PubMed  CAS  Google Scholar 

  89. Oral EA, Simha V, Ruiz E, et al. Leptin replacement therapy for lipodystrophy. N Engl J Med 2002; 346: 57–78.

    Article  Google Scholar 

  90. Javor ED, Cochran EK, Musso C, et al. Long-term efficacy of leptin replacement in patients with generaliszed lipodystrophy. Diabetes 2005; 54: 1994–2002.

    Article  PubMed  CAS  Google Scholar 

  91. Lee JH, Chan JL, Sourlas E, Raptopoulos V, Mantzoros CS. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J Clin Endocrinol Metab 2006; 91: 2605–2611.

    Article  PubMed  CAS  Google Scholar 

  92. Tsiodras S, Mantzoros C. The role of leptin and adiponectin in the HAART induced metabolic syndrome. Am J Infect Dis 2006; 2: 141–152.

    Article  PubMed  CAS  Google Scholar 

  93. Santos-Alvarez J, Goberna R, Sanchez-Margalet V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol 1999; 194: 6–11.

    Article  PubMed  CAS  Google Scholar 

  94. Giansford T, Willson TA, Metcalf D, et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 1996; 93: 14564–14568.

    Article  Google Scholar 

  95. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005; 366: 74–85.

    Article  PubMed  CAS  Google Scholar 

  96. Smith SR, Bai F, Charbonneau C, et al. A promoter genotype and oxidative stress potentially link resistin to human insulin resistance. Diabetes 2003; 52: 1611–1618.

    Article  PubMed  CAS  Google Scholar 

  97. Wang H, Chu WS, Hemphill C, Elbein SC. Human resistin gene: molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J Clin Endocrinol Metab 2002; 87: 2520–2524.

    Article  PubMed  CAS  Google Scholar 

  98. Vidal-Puig A, O’Rahilly S, Resistin: a new link between obesity and insulin resistance. Clin Endocrionol (Oxf) 2001; 55: 437–438.

    Article  CAS  Google Scholar 

  99. Lee JH, Bullen Jr JW, Stoyneva VL, Mantzoros CS. Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia. Am J Physiol Endocrinol Metab 2005; 288: E625–E632.

    Article  PubMed  CAS  Google Scholar 

  100. Lee JH, Chan JL, Yiannakouris N, et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J Clin Endocrinol Metab 2003; 88: 4848–4856.

    Article  PubMed  CAS  Google Scholar 

  101. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307: 426–430.

    Article  PubMed  CAS  Google Scholar 

  102. Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 21; 436: 356–362.

    Article  PubMed  CAS  Google Scholar 

  103. Uzui H, Harpf A, Liu M, et al. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation 2002; 106: 3024–3030.

    Article  PubMed  CAS  Google Scholar 

  104. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–1245.

    Article  PubMed  CAS  Google Scholar 

  105. Miyazaki Y, Pipek R, Mandarino LJ, DeFronzo RA. Tumor necrosis factor α and insulin resistance in obese type 2 diabetic patients. Int J Obesity 2003; 27: 88–94.

    Article  CAS  Google Scholar 

  106. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α and obesity induced insulin resistance. Science 1996; 271: 665–668.

    Article  PubMed  CAS  Google Scholar 

  107. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389: 610–614.

    Article  PubMed  CAS  Google Scholar 

  108. Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134: 264–270.

    Article  PubMed  CAS  Google Scholar 

  109. Sandler S, Bendtzen K, Eizirik DL, Welsh M. Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology 1990; 126: 1288–1294.

    Article  PubMed  CAS  Google Scholar 

  110. Pradhan AD, Manson JE, Rifai N, et al. C-Reative protein, interleukin 6 and the risk of developing type 2 diabetes. JAMA 2001; 286: 327–334.

    Article  PubMed  CAS  Google Scholar 

  111. Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin 6, tumor necrosis factor and blood cytokine production in type 2 diabetes. Life Sci 2000; 67: 291–300.

    Article  PubMed  CAS  Google Scholar 

  112. Suzuki K, Nakaji S, Yamada M, et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 2002; 8: 6–48.

    PubMed  Google Scholar 

  113. Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-nduced TNF-alpha production in humans. FASEB J 2003; 17: 884–886.

    PubMed  CAS  Google Scholar 

  114. Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent? Diabetes Care 1999; 22: C25–C30.

    Google Scholar 

  115. Alessi MC, Bastelica D, Morange P, et al. Plasminogen activator inhibitor 1, transforming growth factor-β1 amd ABMI are closely associated in human adipose tissue during morbid obesity. Diabetes 2000; 49: 1374–1380.

    Article  PubMed  CAS  Google Scholar 

  116. Alessi MC, Peiretti F, Morange P, et al. Production of plasminogen activator inhibitor1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997; 46: 860–867.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blüher, S., Mantzoros, C.S. (2009). Insulin Resistance in States of Energy Excess: Underlying Pathophysiological Concepts. In: Mantzoros, C. (eds) Nutrition and Metabolism. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-453-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-453-1_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-452-4

  • Online ISBN: 978-1-60327-453-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics