Skip to main content

Recent Advances in the Genetics of IBD

  • Chapter
  • First Online:
Book cover Inflammatory Bowel Disease

Part of the book series: Clinical Gastroenterology ((CG))

  • 1768 Accesses

Abstract

The NOD2 gene’s role in Crohn’s disease has been verified in ancestry cohorts of European, but not Asian or African descent. Although homozygous or compound heterozygous carriage of NOD confers a 17-fold increased risk of Crohn’s disease, less than 10% develops CD, due to genetic penetrance. The class II MHC gene association that have been identified have been specifically for colitis (Crohn’s or ulcerative), rather than small bowel Crohn’s disease. Genome-wide association studies (GWAS) have resulted in the rapid identification of multiple previously unknown or unverified IBD-related alleles, with the promise of many future findings. The interleukin-23 receptor gene (IL-23R) has been identified as an IBD susceptibility gene for both Crohn’s and colitis, and may be involved in signaling between luminal bacteria and fungi. ATG16L and IRGM have been identified as important IBD genes involved in cell autography, important in cell-mediated inflammatory pathways. Until recently, there were very few GWAS-identified gene loci specific to ulcerative colitis, raising the possibility that environmental interactions play a more important role that in the predominantly genetic-based Crohn’s disease. However, now there is more overlap between the two major types of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Google Scholar 

  2. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    Article  PubMed  CAS  Google Scholar 

  3. Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.

    Article  PubMed  CAS  Google Scholar 

  4. Bonen DK, Ogura Y, Nicolae DL, et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology. 2003;124(1):140–6.

    Article  PubMed  CAS  Google Scholar 

  5. Lesage S, Zouali H, Cezard JP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet. 2002;70(4):845–57.

    Article  PubMed  CAS  Google Scholar 

  6. Economou M, Trikalinos TA, Loizou KT, Tsianos EV, Ioannidis JP. Differential effects of NOD2 variants on Crohn’s disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol. 2004;99(12):2393–404.

    Article  PubMed  CAS  Google Scholar 

  7. Hugot JP, Zaccaria I, Cavanaugh J, et al. Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am J Gastroenterol. 2007;102(6):1259–67.

    Article  PubMed  CAS  Google Scholar 

  8. Brant SR, Wang MH, Rawsthorne P, et al. A population-based case-control study of CARD15 and other risk factors in Crohn’s disease and ulcerative colitis. Am J Gastroenterol. 2007;102(2):313–23.

    Article  PubMed  CAS  Google Scholar 

  9. Yazdanyar S, Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Penetrance of NOD2/CARD15 genetic variants in the general population. CMAJ. 2010;182(7):661–5.

    PubMed  Google Scholar 

  10. Kugathasan S, Loizides A, Babusukumar U, et al. Comparative phenotypic and CARD15 mutational analysis among African American, Hispanic, and White children with Crohn’s disease. Inflamm Bowel Dis. 2005;11(7):631–8.

    Article  PubMed  Google Scholar 

  11. Yamazaki K, Takazoe M, Tanaka T, Kazumori T, Nakamura Y. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet. 2002;47(9):469–72.

    Article  PubMed  CAS  Google Scholar 

  12. Leong RW, Armuzzi A, Ahmad T, et al. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment Pharmacol Ther. 2003;17(12):1465–70.

    Article  PubMed  CAS  Google Scholar 

  13. Cuthbert AP, Fisher SA, Mirza MM, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122(4):867–74.

    Article  PubMed  CAS  Google Scholar 

  14. Abreu MT, Taylor KD, Lin YC, et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology. 2002;123(3):679–88.

    Article  PubMed  CAS  Google Scholar 

  15. Laghi L, Costa S, Saibeni S, et al. Carriage of CARD15 variants and smoking as risk factors for resective surgery in patients with Crohn’s ileal disease. Aliment Pharmacol Ther. 2005;22(6):557–64.

    Article  PubMed  CAS  Google Scholar 

  16. Dassopoulos T, Frangakis C, Cruz-Correa M, et al. Antibodies to saccharomyces cerevisiae in Crohn’s disease: higher titers are associated with a greater frequency of mutant NOD2/CARD15 alleles and with a higher probability of complicated disease. Inflamm Bowel Dis. 2007;13(2):143–51.

    Article  PubMed  Google Scholar 

  17. Buning C, Genschel J, Buhner S, et al. Mutations in the NOD2/CARD15 gene in Crohn’s disease are associated with ileocecal resection and are a risk factor for reoperation. Aliment Pharmacol Ther. 2004;19(10):1073–8.

    Article  PubMed  CAS  Google Scholar 

  18. Renda MC, Orlando A, Civitavecchia G, et al. The role of CARD15 mutations and smoking in the course of Crohn’s disease in a Mediterranean area. Am J Gastroenterol. 2008;103(3):649–55.

    Article  PubMed  CAS  Google Scholar 

  19. Arnott ID, Landers CJ, Nimmo EJ, et al. Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol. 2004;99(12):2376–84.

    Article  PubMed  Google Scholar 

  20. Vermeire S, Louis E, Rutgeerts P, et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology. 2002;123(1):106–11.

    Article  PubMed  CAS  Google Scholar 

  21. Angelberger S, Reinisch W, Dejaco C, et al. NOD2/CARD15 gene variants are linked to failure of antibiotic treatment in perianal fistulating Crohn’s disease. Am J Gastroenterol. 2008;103(5):1197–202.

    Article  PubMed  CAS  Google Scholar 

  22. Abraham C, Cho JH. Functional consequences of NOD2 (CARD15) mutations. Inflamm Bowel Dis. 2006;12(7):641–50.

    Article  PubMed  Google Scholar 

  23. Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307(5710):731–4.

    Article  PubMed  CAS  Google Scholar 

  24. Opitz B, Puschel A, Schmeck B, et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem. 2004;279(35):36426–32.

    Article  PubMed  CAS  Google Scholar 

  25. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology. 2003;124(4):993–1000.

    Google Scholar 

  26. Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature. 2002;416(6877):194–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ferwerda G, Girardin SE, Kullberg BJ, et al. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. 2005;1(3):279–85.

    Article  PubMed  CAS  Google Scholar 

  28. Buhner S, Buning C, Genschel J, et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006;55(3):342–7.

    Article  PubMed  CAS  Google Scholar 

  29. McGovern DP, Hysi P, Ahmad T, et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet. 2005;14(10):1245–50.

    Article  PubMed  CAS  Google Scholar 

  30. Tremelling M, Hancock L, Bredin F, Sharpstone D, Bingham SA, Parkes M. Complex insertion/deletion polymorphism in NOD1 (CARD4) is not associated with inflammatory bowel disease susceptibility in East Anglia panel. Inflamm Bowel Dis. 2006;12(10):967–71.

    Article  PubMed  Google Scholar 

  31. Van Limbergen J, Nimmo ER, Russell RK, et al. Investigation of NOD1/CARD4 variation in inflammatory bowel disease using a haplotype-tagging strategy. Hum Mol Genet. 2007;16(18):2175–86.

    Article  PubMed  Google Scholar 

  32. De Jager PL, Franchimont D, Waliszewska A, et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun. 2007;8(5):387–97.

    Article  PubMed  Google Scholar 

  33. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75(2):263–74.

    Article  PubMed  CAS  Google Scholar 

  34. van Bodegraven AA, Curley CR, Hunt KA, et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology. 2006;131(6):1768–74.

    Article  PubMed  Google Scholar 

  35. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol. 1998;161(10):5733–44.

    Google Scholar 

  36. Cho JH, Weaver CT. The genetics of inflammatory bowel disease. Gastroenterology. 2007;133(4):1327–39.

    Article  PubMed  CAS  Google Scholar 

  37. Lees CW, Satsangi J. Genetics of inflammatory bowel disease: implications for disease pathogenesis and natural history. Expert Rev Gastroenterol Hepatol. 2009;3(5):513–34.

    Article  PubMed  CAS  Google Scholar 

  38. Weersma RK, van Dullemen HM, van der Steege G, Nolte IM, Kleibeuker JH, Dijkstra G. Review article: Inflammatory bowel disease and genetics. Aliment Pharmacol Ther. 2007;26 Suppl 2:57–65.

    Article  PubMed  CAS  Google Scholar 

  39. Louis E, Libioulle C, Reenaers C, Belaiche J, Georges M. Genetics of ulcerative colitis: the come-back of interleukin 10. Gut. 2009;58(9):1173–6.

    Article  PubMed  CAS  Google Scholar 

  40. Trachtenberg EA, Yang H, Hayes E, et al. HLA class II haplotype associations with inflammatory bowel disease in Jewish (Ashkenazi) and non-Jewish caucasian populations. Hum Immunol. 2000;61(3):326–33.

    Article  PubMed  CAS  Google Scholar 

  41. Silverberg MS, Mirea L, Bull SB, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9(1):1–9.

    Article  PubMed  Google Scholar 

  42. Yang H, Rotter JI, Toyoda H, et al. Ulcerative colitis: a genetically heterogeneous disorder defined by genetic (HLA class II) and subclinical (antineutrophil cytoplasmic antibodies) markers. J Clin Invest. 1993;92(2):1080–4.

    Article  PubMed  CAS  Google Scholar 

  43. Silverberg MS, Duerr RH, Brant SR, et al. Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn’s disease. Eur J Hum Genet. 2007;15(3):328–35.

    Article  PubMed  CAS  Google Scholar 

  44. Tosa M, Negoro K, Kinouchi Y, et al. Lack of association between IBD5 and Crohn’s disease in Japanese patients demonstrates population-specific differences in inflammatory bowel disease. Scand J Gastroenterol. 2006;41(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  45. Torkvist L, Noble CL, Lordal M, et al. Contribution of the IBD5 locus to Crohn’s disease in the Swedish population. Scand J Gastroenterol. 2007;42(2):200–6.

    Article  PubMed  Google Scholar 

  46. Okazaki T, Wang MH, Rawsthorne P, et al. Contributions of IBD5, IL23R, ATG16L1, and NOD2 to Crohn’s disease risk in a population-based case-control study: evidence of gene-gene interactions. Inflamm Bowel Dis. 2008;14(11):1528–41.

    Article  PubMed  Google Scholar 

  47. Giallourakis C, Stoll M, Miller K, et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am J Hum Genet. 2003;73(1):205–11.

    Article  PubMed  CAS  Google Scholar 

  48. Torok HP, Glas J, Tonenchi L, et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut. 2005;54(10):1421–7.

    Article  PubMed  Google Scholar 

  49. Armuzzi A, Ahmad T, Ling KL, et al. Genotype-phenotype analysis of the Crohn’s disease susceptibility haplotype on chromosome 5q31. Gut. 2003;52(8):1133–9.

    Article  PubMed  CAS  Google Scholar 

  50. Noble CL, Nimmo ER, Drummond H, et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn’s disease. Gastroenterology. 2005;129(6):1854–64.

    Google Scholar 

  51. Palmieri O, Latiano A, Valvano R, et al. Variants of OCTN1-2 cation transporter genes are associated with both Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther. 2006;23(4):497–506.

    Article  PubMed  CAS  Google Scholar 

  52. Latiano A, Palmieri O, Valvano RM, et al. Contribution of IBD5 locus to clinical features of IBD patients. Am J Gastroenterol. 2006;101(2):318–25.

    Article  PubMed  CAS  Google Scholar 

  53. Waller S, Tremelling M, Bredin F, Godfrey L, Howson J, Parkes M. Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut. 2006;55(6):809–14.

    Article  PubMed  CAS  Google Scholar 

  54. Yamazaki K, McGovern D, Ragoussis J, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14(22):3499–506.

    Article  PubMed  CAS  Google Scholar 

  55. Bamias G, Martin 3rd C, Marini M, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 2003;171(9):4868–74.

    PubMed  CAS  Google Scholar 

  56. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang XY, Zhang HJ, Zhang Y, et al. Identification and expression analysis of alternatively spliced isoforms of human interleukin-23 receptor gene in normal lymphoid cells and selected tumor cells. Immunogenetics. 2006;57(12):934–43.

    Google Scholar 

  58. Van Limbergen J, Russell RK, Nimmo ER, et al. IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut. 2007;56(8):1173–4.

    Google Scholar 

  59. Cummings JR, Ahmad T, Geremia A, et al. Contribution of the novel inflammatory bowel disease gene IL23R to disease susceptibility and phenotype. Inflamm Bowel Dis. 2007;13(9):1063–8.

    Article  PubMed  Google Scholar 

  60. Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39(7):830–2.

    Article  PubMed  CAS  Google Scholar 

  61. Tremelling M, Cummings F, Fisher SA, et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology. 2007;132(5):1657–64.

    Article  PubMed  CAS  Google Scholar 

  62. Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  63. Baldassano RN, Bradfield JP, Monos DS, et al. Association of variants of the interleukin-23 receptor gene with susceptibility to pediatric Crohn’s disease. Clin Gastroenterol Hepatol. 2007;5(8):972–6.

    Article  PubMed  CAS  Google Scholar 

  64. Libioulle C, Louis E, Hansoul S, et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 2007;3(4):e58.

    Article  PubMed  Google Scholar 

  65. Dubinsky MC, Wang D, Picornell Y, et al. IL-23 receptor (IL-23R) gene protects against pediatric Crohn’s disease. Inflamm Bowel Dis. 2007;13(5):511–5.

    Article  PubMed  Google Scholar 

  66. Yamazaki K, Onouchi Y, Takazoe M, Kubo M, Nakamura Y, Hata A. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J Hum Genet. 2007;52(7):575–83.

    Article  PubMed  CAS  Google Scholar 

  67. Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.

    Article  PubMed  CAS  Google Scholar 

  68. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116(5):1310–6.

    Article  PubMed  CAS  Google Scholar 

  69. Elson CO, Cong Y, Weaver CT, et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology. 2007;132(7):2359–70.

    Article  PubMed  CAS  Google Scholar 

  70. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  71. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol. 2005;6(8):769–76.

    Article  PubMed  CAS  Google Scholar 

  72. LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–8.

    Article  PubMed  CAS  Google Scholar 

  73. Fritz JH, Le Bourhis L, Sellge G, et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity. 2007;26(4):445–59.

    Google Scholar 

  74. Baldassano RN, Bradfield JP, Monos DS, et al. Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to paediatric Crohn’s disease. Gut. 2007;56(8):1171–3.

    Article  PubMed  Google Scholar 

  75. Cummings JR, Cooney R, Pathan S, et al. Confirmation of the role of ATG16L1 as a Crohn’s disease susceptibility gene. Inflamm Bowel Dis. 2007;13(8):941–6.

    Article  PubMed  Google Scholar 

  76. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.

    Article  PubMed  CAS  Google Scholar 

  77. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.

    Article  PubMed  CAS  Google Scholar 

  78. Prescott NJ, Fisher SA, Franke A, et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology. 2007;132(5):1665–71.

    Article  PubMed  CAS  Google Scholar 

  79. McCarroll SA, Huett A, Kuballa P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet. 2008;40(9):1107–12.

    Article  PubMed  CAS  Google Scholar 

  80. Amre DK, Mack DR, Morgan K, et al. Autophagy gene ATG16L1 but not IRGM is associated with Crohn’s disease in Canadian children. Inflamm Bowel Dis. 2009;15(4):501–7.

    Article  PubMed  Google Scholar 

  81. Bekpen C, Marques-Bonet T, Alkan C, et al. Death and resurrection of the human IRGM gene. PLoS Genet. 2009;5(3):e1000403.

    Article  PubMed  Google Scholar 

  82. Kabashima K, Saji T, Murata T, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest. 2002;109(7):883–93.

    PubMed  CAS  Google Scholar 

  83. Perdigones N, Martin E, Robledo G, et al. Study of chromosomal region 5p13.1 in Crohn’s disease, ulcerative colitis, and rheumatoid arthritis. Hum Immunol. 2010;71(8):826–8.

    Article  PubMed  CAS  Google Scholar 

  84. Weersma RK, Stokkers PC, Cleynen I, et al. Confirmation of multiple Crohn’s disease susceptibility loci in a large Dutch-Belgian cohort. Am J Gastroenterol. 2009;104(3):630–8.

    Article  PubMed  CAS  Google Scholar 

  85. Franke A, Hampe J, Rosenstiel P, et al. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE. 2007;2(1):e691.

    Article  PubMed  Google Scholar 

  86. Raelson JV, Little RD, Ruether A, et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci USA. 2007;104(37):14747–52.

    Article  PubMed  CAS  Google Scholar 

  87. Silverberg MS, Cho JH, Rioux JD, et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet. 2009;41(2):216–20.

    Google Scholar 

  88. Silverberg MS, Cho JH, Rioux JD, et al. Corrigendum: Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet. 2009;41(6):762.

    Article  CAS  Google Scholar 

  89. Asano K, Matsushita T, Umeno J, et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet. 2009;41(12):1325–9.

    Article  PubMed  CAS  Google Scholar 

  90. Barrett JC, Lee JC, Lees CW, et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet. 2009;41(12):1330–4.

    Article  PubMed  CAS  Google Scholar 

  91. McGovern DP, Gardet A, Torkvist L, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42(4):332–7.

    Article  PubMed  CAS  Google Scholar 

  92. Cohen RD, Hanauer SB. Nicotine in ulcerative colitis: how does it work and how can we use it? Clin Immunotherap. 1996;5(3):169–74.

    Article  Google Scholar 

  93. Motley RJ, Rhodes J, Ford GA, et al. Time relationships between cessation of smoking and onset of ulcerative colitis. Digestion. 1987;37(2):125–7.

    Article  PubMed  CAS  Google Scholar 

  94. Boyko EJ, Perera DR, Koepsell TD, Keane EM, Inui TS. Effects of cigarette smoking on the clinical course of ulcerative colitis. Scand J Gastroenterol. 1988;23(9):1147–52.

    Article  PubMed  CAS  Google Scholar 

  95. Silverstein MD, Lashner BA, Hanauer SB. Cigarette smoking and ulcerative colitis: a case-control study. Mayo Clin Proc. 1994;69(5):425–9.

    Article  PubMed  CAS  Google Scholar 

  96. Tysk C, Jarnerot G. Has smoking changed the epidemiology of ulcerative colitis? Scand J Gastroenterol. 1992;27(6):508–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell D. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cohen, R.D. (2011). Recent Advances in the Genetics of IBD. In: Cohen, R. (eds) Inflammatory Bowel Disease. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-433-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-433-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-432-6

  • Online ISBN: 978-1-60327-433-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics