Skip to main content

ACTH-Independent Cushing’s Syndrome: Bilateral Macronodular Hyperplasia

  • Chapter
  • First Online:
Cushing's Syndrome

Part of the book series: Contemporary Endocrinology ((COE))

  • 2049 Accesses

Summary

ACTH-independent macronodular adrenal hyperplasia (AIMAH) is an infrequent cause of Cushing’s syndrome. AIMAH presents as incidental radiological finding or with subclinical or overt Cushing’s syndrome, occasionally with secretion of mineralocorticoids or sex steroids. The pathophysiology of this entity is heterogeneous. The aberrant adrenal expression and function of one or several G-protein coupled receptors can lead to cell proliferation and abnormal regulation of steroidogenesis. In familial cases of AIMAH, specific aberrant hormone receptors may be functional in the adrenal of affected members. Somatic genetic events related to cell cycle regulation, adhesion, and transcription factors occur in addition in the various nodules. Other mechanisms such as Gsp or ACTH receptor mutations and paracrine adrenal hormonal secretions have been rarely identified in other cases of AIMAH. The identification of aberrant receptors can offer specific pharmacological approach to prevent disease progression and control abnormal steroidogenesis alternatively to the usual unilateral or bilateral adrenalectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacroix A, N’Diaye N, Tremblay J, et al. Ectopic and abnormal hormone receptors in adrenal Cushing’s syndrome. Endocr Rev 2001;22:75–110.

    Article  PubMed  CAS  Google Scholar 

  2. Kirschner MA, Powell RD, Jr, Lipsett MB. Cushing’s syndrome: Nodular cortical hyperplasia of adrenal glands with clinical and pathological features suggesting adrenocortical tumor. J Clin Endocrinol Metab 1964;24:947–955.

    Article  PubMed  CAS  Google Scholar 

  3. Lieberman SA, Eccleshall TR, Feldman D. ACTH-independent massive bilateral adrenal disease (AIMBAD): a subtype of Cushing’s syndrome with major diagnostic and therapeutic implications. Eur J Endocrinol 1994;131:67–73.

    Article  PubMed  CAS  Google Scholar 

  4. Stratakis CA, Kirschner LS. Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome. Horm Metab Res 1998;30:456–463.

    Article  PubMed  CAS  Google Scholar 

  5. Swain JM, Grant CS, Schlinkert RT, et al. Corticotropin-independent macronodular adrenal hyperplasia: a clinicopathologic correlation. Arch Surg 1998;133, 541–545;discussion 545–546.

    Article  PubMed  CAS  Google Scholar 

  6. Doppman JL, Chrousos GP, Papanicolaou DA, et al. Adrenocorticotropin-independent macronodular adrenal hyperplasia: an uncommon cause of primary adrenal hypercortisolism. Radiology 2000;216:797–802.

    PubMed  CAS  Google Scholar 

  7. Malchoff CD, MacGillivray D, Malchoff DM. Adrenocorticotropic hormone-independent adrenal hyperplasia. Endocrinologist 1996;6:79–85.

    Article  Google Scholar 

  8. Newell-Price J, Bertagna X, Grossman AB, et al. Cushing’s syndrome. Lancet 2006;367:1605–1617.

    Article  PubMed  CAS  Google Scholar 

  9. Kirk JM, Brain CE, Carson DJ, et al. Cushing’s syndrome caused by nodular adrenal hyperplasia in children with McCune–Albright syndrome. J Pediatr 1999;134:789–792.

    Article  PubMed  CAS  Google Scholar 

  10. Zeiger MA, Nieman LK, Cutler GB, et al. Primary bilateral adrenocortical causes of Cushing’s syndrome. Surgery 1991;110:1106–1115.

    PubMed  CAS  Google Scholar 

  11. Aiba M, Hirayama A, Iri H, et al. Adrenocorticotropic hormone-independent bilateral adrenocortical macronodular hyperplasia as a distinct subtype of Cushing’s syndrome. Enzyme histochemical and ultrastructural study of four cases with a review of the literature. Am J Clin Pathol 1991;96:334–340.

    PubMed  CAS  Google Scholar 

  12. Vezzosi D, Cartier D, Regnier C, et al. Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol 2007;156:21–31.

    Article  PubMed  CAS  Google Scholar 

  13. Miyamura N, Taguchi T, Murata Y, et al. Inherited adrenocorticotropin-independent macronodular adrenal hyperplasia with abnormal cortisol secretion by vasopressin and catecholamines: detection of the aberrant hormone receptors on adrenal gland. Endocrine 2002;19:319–326.

    Article  PubMed  CAS  Google Scholar 

  14. Bourdeau I, Boisselle A, Rioux D, et al. Systematic clinical screening of members of a family with hereditary cortisol-secreting B-adrenergic responsive ACTH-Independent Macronodular Adrenal Hyperplasia (AIMAH) reveals unsuspected subclinical Cushing’s Syndrome (CS) and aberrant B-adrenergic regulation of cortisol secretion. In: Program of the 89th Annual Meeting of the Endocrine Society, Toronto, CA, 2007: p. 148: Abstract OR154–142.

    Google Scholar 

  15. Minami S, Sugihara H, Sato J, et al. ACTH independent Cushing’s syndrome occurring in siblings. Clin Endocrinol (Oxf) 1996;44:483–488.

    Article  CAS  Google Scholar 

  16. Nies C, Bartsch DK, Ehlenz K, et al. Familial ACTH-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia clinically affecting only female family members. Exp Clin Endocrinol Diabetes 2002;110:277–283.

    Article  PubMed  CAS  Google Scholar 

  17. Findlay JC, Sheeler LR, Engeland WC, et al. Familial adrenocorticotropin-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 1993;76:189–191.

    Article  PubMed  CAS  Google Scholar 

  18. Lee S, Hwang R, Lee J, et al. Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia. Clin Endocrinol (Oxf) 2005;63:625–630.

    Article  CAS  Google Scholar 

  19. Gagliardi L, Hotu C, Casey G, et al. Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds. Clin Endocrinol (Oxf) 2009;70:883–891.

    Article  CAS  Google Scholar 

  20. Burgess JR, Harle RA, Tucker P, et al. Adrenal lesions in a large kindred with multiple endocrine neoplasia type 1. Arch Surg 1996;131:699–702.

    Article  PubMed  CAS  Google Scholar 

  21. Skogseid B, Larsson C, Lindgren PG, et al. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 1992;75:76–81.

    Article  CAS  Google Scholar 

  22. Yamakita N, Murai T, Ito Y, et al. Adrenocorticotropin-independent macronodular adrenocortical hyperplasia associated with multiple colon adenomas/carcinomas which showed a point mutation in the APC gene. Intern Med 1997;36:536–542.

    Article  PubMed  CAS  Google Scholar 

  23. Marchesa P, Fazio VW, Church JM, et al. Adrenal masses in patients with familial adenomatous polyposis. Dis Colon Rectum 1997;40:1023–1028.

    Article  PubMed  CAS  Google Scholar 

  24. Matyakhina L, Freedman RJ, Bourdeau I, et al. Hereditary leiomyomatosis associated with bilateral, massive, macronodular adrenocortical disease and atypical Cushing syndrome: a clinical and molecular genetic investigation. J Clin Endocrinol Metab 2005;90:3773–3779.

    Article  PubMed  CAS  Google Scholar 

  25. Bourdeau I, D’Amour P, Hamet P, et al. Aberrant membrane hormone receptors in incidentally discovered bilateral macronodular adrenal hyperplasia with subclinical Cushing’s syndrome. J Clin Endocrinol Metab 2001;86:5534–5540.

    Article  PubMed  CAS  Google Scholar 

  26. Yamada Y, Sakaguchi K, Inoue T, et al. Preclinical Cushing’s syndrome due to adrenocorticotropin-independent bilateral adrenocortical macronodular hyperplasia with concurrent excess of gluco- and mineralocorticoids. Intern Med 1997;36:628–632.

    Article  PubMed  CAS  Google Scholar 

  27. Mazzuco TL, Bourdeau I, Lacroix A. Adrenal incidentalomas and subclinical Cushing’s syndrome – diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes 2009;16(3):203–210.

    PubMed  CAS  Google Scholar 

  28. Ohashi A, Yamada Y, Sakaguchi K, et al. A natural history of adrenocorticotropin-independent bilateral adrenal macronodular hyperplasia (AIMAH) from preclinical to clinically overt Cushing’s syndrome. Endocr J 2001;48:677–683.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashi Y, Takeda Y, Kaneko K, et al. A case of Cushing’s syndrome due to ACTH-independent bilateral macronodular hyperplasia associated with excessive secretion of mineralocorticoids. Endocr J 1998;45:485–491.

    Article  PubMed  CAS  Google Scholar 

  30. Malchoff CD, Rosa J, DeBold CR, et al. Adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia: an unusual cause of Cushing’s syndrome. J Clin Endocrinol Metab 1989;68:855–860.

    Article  PubMed  CAS  Google Scholar 

  31. Goodarzi MO, Dawson DW, Li X, et al. Virilization in bilateral macronodular adrenal hyperplasia controlled by luteinizing hormone. J Clin Endocrinol Metab 2003;88:73–77.

    Article  PubMed  CAS  Google Scholar 

  32. Antonini SR, Baldacchino V, Tremblay J, et al. Expression of ACTH receptor pathway genes in glucose-dependent insulinotrophic peptide (GIP)-dependent Cushing’s syndrome. Clin Endocrinol (Oxf) 2006;64:29–36.

    Article  CAS  Google Scholar 

  33. Mircescu H, Jilwan J, N’Diaye N, et al. Are ectopic or abnormal membrane hormone receptors frequently present in adrenal Cushing’s syndrome? J Clin Endocrinol Metab 2000;85:3531–3536.

    Article  PubMed  CAS  Google Scholar 

  34. Sasano H, Suzuki T, Nagura H. ACTH-independent macronodular adrenocortical hyperplasia: immunohistochemical and in situ hybridization studies of steroidogenic enzymes. Mod Pathol 1994;7:215–219.

    PubMed  CAS  Google Scholar 

  35. Aiba M, Kawakami M, Ito Y, et al. Bilateral adrenocortical adenomas causing Cushing’s syndrome. Report of two cases with enzyme histochemical and ultrastructural studies and a review of the literature. Arch Pathol Lab Med 1992;116:146–150.

    PubMed  CAS  Google Scholar 

  36. Doppman JL, Nieman LK, Travis WD, et al. CT and MR imaging of massive macronodular adrenocortical disease: a rare cause of autonomous primary adrenal hypercortisolism. J Comput Assist Tomogr 1991;15:773–779.

    Article  PubMed  CAS  Google Scholar 

  37. Rockall AG, Babar SA, Sohaib SA, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics 2004;24:435–452.

    Article  PubMed  Google Scholar 

  38. N’Diaye N, Hamet P, Tremblay J, et al. Asynchronous development of bilateral nodular adrenal hyperplasia in gastric inhibitory polypeptide-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1999;84:2616–2622.

    Article  PubMed  Google Scholar 

  39. Smals AG, Pieters GF, van Haelst UJ, et al. Macronodular adrenocortical hyperplasia in long-standing Cushing’s disease. J Clin Endocrinol Metab 1984;58:25–31.

    Article  PubMed  CAS  Google Scholar 

  40. Cugini P, Battisti P, Di Palma L, et al. “GIANT” macronodular adrenal hyperplasia causing Cushing’s syndrome: case report and review of the literature on a clinical distinction of adrenocortical nodular pathology associated with hypercortisolism. Endocrinol Jpn 1989;36:101–116.

    Article  PubMed  CAS  Google Scholar 

  41. Cheitlin RA, Westphal M, Cabrera CM, et al. Cushing’s syndrome due to bilateral adrenal macronodular hyperplasia with undetectable ACTH: cell culture of adenoma cells on extracellular matrix. Horm Res 1988;29:162–167.

    Article  PubMed  CAS  Google Scholar 

  42. Light K, Jenkins PJ, Weber A, et al. Are activating mutations of the adrenocorticotropin receptor involved in adrenal cortical neoplasia? Life Sci 1995;56:1523–1527.

    Article  PubMed  CAS  Google Scholar 

  43. Latronico AC, Reincke M, Mendonca BB, et al. No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab 1995;80:875–877.

    Article  PubMed  CAS  Google Scholar 

  44. Swords FM, Baig A, Malchoff DM, et al. Impaired desensitization of a mutant adrenocorticotropin receptor associated with apparent constitutive activity. Mol Endocrinol 2002;16:2746–2753.

    Article  PubMed  CAS  Google Scholar 

  45. Swords FM, Noon LA, King PJ, et al. Constitutive activation of the human ACTH receptor resulting from a synergistic interaction between two naturally occurring missense mutations in the MC2R gene. Mol Cell Endocrinol 2004;213:149–154.

    Article  PubMed  CAS  Google Scholar 

  46. Mauras N, Blizzard RM. The McCune–Albright syndrome. Acta Endocrinol Suppl (Copenh) 1986;279:207–217.

    CAS  Google Scholar 

  47. Aarskog D, Tveteraas E. McCune–Albright’s syndrome following adrenalectomy for Cushing’s syndrome in infancy. J Pediatr 1968;73:89–96.

    Article  PubMed  CAS  Google Scholar 

  48. Benjamin DR, McRoberts JW. Polyostotic fibrous dysplasia associated with Cushing syndrome. Arch Pathol 1973;96:175–178.

    PubMed  CAS  Google Scholar 

  49. MacMahon HE. Albright’s syndrome – thirty years later. (Polyostotic fibrous dysplasia). Pathol Annu 1971;6:81–146.

    PubMed  CAS  Google Scholar 

  50. Danon M, Robboy SJ, Kim S, et al. Cushing syndrome, sexual precocity, and polyostotic fibrous dysplasia (Albright syndrome) in infancy. J Pediatr 1975;87:917–921.

    Article  PubMed  CAS  Google Scholar 

  51. Fragoso MC, Domenice S, Latronico AC, et al. Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab 2003;88:2147–2151.

    Article  PubMed  CAS  Google Scholar 

  52. Bertagna X, Groussin L, Luton JP, et al. Aberrant receptor-mediated Cushing’s syndrome. Horm Res 2003;59(Suppl 1):99–103.

    Article  PubMed  CAS  Google Scholar 

  53. Schorr I, Ney RL. Abnormal hormone responses of an adrenocortical cancer adenyl cyclase. J Clin Invest 1971;50:1295–1300.

    Article  PubMed  CAS  Google Scholar 

  54. Lacroix A, Baldacchino V, Bourdeau I, et al. Cushing’s syndrome variants secondary to aberrant hormone receptors. Trends Endocrinol Metab 2004;15:375–382.

    PubMed  CAS  Google Scholar 

  55. Lacroix A, Bolte E, Tremblay J, et al. Gastric inhibitory polypeptide-dependent cortisol hypersecretion – a new cause of Cushing’s syndrome. N Engl J Med 1992;327:974–980.

    Article  PubMed  CAS  Google Scholar 

  56. Reznik Y, Allali-Zerah V, Chayvialle JA, et al. Food-dependent Cushing’s syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med 1992;327:981–986.

    Article  PubMed  CAS  Google Scholar 

  57. Lebrethon MC, Avallet O, Reznik Y, et al. Food-dependent Cushing’s syndrome: characterization and functional role of gastric inhibitory polypeptide receptor in the adrenals of three patients. J Clin Endocrinol Metab 1998;83:4514–4519.

    Article  PubMed  CAS  Google Scholar 

  58. Groussin L, Perlemoine K, Contesse V, et al. The ectopic expression of the gastric inhibitory polypeptide receptor is frequent in adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia, but rare in unilateral tumors. J Clin Endocrinol Metab 2002;87:1980–1985.

    Article  PubMed  CAS  Google Scholar 

  59. Croughs RJ, Zelissen PM, Van Vroonhoven TJ, et al. GIP-dependent adrenal Cushing’s syndrome with incomplete suppression of ACTH. Clin Endocrinol (Oxf) 2000;52:235–240.

    Article  CAS  Google Scholar 

  60. Chabre O, Liakos P, Vivier J, et al. Cushing’s syndrome due to a gastric inhibitory polypeptide-dependent adrenal adenoma: insights into hormonal control of adrenocortical tumorigenesis. J Clin Endocrinol Metab 1998;83:3134–3143.

    Article  PubMed  CAS  Google Scholar 

  61. de Herder WW, Hofland LJ, Usdin TB, et al. Food-dependent Cushing’s syndrome resulting from abundant expression of gastric inhibitory polypeptide receptors in adrenal adenoma cells. J Clin Endocrinol Metab 1996;81:3168–3172.

    Article  PubMed  CAS  Google Scholar 

  62. N’Diaye N, Tremblay J, Hamet P, et al. Adrenocortical overexpression of gastric inhibitory polypeptide receptor underlies food-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1998;83:2781–2785.

    Article  PubMed  Google Scholar 

  63. Tsagarakis S, Tsigos C, Vassiliou V, et al. Food-dependent androgen and cortisol secretion by a gastric inhibitory polypeptide-receptor expressive adrenocortical adenoma leading to hirsutism and subclinical Cushing’s syndrome: in vivo and in vitro studies. J Clin Endocrinol Metab 2001;86:583–589.

    Article  PubMed  CAS  Google Scholar 

  64. Lampron A, Bourdeau I, Hamet P, et al. Whole genome expression profiling of glucose-dependent insulinotropic peptide (GIP)- and adrenocorticotropin-dependent adrenal hyperplasias reveals novel targets for the study of GIP-dependent Cushing’s syndrome. J Clin Endocrinol Metab 2006;91:3611–3618.

    Article  PubMed  Google Scholar 

  65. Bertherat J, Contesse V, Louiset E, et al. In vivo and in vitro screening for illegitimate receptors in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome: identification of two cases of gonadotropin/gastric inhibitory polypeptide-dependent hypercortisolism. J Clin Endocrinol Metab 2005;90:1302–1310.

    Article  PubMed  CAS  Google Scholar 

  66. Baldacchino V, Oble S, Decarie PO, et al. The Sp transcription factors are involved in the cellular expression of the human glucose-dependent insulinotropic polypeptide receptor gene and overexpressed in adrenals of patients with Cushing’s syndrome. J Mol Endocrinol 2005;35:61–71.

    Article  PubMed  CAS  Google Scholar 

  67. Swords FM, Aylwin S, Perry L, et al. The aberrant expression of the gastric inhibitory polypeptide (GIP) receptor in adrenal hyperplasia: does chronic adrenocorticotropin exposure stimulate up-regulation of GIP receptors in Cushing’s disease? J Clin Endocrinol Metab 2005;90:3009–3016.

    Article  PubMed  CAS  Google Scholar 

  68. Mazzuco TL, Chabre O, Feige JJ, et al. Aberrant expression of human luteinizing hormone receptor by adrenocortical cells is sufficient to provoke both hyperplasia and Cushing’s syndrome features. J Clin Endocrinol Metab 2006;91:196–203.

    Article  PubMed  CAS  Google Scholar 

  69. Arnaldi G, Gasc JM, de Keyzer Y, et al. Variable expression of the V1 vasopressin receptor modulates the phenotypic response of steroid-secreting adrenocortical tumors. J Clin Endocrinol Metab 1998;83:2029–2035.

    Article  PubMed  CAS  Google Scholar 

  70. Daidoh H, Morita H, Hanafusa J, et al. In vivo and in vitro effects of AVP and V1a receptor antagonist on Cushing’s syndrome due to ACTH-independent bilateral macronodular adrenocortical hyperplasia. Clin Endocrinol (Oxf) 1998;49:403–409.

    Article  CAS  Google Scholar 

  71. Horiba N, Suda T, Aiba M, et al. Lysine vasopressin stimulation of cortisol secretion in patients with adrenocorticotropin-independent macronodular adrenal hyperplasia. J Clin Endocrinol Metab 1995;80:2336–2341.

    Article  PubMed  CAS  Google Scholar 

  72. Iida K, Kaji H, Matsumoto H, et al. Adrenocorticotrophin-independent macronodular adrenal hyperplasia in a patient with lysine vasopressin responsiveness but insensitivity to gastric inhibitory polypeptide. Clin Endocrinol (Oxf) 1997;47:739–745.

    Article  CAS  Google Scholar 

  73. Lacroix A, Tremblay J, Touyz RM, et al. Abnormal adrenal and vascular responses to vasopressin mediated by a V1-vasopressin receptor in a patient with adrenocorticotropin-independent macronodular adrenal hyperplasia, Cushing’s syndrome, and orthostatic hypotension. J Clin Endocrinol Metab 1997;82:2414–2422.

    Article  PubMed  CAS  Google Scholar 

  74. Louiset E, Contesse V, Groussin L, et al. Expression of vasopressin receptors in ACTH-independent macronodular bilateral adrenal hyperplasia causing Cushing’s syndrome: molecular, immunohistochemical and pharmacological correlates. J Endocrinol 2008;196:1–9.

    Article  PubMed  CAS  Google Scholar 

  75. Mune T, Murase H, Yamakita N, et al. Eutopic overexpression of vasopressin V1a receptor in adrenocorticotropin-independent macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2002;87:5706–5713.

    Article  PubMed  CAS  Google Scholar 

  76. Perraudin V, Delarue C, de Keyzer Y, et al. Vasopressin-responsive adrenocortical tumor in a mild Cushing’s syndrome: in vivo and in vitro studies. J Clin Endocrinol Metab 1995;80:2661–2667.

    Article  PubMed  CAS  Google Scholar 

  77. Lacroix A, Tremblay J, Rousseau G, et al. Propranolol therapy for ectopic beta-adrenergic receptors in adrenal Cushing’s syndrome. N Engl J Med 1997;337:1429–1434.

    Article  PubMed  CAS  Google Scholar 

  78. Miyamura N, Tsutsumi A, Senokuchi H, et al. A case of ACTH-independent macronodular adrenal hyperplasia: simultaneous expression of several aberrant hormone receptors in the adrenal gland. Endocr J 2003;50:333–340.

    Article  PubMed  Google Scholar 

  79. Mazzuco TL, Thomas M, Martinie M, et al. Cellular and molecular abnormalities of a macronodular adrenal hyperplasia causing beta-blocker-sensitive Cushing’s syndrome. Arq Bras Endocrinol Metabol. 2007;51:1452–62.

    Google Scholar 

  80. Lacroix A, Hamet P, Boutin JM. Leuprolide acetate therapy in luteinizing hormone-dependent Cushing’s syndrome. N Engl J Med 1999;341:1577–1581.

    Article  PubMed  CAS  Google Scholar 

  81. Feelders RA, Lamberts SW, Hofland LJ, et al. Luteinizing hormone (LH)-responsive Cushing’s syndrome: the demonstration of LH receptor messenger ribonucleic acid in hyperplastic adrenal cells, which respond to chorionic gonadotropin and serotonin agonists in vitro. J Clin Endocrinol Metab 2003;88:230–237.

    Article  PubMed  CAS  Google Scholar 

  82. Cartier D, Lihrmann I, Parmentier F, et al. Overexpression of serotonin4 receptors in cisapride-responsive adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab 2003;88:248–254.

    Article  PubMed  CAS  Google Scholar 

  83. Louiset E, Contesse V, Groussin L, et al. Expression of serotonin7 receptor and coupling of ectopic receptors to protein kinase A and ionic currents in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab 2006;91:4578–4586.

    Article  PubMed  CAS  Google Scholar 

  84. Mannelli M, Ferruzzi P, Luciani P, et al. Cushing’s syndrome in a patient with bilateral macronodular adrenal hyperplasia responding to cisapride: an in vivo and in vitro study. J Clin Endocrinol Metab 2003;88:4616–4622.

    Article  PubMed  CAS  Google Scholar 

  85. Nakamura Y, Son Y, Kohno Y, et al. Case of adrenocorticotropic hormone-independent macronodular adrenal hyperplasia with possible adrenal hypersensitivity to angiotensin II. Endocrine 2001;15:57–61.

    Article  PubMed  CAS  Google Scholar 

  86. Pralong FP, Gomez F, Guillou L, et al. Food-dependent Cushing’s syndrome: possible involvement of leptin in cortisol hypersecretion. J Clin Endocrinol Metab 1999;84:3817–3822.

    Article  PubMed  CAS  Google Scholar 

  87. Makino S, Hashimoto K, Sugiyama M, et al. Cushing’s syndrome due to huge nodular adrenocortical hyperplasia with fluctuation of urinary 17-OHCS excretion. Endocrinol Jpn 1989;36, 655–663.

    Article  PubMed  CAS  Google Scholar 

  88. Hashimoto K, Kawada Y, Murakami K, et al. Cortisol responsiveness to insulin-induced hypoglycemia in Cushing’s syndrome with huge nodular adrenocortical hyperplasia. Endocrinol Jpn 1986;33:479–487.

    Article  PubMed  CAS  Google Scholar 

  89. Louiset E, Duparc C, Groussin L, et al. Abnormal sensitivity of cortisol secretion to glucagon in primary adrenal Cushing’s syndrome. In: XIII Adrenal Cortex Conference, San Francisco, CA, 2008: p. 52: Abstract 33.

    Google Scholar 

  90. Imohl M, Koditz R, Stachon A, et al. [Catecholamine-dependent hereditary Cushing’s syndrome – follow-up after unilateral adrenalectomy]. Med Klin (Munich) 2002;97:747–753.

    Article  Google Scholar 

  91. Antonini SR, N’Diaye N, Baldacchino V, et al. Analysis of the putative regulatory region of the gastric inhibitory polypeptide receptor gene in food-dependent Cushing’s syndrome. J Steroid Biochem Mol Biol 2004;91:171–177.

    Article  PubMed  CAS  Google Scholar 

  92. Bourdeau I, Antonini SR, Lacroix A, et al. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 2004;23:1575–1585.

    Article  PubMed  CAS  Google Scholar 

  93. Mazzuco TL, Chabre O, Sturm N, et al. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model. Endocrinology 2006;147:782–790.

    Article  PubMed  CAS  Google Scholar 

  94. Bourdeau I, Matyakhina L, Stergiopoulos SG, et al. 17q22–24 chromosomal losses and alterations of protein kinase a subunit expression and activity in adrenocorticotropin-independent macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2006;91:3626–3632.

    Article  PubMed  CAS  Google Scholar 

  95. Hsiao HP, Kirschner LS, Bourdeau I, et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in ACTH-independent macronodular adrenal hyperplasia compared to other adrenocortical tumors. J Clin Endocrinol Metab 2009;94:2930–37.

    Google Scholar 

  96. Lefebvre H, Duparc C, Chartrel N, et al. Intraadrenal adrenocorticotropin production in a case of bilateral macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab 2003;88:3035–3042.

    Article  PubMed  CAS  Google Scholar 

  97. Lacroix AM, H Hammet P. Clinical evaluation of the presence of abnormal hormone receptors in adrenal Cushing’s syndrome. Endocrinologist 1999;9:9–15.

    Article  Google Scholar 

  98. Reznik Y, Lefebvre H, Rohmer V, et al. Aberrant adrenal sensitivity to multiple ligands in unilateral incidentaloma with subclinical autonomous cortisol hypersecretion: a prospective clinical study. Clin Endocrinol (Oxf) 2004;61:311–319.

    Article  CAS  Google Scholar 

  99. Boronat M, Lucas T, Barcelo B, et al. Cushing’s syndrome due to autonomous macronodular adrenal hyperplasia: long-term follow-up after unilateral adrenalectomy. Postgrad Med J 1996;72:614–616.

    Article  PubMed  CAS  Google Scholar 

  100. Lamas C, Alfaro JJ, Lucas T, et al. Is unilateral adrenalectomy an alternative treatment for ACTH-independent macronodular adrenal hyperplasia? Long-term follow-up of four cases. Eur J Endocrinol 2002;146:237–240.

    Article  PubMed  CAS  Google Scholar 

  101. Herder WW, Hofland LJ, Usdin TB, et al. Food-dependent Cushing’s syndrome resulting from abundant expression of gastric inhibitory polypeptide receptors in adrenal adenoma cells. J Clin Endocrinol Metab 1996;81:3168–3172.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant MT-13–189 from Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bourdeau, I., Lampron, A., Mazzuco, T.L., Lacroix, A. (2010). ACTH-Independent Cushing’s Syndrome: Bilateral Macronodular Hyperplasia. In: Bronstein, M. (eds) Cushing's Syndrome. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-449-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-449-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-448-7

  • Online ISBN: 978-1-60327-449-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics