Skip to main content

Pathogenesis of Corticotropic Tumors

  • Chapter
  • First Online:
Cushing's Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

  • 2064 Accesses

Summary

Subcellular molecular mechanisms underlying ACTH-secreting pituitary adenomas remain elusive. Genetic and acquired animal and cell models have provided insights into corticotroph cell tumorigenesis, including cell cycle abnormalities and aberrant glucocorticoid feedback mechanisms. Novel peptide therapies targeting somatostatin and/or dopamine (D2) receptors and emerging microRNA studies may shed light on additional cellular pathways that regulate tumoral corticotroph cell function.

Studying human pituitary corticotroph tumor biology is challenging. The rarity of the disease, as well as the small tumor size and commonly encountered specimen contamination with adjacent “normal” pituitary tissue, all represent obstacles to studying disease mechanisms. Moreover, the lack of normal/ non-autopsy derived human pituitary tissue and the inability to separate pure populations of viable corticotroph cells in primary non-human pituitary cultures does not enable easy comparison between normal and abnormal corticotroph cells. Therefore, despite technological and biological advances improving our knowledge of Cushing’s disease, the pathophysiology of pituitary corticotroph adenomas remains unclear. This chapter focuses on accumulating knowledge, emphasizing recent progress in identifying molecular and genetic mechanisms contributing to the pathogenesis of Cushing’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saeger W, Ludecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol 2007;156(2):203–216.

    Article  PubMed  CAS  Google Scholar 

  2. Orth DN, Holscher MA, Wilson MG, Nicholson WE, Plue RE, Mount CD. Equine Cushing’s disease: plasma immunoreactive proopiolipomelanocortin peptide and cortisol levels basally and in response to diagnostic tests. Endocrinology 1982;110(4):1430–1441.

    Article  PubMed  CAS  Google Scholar 

  3. Wilson MG, Nicholson WE, Holscher MA, Sherrell BJ, Mount CD, Orth DN. Proopiolipomelanocortin peptides in normal pituitary, pituitary tumor, and plasma of normal and Cushing’s horses. Endocrinology 1982;110(3):941–954.

    Article  PubMed  CAS  Google Scholar 

  4. de Bruin C, Meij BP, Kooistra HS, Hanson JM, Lamberts SW, Hofland LJ. Cushing’s disease in dogs and humans. Horm Res 2009;71(Suppl 1):140–143.

    Article  PubMed  CAS  Google Scholar 

  5. Willeberg PPW. Epidemiological aspects of clinical hyperadrenocorticism in dogs (canine Cushing’s syndrome). J Am Anim Hosp Assoc 1982(18):717–724.

    Google Scholar 

  6. Halmi NS, Peterson ME, Colurso GJ, Liotta AS, Krieger DT. Pituitary intermediate lobe in dog: two cell types and high bioactive adrenocorticotropin content. Science 1981;211(4477):72–74.

    Article  PubMed  CAS  Google Scholar 

  7. Bautch VL, Toda S, Hassell JA, Hanahan D. Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 1987;51(4):529–537.

    Article  PubMed  CAS  Google Scholar 

  8. Helseth A, Siegal GP, Haug E, Bautch VL. Transgenic mice that develop pituitary tumors. A model for Cushing’s disease. Am J Pathol 1992;140(5):1071–1080.

    PubMed  CAS  Google Scholar 

  9. Low MJ, Liu B, Hammer GD, Rubinstein M, Allen RG. Post-translational processing of proopiomelanocortin (POMC) in mouse pituitary melanotroph tumors induced by a POMC-simian virus 40 large T antigen transgene. J Biol Chem 1993;268(33):24967–24975.

    PubMed  CAS  Google Scholar 

  10. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W. Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992;130(6):3378–3386.

    Article  PubMed  CAS  Google Scholar 

  11. Yano H, Readhead C, Nakashima M, Ren SG, Melmed S. Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-immune-endocrine modulation of pituitary development. Mol Endocrinol 1998;12(11):1708–1720.

    Article  PubMed  CAS  Google Scholar 

  12. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992;359(6393):288–294.

    Article  PubMed  CAS  Google Scholar 

  13. Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, et al. Requirement for a functional Rb-1 gene in murine development. Nature 1992;359(6393):328–330.

    Article  PubMed  CAS  Google Scholar 

  14. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992;359(6393):295–300.

    Article  PubMed  CAS  Google Scholar 

  15. Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 2003;112(11):1603–1618.

    PubMed  CAS  Google Scholar 

  16. Rene P, Grino M, Viollet C, Videau C, Jullian E, Bucchini D, et al. Overexpression of the V3 vasopressin receptor in transgenic mice corticotropes leads to increased basal corticosterone. J Neuroendocrinol 2002;14(9):737–744.

    Article  PubMed  CAS  Google Scholar 

  17. Auernhammer CJ, Melmed S. Leukemia-inhibitory factor-neuroimmune modulator of endocrine function. Endocr Rev 2000;21(3):313–345.

    Article  PubMed  CAS  Google Scholar 

  18. Langlais D, Couture C, Balsalobre A, Drouin J. Regulatory network analyses reveal genome-wide potentiation of LIF signaling by glucocorticoids and define an innate cell defense response. PLoS Genet 2008;4(10):e1000224.

    Article  PubMed  Google Scholar 

  19. Leung SW, Wloga EH, Castro AF, Nguyen T, Bronson RT, Yamasaki L. A dynamic switch in Rb+/- mediated neuroendocrine tumorigenesis. Oncogene 2004;23(19):3296–3307.

    Article  PubMed  CAS  Google Scholar 

  20. Quereda V, Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol 2009;42(2):75–86.

    PubMed  CAS  Google Scholar 

  21. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85(5):707–720.

    Article  PubMed  CAS  Google Scholar 

  22. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996;85(5):733–744.

    Article  PubMed  CAS  Google Scholar 

  23. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996;85(5):721–732.

    Article  PubMed  CAS  Google Scholar 

  24. Brugarolas J, Bronson RT, Jacks T. p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J Cell Biol 1998;141(2):503–514.

    Article  PubMed  CAS  Google Scholar 

  25. Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A. p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci U S A 1999;96(11):6382–6387.

    Article  PubMed  CAS  Google Scholar 

  26. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998;12(18):2899–2911.

    Article  PubMed  CAS  Google Scholar 

  27. Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000;20(16):6147–6158.

    Article  PubMed  CAS  Google Scholar 

  28. Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/-)mice. Nat Genet 1998;18(4):360–364.

    Article  PubMed  CAS  Google Scholar 

  29. Lee EY, Cam H, Ziebold U, Rayman JB, Lees JA, Dynlacht BD. E2F4 loss suppresses tumorigenesis in Rb mutant mice. Cancer Cell 2002;2(6):463–472.

    Article  PubMed  CAS  Google Scholar 

  30. Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S. Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. Mol Endocrinol 2005;19(9):2371–2379.

    Article  PubMed  CAS  Google Scholar 

  31. Vlotides G, Eigler T, Melmed S. Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 2007;28(2):165–186.

    PubMed  CAS  Google Scholar 

  32. Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S, et al. p21(Cip1) restrains pituitary tumor growth. Proc Natl Acad Sci U S A 2008;105(45):17498–17503.

    Article  PubMed  CAS  Google Scholar 

  33. Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K, et al. Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Res 2007;67(21):10564–10572.

    Article  PubMed  CAS  Google Scholar 

  34. Lloyd R, Kovacs K, Young WF Jr., Farrel WE, Asa SL, Trouillas J, Kontogeorgos G, Sano T, Scheithauer BW, Horvath E. World Health Organization classification of tumours: pathology and genetics of tumours of endocrine organs. In: DeLellis R, Lloyd RV, Heitz PU, Eng C, eds. Lyon, France: International Agency for Research on Cancer (IRAC); 2004.

    Google Scholar 

  35. Challa VR, Marshall RB, Hopkins MB 3rd, Kelly DL, Jr., Civantos F. Pathobiologic study of pituitary tumors: report of 62 cases with a review of the recent literature. Hum Pathol 1985;16(9):873–884.

    Article  PubMed  CAS  Google Scholar 

  36. Mindermann T, Wilson CB. Age-related and gender-related occurrence of pituitary adenomas. Clin Endocrinol (Oxf) 1994;41(3):359–364.

    Article  CAS  Google Scholar 

  37. Al-Shraim M, Asa SL. The 2004 World Health Organization classification of pituitary tumors: what is new? Acta Neuropathol 2006;111(1):1–7.

    Article  PubMed  Google Scholar 

  38. George DH, Scheithauer BW, Kovacs K, Horvath E, Young WF, Jr., Lloyd RV, et al. Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 2003;27(10):1330–1336.

    Article  PubMed  Google Scholar 

  39. Pluta RM, Nieman L, Doppman JL, Watson JC, Tresser N, Katz DA, et al. Extrapituitary parasellar microadenoma in Cushing’s disease. J Clin Endocrinol Metab 1999;84(8):2912–2923.

    Article  PubMed  CAS  Google Scholar 

  40. Kovacs K. The pathology of Cushing’s disease. J Steroid Biochem Mol Biol 1993;45(1–3):179–182.

    Article  PubMed  CAS  Google Scholar 

  41. Kovacs KH, E. Tumors of the Pituitary Gland. Washington DC: Armed Forces Institute of Pathology; 1986.

    Google Scholar 

  42. Burch WM. Cushing’s disease. A review. Arch Intern Med 1985;145(6):1106–1111.

    Article  PubMed  CAS  Google Scholar 

  43. Lamberts SW, Klijn JG, de Quijada M, Timmermans HA, Uitterlinden P, de Jong FH, et al. The mechanism of the suppressive action of bromocriptine on adrenocorticotropin secretion in patients with Cushing’s disease and Nelson’s syndrome. J Clin Endocrinol Metab 1980;51(2):307–311.

    Article  PubMed  CAS  Google Scholar 

  44. Lamberts SW, Stefanko SZ, de Lange SA, Fermin H, van der Vijver JC, Weber RF, et al. Failure of clinical remission after transsphenoidal removal of a microadenoma in a patient with Cushing’s disease: multiple hyperplastic and adenomatous cell nets in surrounding pituitary tissue. J Clin Endocrinol Metab 1980;50(4):793–795.

    Article  PubMed  CAS  Google Scholar 

  45. Orth DN, DeBold CR, DeCherney GS, Jackson RV, Alexander AN, Rivier J, et al. Pituitary microadenomas causing Cushing’s disease respond to corticotropin-releasing factor. J Clin Endocrinol Metab 1982;55(5):1017–1019.

    Article  PubMed  CAS  Google Scholar 

  46. Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86(1):336–340.

    Article  PubMed  CAS  Google Scholar 

  47. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990;71(6):1427–1433.

    Article  PubMed  CAS  Google Scholar 

  48. Wolfsen AR, Odell WD. The dose–response relationship of ACTH and cortisol in Cushing’s disease. Clin Endocrinol (Oxf) 1980;12(6):557–568.

    Article  CAS  Google Scholar 

  49. Suda T, Tozawa F, Yamada M, Ushiyama T, Tomori N, Sumitomo T, et al. Effects of corticotropin-releasing hormone and dexamethasone on proopiomelanocortin messenger RNA level in human corticotroph adenoma cells in vitro. J Clin Invest 1988;82(1):110–114.

    Article  PubMed  CAS  Google Scholar 

  50. Oosterom R, Verleun T, Uitterlinden P, Hackeng WH, Burbach JP, Wiegant VM, et al. ACTH and beta-endorphin secretion by three corticotrophic adenomas in culture. Effects of culture time, dexamethasone, vasopressin and synthetic corticotrophin releasing factor. Acta Endocrinol (Copenh) 1984;106(1):21–29.

    CAS  Google Scholar 

  51. White MC, Adams EF, Loizou M, Mashiter K, Fahlbusch R. Ovine corticotrophin releasing factor stimulates ACTH release from human corticotrophinoma cells in culture; interaction with hydrocortisone and arginine vasopressin. Clin Endocrinol (Oxf) 1985;23(3):295–302.

    Article  CAS  Google Scholar 

  52. Mashiter K, Adams EF, Gillies G, Van Noorden S, Ratter S. Adrenocorticotropin and lipotropin secretion by dispersed cell cultures of a human corticotropic adenoma: effect of hypothalamic extract, arginine vasopressin, hydrocortisone, and serotonin. J Clin Endocrinol Metab 1980;51(3):566–572.

    Article  PubMed  CAS  Google Scholar 

  53. Gillies G, Ratter S, Grossman A, Gaillard R, Lowry PJ, Besser GM, et al. Secretion of ACTH, LPH and beta-endophin from human pituitary tumours in vitro. Clin Endocrinol (Oxf) 1980;13(2):197–205.

    Article  CAS  Google Scholar 

  54. Lamberts SW, Bons EG, Uitterlinden P. Studies on the glucocorticoid-receptor blocking action of RU 38486 in cultured ACTH-secreting human pituitary tumour cells and normal rat pituitary cells. Acta Endocrinol (Copenh) 1985;109(1):64–69.

    CAS  Google Scholar 

  55. de Keyzer Y, Bertagna X, Lenne F, Girard F, Luton JP, Kahn A. Altered proopiomelanocortin gene expression in adrenocorticotropin-producing nonpituitary tumors. Comparative studies with corticotropic adenomas and normal pituitaries. J Clin Invest 1985;76(5):1892–1898.

    Article  PubMed  CAS  Google Scholar 

  56. Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol 2003;149(2):79–90.

    Article  PubMed  CAS  Google Scholar 

  57. Bertagna X. Unrestrained production of proopiomelanocortin (POMC) and its peptide fragments by pituitary corticotroph adenomas in Cushing’s disease. J Steroid Biochem Mol Biol 1992;43(5):379–384.

    Article  PubMed  CAS  Google Scholar 

  58. Westlund KN, Aguilera G, Childs GV. Quantification of morphological changes in pituitary corticotropes produced by in vivo corticotropin-releasing factor stimulation and adrenalectomy. Endocrinology 1985;116(1):439–445.

    Article  PubMed  CAS  Google Scholar 

  59. Gertz BJ, Contreras LN, McComb DJ, Kovacs K, Tyrrell JB, Dallman MF. Chronic administration of corticotropin-releasing factor increases pituitary corticotroph number. Endocrinology 1987;120(1):381–388.

    Article  PubMed  CAS  Google Scholar 

  60. Horacek MJ, Campbell GT, Blake CA. Effects of corticotrophin-releasing hormone on corticotrophs in anterior pituitary gland allografts in hypophysectomized, orchidectomized hamsters. Cell Tissue Res 1989;258(1):65–68.

    PubMed  CAS  Google Scholar 

  61. Assie G, Bahurel H, Coste J, Silvera S, Kujas M, Dugue MA, et al. Corticotroph tumor progression after adrenalectomy in Cushing’s Disease: a reappraisal of Nelson’s Syndrome. J Clin Endocrinol Metab 2007;92(1):172–179.

    PubMed  CAS  Google Scholar 

  62. Assie G, Bahurel H, Bertherat J, Kujas M, Legmann P, Bertagna X. The Nelson’s syndrome… revisited. Pituitary 2004;7(4):209–215.

    Article  PubMed  Google Scholar 

  63. Dahia PL, Grossman AB. The molecular pathogenesis of corticotroph tumors. Endocr Rev 1999;20(2):136–155.

    Article  PubMed  CAS  Google Scholar 

  64. Suhardja AS, Kovacs KT, Rutka JT. Molecular pathogenesis of pituitary adenomas: a review. Acta Neurochir (Wien) 1999;141(7):729–736.

    Article  CAS  Google Scholar 

  65. Drouin J, Bilodeau S, Vallette S. Of old and new diseases: genetics of pituitary ACTH excess (Cushing) and deficiency. Clin Genet 2007;72(3):175–182.

    Article  PubMed  CAS  Google Scholar 

  66. Dahia PL, Ahmed-Shuaib A, Jacobs RA, Chew SL, Honegger J, Fahlbusch R, et al. Vasopressin receptor expression and mutation analysis in corticotropin-secreting tumors. J Clin Endocrinol Metab 1996;81(5):1768–1771.

    Article  PubMed  CAS  Google Scholar 

  67. Dahia PL, Honegger J, Reincke M, Jacobs RA, Mirtella A, Fahlbusch R, et al. Expression of glucocorticoid receptor gene isoforms in corticotropin-secreting tumors. J Clin Endocrinol Metab 1997;82(4):1088–1093.

    Article  PubMed  CAS  Google Scholar 

  68. Huizenga NA, de Lange P, Koper JW, Clayton RN, Farrell WE, van der Lely AJ, et al. Human adrenocorticotropin-secreting pituitary adenomas show frequent loss of heterozygosity at the glucocorticoid receptor gene locus. J Clin Endocrinol Metab 1998;83(3):917–921.

    Article  PubMed  CAS  Google Scholar 

  69. Huizenga NA, Koper JW, De Lange P, Pols HA, Stolk RP, Burger H, et al. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab 1998;83(1):144–151.

    Article  PubMed  CAS  Google Scholar 

  70. Dieterich KD, Gundelfinger ED, Ludecke DK, Lehnert H. Mutation and expression analysis of corticotropin-releasing factor 1 receptor in adrenocorticotropin-secreting pituitary adenomas. J Clin Endocrinol Metab 1998;83(9):3327–3331.

    Article  PubMed  CAS  Google Scholar 

  71. Morris DG, Kola B, Borboli N, Kaltsas GA, Gueorguiev M, McNicol AM, et al. Identification of adrenocorticotropin receptor messenger ribonucleic acid in the human pituitary and its loss of expression in pituitary adenomas. J Clin Endocrinol Metab 2003;88(12):6080–6087.

    Article  PubMed  CAS  Google Scholar 

  72. De Menis E, Roncaroli F, Calvari V, Chiarini V, Pauletto P, Camerino G, et al. Corticotroph adenoma of the pituitary in a patient with X-linked adrenal hypoplasia congenita due to a novel mutation of the DAX-1 gene. Eur J Endocrinol 2005;153(2):211–215.

    Article  PubMed  CAS  Google Scholar 

  73. Verges B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab 2002;87(2):457–465.

    Article  PubMed  CAS  Google Scholar 

  74. Asa SL, Somers K, Ezzat S. The MEN-1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 1998;83(9):3210–3212.

    Article  PubMed  CAS  Google Scholar 

  75. Satta MA, Korbonits M, Jacobs RA, Bolden-Dwinfour DA, Kaltsas GA, Vangeli V, et al. Expression of menin gene mRNA in pituitary tumours. Eur J Endocrinol 1999;140(4):358–361.

    Article  PubMed  CAS  Google Scholar 

  76. Dworakowska D, Grossman AB. Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr Relat Cancer 2009;16(1):45–58.

    PubMed  CAS  Google Scholar 

  77. Bilodeau S, Vallette-Kasic S, Gauthier Y, Figarella-Branger D, Brue T, Berthelet F, et al. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev 2006;20(20):2871–2886.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ben-Shlomo, A., Liu, NA., Melmed, S. (2010). Pathogenesis of Corticotropic Tumors. In: Bronstein, M. (eds) Cushing's Syndrome. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-449-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-449-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-448-7

  • Online ISBN: 978-1-60327-449-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics