Skip to main content

Targeted Therapy in Non-Small Cell Lung Cancer

  • Chapter
Targeted Cancer Therapy

Part of the book series: Current Clinical Oncology™ ((CCO))

  • 1106 Accesses

Summary

Despite advances in standard therapies and chemotherapeutic regimens, survival remains poor for patients with lung cancer, the leading cause of cancer death in the world. Consequently, there is substantial interest in identifying potentially exploitable new targets in lung cancer. Over the past 5 years, targeted therapies have become firmly established as therapeutic options in non-small-cell lung cancer. The epidermal growth factor receptor inhibitors and vascular endothelial growth factor receptor inhibitors have proven activity and have rapidly gained widespread use. It is anticipated that the usefulness of additional classes of agents will be established in the near future. Of particular interest and importance are agents that are effective against tumor cells resistant to chemotherapy. Several new classes of agents are currently under investigation, including histone deacetylase inhibitors, DNA-methyltransferase inhibitors, proapoptotic agents, agents that antagonize antiapoptosis molecules, heat shock protein inhibitors, and hypoxia-inducible factor-1α antagonists, among others. Further development of these approaches is awaited with interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson E. Latest advances and research in lung cancer. Drug News Perspect 2005;18(6):405–11.

    PubMed  Google Scholar 

  2. Pignon J, Tribodet H, Scagliotti G, et al. Lung Adjuvant Clinical Evaluation (LACE): a pooled analysis of five randomized clinical trials including 4,584 patients. J Clin Oncol 2006;24(18s):366s.

    Google Scholar 

  3. Berghmans T, Paesmans M, Meert AP, et al. Survival improvement in resectable non-small cell lung cancer with (neo)adjuvant chemotherapy: results of a meta-analysis of the literature. Lung Cancer 2005;49(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  4. Spiro SG, Silvestri GA. The treatment of advanced non-small cell lung cancer. Curr Opin Pulm Med 2005;11(4):287–91.

    Article  PubMed  CAS  Google Scholar 

  5. Cappuzzo F, Bartolini S, Calandri C,et al. Induction therapy for early-stage non-small-cell lung cancer. Oncology (Williston Park) 2004;18(suppl 5):32–7.

    Google Scholar 

  6. Shepherd FA, Fossella FV, Lynch T, et al. Docetaxel (Taxotere) shows survival and quality-of-life benefits in the second-line treatment of non-small cell lung cancer: a review of two phase III trials. Semin Oncol 2001;28(suppl 2):4–9.

    PubMed  CAS  Google Scholar 

  7. Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 2004;22(9):1589–97.

    Article  PubMed  CAS  Google Scholar 

  8. Stewart DJ, Chiritescu G, Dahrouge S, et al. Chemotherapy dose-response relationships in non-small cell lung cancer and implied resistance mechanisms. Cancer Treat Rev 2007;33(2):101–37.

    Article  PubMed  CAS  Google Scholar 

  9. Stewart DJ, Raaphorst GP, Yau J, et al. Active vs. passive resistance, dose-response relationships, high dose chemotherapy, and resistance modulation: a hypothesis. Invest New Drugs 1996;14(2):115–30.

    Article  PubMed  CAS  Google Scholar 

  10. Liang XJ, Shen DW, Gottesman MM. A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells. J Inorg Biochem 2004;98(10):1599–606.

    Article  PubMed  CAS  Google Scholar 

  11. Shen DW, Su A, Liang XJ, et al. Reduced expression of small GTPases and hypermethylation of the folate binding protein gene in cisplatin-resistant cells. Br J Cancer 2004;91(2):270–6.

    PubMed  CAS  Google Scholar 

  12. Onn A, Choe DH, Herbst RS, et al. Tumor cavitation in stage I non-small cell lung cancer: epidermal growth factor receptor expression and prediction of poor outcome. Radiology 2005;237(1):342–7.

    Article  PubMed  Google Scholar 

  13. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol 2006;24(31):5034–42.

    Article  PubMed  CAS  Google Scholar 

  14. Dacic S, Flanagan M, Cieply K, et al. Significance of EGFR protein expression and gene amplification in non-small cell lung carcinoma. Am J Clin Pathol 2006;125(6):860–5.

    Article  PubMed  CAS  Google Scholar 

  15. Wislez M, Antoine M, Poulot V, et al. IFCT0401-bio trial: predictive biological markers for disease control of patients with non-resectable, adenocarcinoma with bronchioloalvelolar features treated with gefitinib. J Clin Oncol 2007;25(suppl). Abstract 7653.

    Google Scholar 

  16. Nakamura H, Kawasaki N, Taguchi M, et al. Survival impact of epidermal growth factor receptor overexpression in patients with non-small cell lung cancer: a meta-analysis. Thorax 2006;61(2):140–5.

    Article  PubMed  CAS  Google Scholar 

  17. Dutu T, Michiels S, Fouret P, et al. Differential expression of biomarkers in lung adenocarcinoma: a comparative study between smokers and never-smokers. Ann Oncol 2005;16(12):1906–14.

    Article  PubMed  CAS  Google Scholar 

  18. Laack E, Schneider C, Gutjahr T, et al. Association between different potential predictive markers from TRUST, a trial of erlotinib in non-small cell lung cancer. J Clin Oncol 2007;25(suppl). Abstract 7651.

    Google Scholar 

  19. Bell DW, Lynch TJ, Haserlat SM, et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 2005;23(31):8081–92.

    Article  PubMed  CAS  Google Scholar 

  20. Dassonville O, Bozec A, Fischel JL, et al. EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors: similarities and differences. Crit Rev Oncol Hematol 2007;62(1):53–61.

    Article  PubMed  Google Scholar 

  21. Helfrich BA, Raben D, Varella-Garcia M, et al. Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin Cancer Res 2006;12(23):7117–25.

    Article  PubMed  CAS  Google Scholar 

  22. Haura E, Sommers E, Becker A, et al. Pilot phase II study of preoperative gefitinib in early stage non-small cell lung cancer with assessment of intratumor gefitinib levels and tumor target modulation. J Clin Oncol 2007;25 (suppl). Abstract 7603.

    Google Scholar 

  23. Thomas SK, Fossella FV, Liu D, et al. Asian ethnicity as a predictor of response in patients with non-small-cell lung cancer treated with gefitinib on an expanded access program. Clin Lung Cancer 2006;7(5):326–31.

    PubMed  CAS  Google Scholar 

  24. Cappuzzo F, Gregorc V, Rossi E, et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J Clin Oncol 2003;21(14):2658–63.

    Article  PubMed  CAS  Google Scholar 

  25. Janne PA, Gurubhagavatula S, Yeap BY, et al. Outcomes of patients with advanced non-small cell lung cancer treated with gefitinib (ZD1839, “Iressa”) on an expanded access study. Lung Cancer 2004;44(2):221–30.

    Article  PubMed  Google Scholar 

  26. Haringhuizen A, van Tinteren H, Vaessen HF, et al. Gefitinib as a last treatment option for non-small-cell lung cancer: durable disease control in a subset of patients. Ann Oncol 2004;15(5):786–92.

    Article  PubMed  CAS  Google Scholar 

  27. Mohamed MK, Ramalingam S, Lin Y, et al. Skin rash and good performance status predict improved survival with gefitinib in patients with advanced non-small cell lung cancer. Ann Oncol 2005;16(5):780–5.

    Article  PubMed  CAS  Google Scholar 

  28. Cufer T, Vrdoljak E, Gaafar R, et al. Phase II, open-label, randomized study (SIGN) of single-agent gefitinib (IRESSA) or docetaxel as second-line therapy in patients with advanced (stage IIIb or IV) non-small-cell lung cancer. Anticancer Drugs 2006;17(4):401–9.

    Article  PubMed  CAS  Google Scholar 

  29. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 2003;21(12):2237–46.

    Article  PubMed  CAS  Google Scholar 

  30. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005;366(9496):1527–37.

    Article  PubMed  CAS  Google Scholar 

  31. Mu XL, Li LY, Zhang XT, et al. Evaluation of safety and efficacy of gefitinib (‘iressa’, zd1839) as monotherapy in a series of Chinese patients with advanced non-small-cell lung cancer: experience from a compassionate-use programme. BMC Cancer 2004;4:51.

    Article  PubMed  CAS  Google Scholar 

  32. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003;290(16):2149–58.

    Article  PubMed  CAS  Google Scholar 

  33. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 2004;22(16):3238–47.

    Article  PubMed  CAS  Google Scholar 

  34. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  35. Lu JF, Eppler SM, Wolf J, et al. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 2006;80(2):136–45.

    Article  PubMed  CAS  Google Scholar 

  36. Milton DT, Azzoli CG, Heelan RT, et al. A phase I/II study of weekly high-dose erlotinib in previously treated patients with nonsmall cell lung cancer. Cancer 2006;107(5):1034–41.

    Article  PubMed  CAS  Google Scholar 

  37. Reck M, Buchholz E, Romer KS, et al. Gefitinib monotherapy in chemotherapy-naive patients with inoperable stage III/IV non-small-cell lung cancer. Clin Lung Cancer 2006;7(6):406–11.

    PubMed  CAS  Google Scholar 

  38. Lee DH, Han JY, Lee HG, et al. Gefitinib as a first-line therapy of advanced or metastatic adenocarcinoma of the lung in never-smokers. Clin Cancer Res 2005;11(8):3032–7.

    Article  PubMed  CAS  Google Scholar 

  39. Niho S, Kubota K, Goto K, et al. First-line single agent treatment with gefitinib in patients with advanced non-small-cell lung cancer: a phase II study. J Clin Oncol 2006;24(1):64–9.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki R, Hasegawa Y, Baba K, et al. A phase II study of single-agent gefitinib as first-line therapy in patients with stage IV non-small-cell lung cancer. Br J Cancer 2006;94(11):1599–603.

    PubMed  CAS  Google Scholar 

  41. Giaccone G, Gallegos Ruiz M, et al. Erlotinib for frontline treatment of advanced non-small cell lung cancer: a phase II study. Clin Cancer Res 2006;12(20 Pt 1):6049–55.

    Article  PubMed  CAS  Google Scholar 

  42. Jackman DM, Yeap BY, Lindeman NI, et al. Phase II clinical trial of chemotherapy-naive patients > or = 70 years of age treated with erlotinib for advanced non-small-cell lung cancer. J Clin Oncol 2007;25(7):760–6.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly K, Chansky K, Gaspar LE, et al. Updated analysis of SWOG 0023: a randomized phase III trial of gefitinib vs placebo maintenance after defintive chemoradiation followed by docetaxel in patients with locally advanced stage III non-small cell lung cancer. J Clin Oncol 2007;25(suppl). Abstract 7513.

    Google Scholar 

  44. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol 2004;22(5):785–94.

    Article  PubMed  CAS  Google Scholar 

  45. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 2004;22(5):777–84.

    Article  PubMed  CAS  Google Scholar 

  46. Gatzemeier U, Pluzanska A, Szczesna A, et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 2007;25(12):1545–52.

    Article  PubMed  CAS  Google Scholar 

  47. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005;23(25):5892–9.

    Article  PubMed  CAS  Google Scholar 

  48. Davies AM, Ho C, Lara PN Jr, et al. Pharmacodynamic separation of epidermal growth factor receptor tyro-sine kinase inhibitors and chemotherapy in non-small-cell lung cancer. Clin Lung Cancer 2006;7(6):385–8.

    PubMed  CAS  Google Scholar 

  49. Cappuzzo F, Ardizzoni A, Soto-Parra H, et al. Epidermal growth factor receptor targeted therapy by ZD 1839 (Iressa) in patients with brain metastases from non-small cell lung cancer (NSCLC). Lung Cancer 2003;41(2):227–31.

    Article  PubMed  Google Scholar 

  50. Hotta K, Kiura K, Ueoka H, et al. Effect of gefitinib (‘Iressa’, ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung Cancer 2004;46(2):255–61.

    Article  PubMed  Google Scholar 

  51. Chiu CH, Tsai CM, Chen YM, et al. Gefitinib is active in patients with brain metastases from non-small cell lung cancer and response is related to skin toxicity. Lung Cancer 2005;47(1):129–38.

    Article  PubMed  Google Scholar 

  52. Ceresoli GL, Cappuzzo F, Gregorc V, et al. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann Oncol 2004;15(7):1042–7.

    Article  PubMed  CAS  Google Scholar 

  53. Stewart DJ. A critique of the role of the blood-brain barrier in the chemotherapy of human brain tumors. J Neurooncol 1994;20(2):121–39.

    Article  PubMed  CAS  Google Scholar 

  54. Zinner RG, Nemunaitis J, Eiseman I, et al. Phase I clinical and pharmacodynamic evaluation of oral CI-1033 in patients with refractory cancer. Clin Cancer Res 2007;13(10):3006–14.

    Article  PubMed  CAS  Google Scholar 

  55. Chiappori AA, Ellis PM, Hamm JT, et al. A phase I evaluation of oral CI-1033 in combination with paclitaxel and carboplatin as first-line chemotherapy in patients with advanced non-small cell lung cancer. J Thorac Oncol 2006;1(9):1010–9.

    Article  PubMed  Google Scholar 

  56. Smylie M, Blumenschein G, Dowlati A, et al. A phase II multicenter trial comparing two schedules of lapatinib as first or second line monotherapy in subjects with advanced or metasatic non-small lung cancer with either bronchioloalveolar carcinoma or no smoking history. J Clin Oncol 2007;25(suppl). Abstract 7611.

    Google Scholar 

  57. Calvo E, Baselga J. Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol 2006;24(14):2158–63.

    Article  PubMed  CAS  Google Scholar 

  58. Chang A, Parikh P, Thongprasert S, et al. Gefitinib (IRESSA) in patients of Asian origin with refractory advanced non-small cell lung cancer: subset analysis from the ISEL study. J Thorac Oncol 2006;1(8):847–55.

    Article  PubMed  Google Scholar 

  59. Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 2005;23(11):2513–20.

    Article  PubMed  CAS  Google Scholar 

  60. Ando M, Okamoto I, Yamamoto N, et al. Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2006;24(16):2549–56.

    Article  PubMed  CAS  Google Scholar 

  61. West HL, Franklin WA, McCoy J, et al. Gefitinib therapy in advanced bronchioloalveolar carcinoma: Southwest Oncology Group study S0126. J Clin Oncol 2006;24(12):1807–13.

    Article  PubMed  CAS  Google Scholar 

  62. Clark GM, Zborowski DM, Santabarbara P, et al. Smoking history and epidermal growth factor receptor expression as predictors of survival benefit from erlotinib for patients with non-small-cell lung cancer in the National Cancer Institute of Canada Clinical Trials Group study BR.21. Clin Lung Cancer 2006;7(6):389–94.

    Article  PubMed  CAS  Google Scholar 

  63. Lee DH, Han JY, Yu SY, et al. The role of gefitinib treatment for Korean never-smokers with advanced or metastatic adenocarcinoma of the lung: a prospective study. J Thorac Oncol 2006;1(9):965–71.

    Article  PubMed  Google Scholar 

  64. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer: molecular and clinical predictors of outcome. N Engl J Med 2005;353(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  65. Ohtsuka K, Ohnishi H, Furuyashiki G, et al. Clinico-pathological and biological significance of tyrosine kinase domain gene mutations and overexpression of epidermal growth factor receptor for lung adenocarcinoma. J Thorac Oncol 2006;1(8):787–95.

    Article  PubMed  Google Scholar 

  66. Moran T, Paz-Ares L, Isla D, et al. High correspondence between EGFR mutations in tissue and in circulating DNA from non-small cell lung cancer patients with poor performance status. J Clin Oncol 2007;25(suppl). Abstract 7505.

    Google Scholar 

  67. Tang X, Shigematsu H, Bekele BN, et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 2005;65(17):7568–72.

    PubMed  CAS  Google Scholar 

  68. Massarelli E, Varella-Garcia M, Tang X, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 2007;13(10):2890–6.

    Article  PubMed  CAS  Google Scholar 

  69. Yang SH, Mechanic LE, Yang P, et al. Mutations in the tyrosine kinase domain of the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res 2005;11(6):2106–10.

    Article  PubMed  CAS  Google Scholar 

  70. Murray S, Timotheadou E, Linardou H, et al. Mutations of the epidermal growth factor receptor tyrosine kinase domain and associations with clinicopathological features in non-small cell lung cancer patients. Lung Cancer 2006;52(2):225–33.

    Article  PubMed  CAS  Google Scholar 

  71. Riely GJ, Pao W, Pham D, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 2006;12(Pt 1):839–44.

    Article  PubMed  CAS  Google Scholar 

  72. Inoue A, Suzuki T, Fukuhara T, et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 2006;24(21):3340–6.

    Article  PubMed  CAS  Google Scholar 

  73. Wu YL, Zhong WZ, Li LY, et al. Epidermal growth factor receptor mutations and their correlation with gefitinib therapy in patients with non-small cell lung cancer: a meta-analysis based on updated individual patient data from six medical centers in mainland China. J Thorac Oncol 2007;2(5):430–9.

    Article  PubMed  Google Scholar 

  74. Takano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005;23(28):6829–37.

    Article  PubMed  CAS  Google Scholar 

  75. Han SW, Kim TY, Jeon YK, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 2006;12(8):2538–44.

    Article  PubMed  CAS  Google Scholar 

  76. Endo K, Sasaki H, Yano M, et al. Evaluation of the epidermal growth factor receptor gene mutation and copy number in non-small cell lung cancer with gefitinib therapy. Oncol Rep 2006;16(3):533–41.

    PubMed  CAS  Google Scholar 

  77. Riely GJ, Politi KA, Miller VA, Pao W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006;12(24):7232–41.

    Article  PubMed  CAS  Google Scholar 

  78. Tam IY, Chung LP, Suen WS, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 2006;12(5):1647–53.

    Article  PubMed  CAS  Google Scholar 

  79. Haber DA, Bell DW, Sordella R, et al. Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors. Cold Spring Harb Symp Quant Biol 2005;70:419–26.

    Article  PubMed  CAS  Google Scholar 

  80. Han SW, Kim TY, Hwang PG, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2005;23(11):2493–501.

    Article  PubMed  CAS  Google Scholar 

  81. Rosell R, Taron M, Reguart N, et al. Epidermal growth factor receptor activation: how exon 19 and 21 mutations changed our understanding of the pathway. Clin Cancer Res 2006;12(24):7222–31.

    Article  PubMed  CAS  Google Scholar 

  82. Buckingham LE, Coon JS, Morrison LE, et al. The prognostic value of chromosome 7 polysomy in non-small cell lung cancer patients treated with gefitinib. J Thorac Oncol 2007;2(5):414–22.

    Article  PubMed  Google Scholar 

  83. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005;23(25):5900–9.

    Article  PubMed  CAS  Google Scholar 

  84. Van Zandwijk N, Mathy A, Boerrigter L, et al. EGFR and KRAS mutations as criteria for treatment with tyrosine kinase inhibitors: retro- and prospective observations in non-small-cell lung cancer. Ann Oncol 2007;18(1):99–103.

    Article  PubMed  Google Scholar 

  85. Cappuzzo F, Ligorio C, Toschi L, et al. EGFR and HER2 gene copy number and response to first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J Thorac Oncol 2007;2(5):423–9.

    Article  PubMed  Google Scholar 

  86. Daniele L, Macri L, Schena M, et al. Predicting gefitinib responsiveness in lung cancer by fluorescence in situ hybridization/chromogenic in situ hybridization analysis of EGFR and HER2 in biopsy and cytology specimens. Mol Cancer Ther 2007;6(4):1223–9.

    Article  PubMed  CAS  Google Scholar 

  87. Hirsch FR, Varella-Garcia M, Bunn PA, et al. Fluorescence in situ hybridization (FISH) subgroup analysis of TRIBUTE, a phase III trial of erlotinib plus carboplatin and paclitaxel in NSCLC. J Clin Oncol 2007;25(suppl). Abstract 7570.

    Google Scholar 

  88. Amler LC, Goddard AD, Hillan KJ. Predicting clinical benefit in non-small-cell lung cancer patients treated with epidermal growth factor tyrosine kinase inhibitors. Cold Spring Harb Symp Quant Biol 2005;70:483–8.

    Article  PubMed  CAS  Google Scholar 

  89. Cappuzzo F. Predictive factors for response and for resistance to tyrosine kinase inhibitor therapy in lung cancer. J Thorac Oncol 2007;2(suppl):S12–4.

    Article  PubMed  Google Scholar 

  90. Dziadziuszko R, Witta SE, Cappuzzo F, et al. Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clin Cancer Res 2006;12(10):3078–84.

    Article  PubMed  CAS  Google Scholar 

  91. Shepherd F, Ding K, Sakurada A, et al. Updated molecular analysis of exons 19 and 21 of the epidermal growth factor gene and codons 12 and 13 of the KRAS gene in non-small cell lung cancer patients treated with erlotinib in National Cancer Institute of Canada. J Clin Oncol 2007;25(suppl). Abstract 7571.

    Google Scholar 

  92. Van Schaeybroeck S, Kyula J, Kelly DM, et al. Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells. Mol Cancer Ther 2006;5(5):1154–65.

    Article  PubMed  Google Scholar 

  93. Clark GM, Zborowski DM, Culbertson JL, et al. Clinical utility of epidermal growth factor receptor expression for selecting patients with advanced non-small cell lung cancer for treatment with erlotinib. J Thorac Oncol 2006;1(8):837–46.

    Article  PubMed  Google Scholar 

  94. Cappuzzo F, Toschi L, Tallini G, et al. Insulin-like growth factor receptor 1 (IGFR-1) is significantly associated with longer survival in non-small-cell lung cancer patients treated with gefitinib. Ann Oncol 2006;17(7):1120–7.

    Article  PubMed  CAS  Google Scholar 

  95. Cappuzzo F, Varella-Garcia M, Shigematsu H, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005;23(22):5007–18.

    Article  PubMed  CAS  Google Scholar 

  96. Langer CJ, Stephenson P, Thor A, et al. Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern Cooperative Oncology Group study 2598. J Clin Oncol 2004;22(7):1180–7.

    Google Scholar 

  97. Johnson BE, Janne PA. Rationale for a phase II trial of pertuzumab, a HER-2 dimerization inhibitor, in patients with non-small cell lung cancer. Clin Cancer Res 2006;12(14 Pt 2):4436s-40s.

    Article  PubMed  CAS  Google Scholar 

  98. Swanton C, Futreal A, Eisen T. Her2-targeted therapies in non-small cell lung cancer. Clin Cancer Res 2006;12(14 Pt 2):4377s-83s.

    Article  PubMed  CAS  Google Scholar 

  99. Coldren CD, Helfrich BA, Witta SE, et al. Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines. Mol Cancer Res 2006;4(8):521–8.

    Article  PubMed  CAS  Google Scholar 

  100. Cappuzzo F, Toschi L, Domenichini I, et al. HER3 genomic gain and sensitivity to gefitinib in advanced non-small-cell lung cancer patients. Br J Cancer 2005;93(12):1334–40.

    Article  PubMed  CAS  Google Scholar 

  101. Bremnes RM, Veve R, Gabrielson E, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 2002;20(10):2417–28.

    Article  PubMed  CAS  Google Scholar 

  102. Yauch RL, Januario T, Eberhard DA, et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 2005;11(24 Pt 1):8686–98.

    Article  PubMed  CAS  Google Scholar 

  103. Jain A, Tindell CA, Laux I, et al. Epithelial membrane protein-1 is a biomarker of gefitinib resistance. Proc Natl Acad Sci U S A 2005;102(33):11858–63.

    Article  PubMed  CAS  Google Scholar 

  104. Kosaka T, Yatabe Y, Endoh H, et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 2006;12(19):5764–9.

    Article  PubMed  CAS  Google Scholar 

  105. Balak MN, Gong Y, Riely GJ, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 2006;12(21):6494–501.

    Article  PubMed  CAS  Google Scholar 

  106. Inukai M, Toyooka S, Ito S, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 2006;66(16):7854–8.

    Article  PubMed  CAS  Google Scholar 

  107. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316(5827):1039–43.

    Article  PubMed  CAS  Google Scholar 

  108. Fujiwara Y, Kiura K, Toyooka S, et al. Relationship between epidermal growth factor receptor gene mutations and the severity of adverse events by gefitinib in patients with advanced non-small cell lung cancer. Lung Cancer 2006;52(1):99–103.

    Article  PubMed  Google Scholar 

  109. Hanna N, Lilenbaum R, Ansari R, et al. Phase II trial of cetuximab in patients with previously treated non-small-cell lung cancer. J Clin Oncol 2006;24(33):5253–8.

    Article  PubMed  CAS  Google Scholar 

  110. Thienelt CD, Bunn PA Jr, Hanna N, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol 2005;23(34):8786–93.

    Article  PubMed  Google Scholar 

  111. Bareschino MA, Morgillo F, Ciardiello F. Combination of standard chemotherapy and targeted agents. J Thorac Oncol 2007;2(suppl):S19–23.

    Article  PubMed  Google Scholar 

  112. Herbst RS, Chansky K, Kelly K, et al. A phase II randomized selection trial evaluating concurrent chemotherapy plus cetuximab or chemotherapy followed by cetuximab in patients with advanced NSCLC: final report of SWOG 0342. J Clin Oncol 2007;25(suppl). Abstract 7545.

    Google Scholar 

  113. Kim ES, Mauer A, Tran HT, et al. A phase II study of cetuximab, an epidermal growth factor receptor blocking antibody, in combination with docetaxel in chemotherapy refractory/resistant patients with advanced non-small cell lung cancer: final report. Proc Am Soc Clin Oncol 2003;22. Abstract 2581.

    Google Scholar 

  114. Maegawa M, Takeuchi K, Funakoshi E, et al. Growth stimulation of non-small cell lung cancer cell lines by antibody against epidermal growth factor receptor promoting formation of ErbB2/ErbB3 heterodimers. Mol Cancer Res 2007;5(4):393–401.

    Article  PubMed  CAS  Google Scholar 

  115. Laack E, Kohler A, Kugler C, et al. Pretreatment serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in non-small-cell lung cancer. Ann Oncol 2002;13(10):1550–7.

    Article  PubMed  CAS  Google Scholar 

  116. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004;22(11):2184–91.

    Article  PubMed  CAS  Google Scholar 

  117. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355(24):2542–50.

    Article  PubMed  CAS  Google Scholar 

  118. Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 2007;5(3):203–20.

    Article  PubMed  CAS  Google Scholar 

  119. Herbst RS, Johnson DH, Mininberg E, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005;23(11):2544–55.

    Article  PubMed  CAS  Google Scholar 

  120. Massarelli E, Miller V, Leighl N, et al. Phase II study of the efficacy of intravenous AVE0005 (VEGF trap) given every 2 weeks in patients with platinum- and erlotinib-resistant adenocarcinoma of the lung. J Clin Oncol 2007;25(suppl). Abstract 7627.

    Google Scholar 

  121. Hanrahan EO, Lin HY, Du D, et al. Correlative analyses of plasma cytokine/angiogenic factor profile, sex and outcome in a randomized, three-arm, phase II trial of first-line vanbdetanib and/or carboplatin plus paclitaxel for advanced non-small cell lung cancer. J Clin Oncol 2007;25(suppl). Abstract 7593.

    Google Scholar 

  122. Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 2005;23(14):3243–56.

    Article  PubMed  CAS  Google Scholar 

  123. Natale R, Bodkin D, Govindan R, et al. ZD6474 versus gefitinib in patients with advanced NSCLC: final results from a two-part, double-blind, randomized phase II trial. J Clin Oncol 2006;24(suppl). Abstract 7000.

    Google Scholar 

  124. Heymach JV, Johnson BE, Prager D, et al. A phase II trial of ZD6474 plus docetaxel in patients with previously treated NSCLC: follow-up results. J Clin Oncol 2006;24(suppl). Abstract 7016.

    Google Scholar 

  125. Heymach JV, Paz-Ares L, De Braud F, et al. Randomized phase II study of vandetanib alone or in combination with carboplatin and paclitaxel as first-line treatment for advanced non-small cell lung cancer. J Clin Oncol 2007;25(suppl). Abstract 7544.

    Google Scholar 

  126. Adjei AA, Molina JR, Mandrekar SJ, et al. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non-small cell lung cancer. Clin Cancer Res 2007;13(9):2684–91.

    Article  PubMed  CAS  Google Scholar 

  127. Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002;62(23):6997–7000.

    PubMed  CAS  Google Scholar 

  128. Toyooka S, Uchida A, Shigematsu H, et al. The effect of gefitinib on B-RAF mutant non-small cell lung cancer and transfectants. J Thorac Oncol 2007;2(4):321–4.

    Article  PubMed  Google Scholar 

  129. Blumenschein G, Heymach JV. Angiogenesis inhibitors for lung cancer: clinical developments and future directions. J Thorac Oncol 2006;1(7):744–8.

    PubMed  Google Scholar 

  130. Blumenschein GR, Gatzenmeier U, Fossella F, et al. A phase II multicenter uncontrolled trial of single agent sorafenib (BAY 43–9006) in patients with relapsed or refractory advanced non-small cell lung carcinoma. In: Proceedings of the AACR-NCI-EORTC International Conference “Molecular Targets and Cancer Therapeutics,” 2005, p. 46.

    Google Scholar 

  131. Gridelli C, Maione P, Del Gaizo F, et al. Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist 2007;12(2):191–200.

    Article  PubMed  CAS  Google Scholar 

  132. Socinski M, Novello S, Sanchez J. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer: preliminary results of a multicenter phase II trial. J Clin Oncol 2006;24(suppl). Abstract 7001.

    Google Scholar 

  133. Schiller JH, Larson T, Ou S, et al. Efficacy and safety of axitinib (AG-013736) in patients with advanced non-small cell lung cancer: a phase II trial. J Clin Oncol 2007;25(suppl). Abstract 7507.

    Google Scholar 

  134. Yasuda H, Nakayama K, Watanabe M, et al. Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res 2006;12(22):6748–57.

    Article  PubMed  CAS  Google Scholar 

  135. Yasuda H, Yamaya M, Nakayama K, et al. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 2006;24(4):688–94.

    Article  PubMed  CAS  Google Scholar 

  136. Horn L, Sandler A. Chemotherapy and antiangiogenic agents in non-small-cell lung cancer. Clin Lung Cancer 2007;8(suppl 2):S68–73.

    PubMed  CAS  Google Scholar 

  137. Strieter RM, Burdick MD, Gomperts BN, et al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 2005;16(6):593–609.

    Article  PubMed  CAS  Google Scholar 

  138. Strieter RM, Burdick MD, Mestas J, et al. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 2006;42(6):768–78.

    Article  PubMed  CAS  Google Scholar 

  139. Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J Leukoc Biol 2000;68(1):1–8.

    PubMed  CAS  Google Scholar 

  140. Rampart M, Van Damme J, Zonnekeyn L, et al. Granulocyte chemotactic protein/interleukin-8 induces plasma leakage and neutrophil accumulation in rabbit skin. Am J Pathol 1989;135(1):21–5.

    PubMed  CAS  Google Scholar 

  141. Murphy C, McGurk M, Pettigrew J, et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res 2005;11(11):4117–27.

    Article  PubMed  CAS  Google Scholar 

  142. Schadendorf D, Moller A, Algermissen B, et al. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol 1993;151(5):2667–75.

    PubMed  CAS  Google Scholar 

  143. Zhu YM, Webster SJ, Flower D, et al. Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 2004;91(11):1970–6.

    Article  PubMed  CAS  Google Scholar 

  144. Strieter RM, Kasahara K, Allen RM, et al. Cytokine-induced neutrophil-derived interleukin-8. Am J Pathol 1992;141(2):397–407.

    PubMed  CAS  Google Scholar 

  145. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995;270(45):27348–57.

    Article  PubMed  CAS  Google Scholar 

  146. Keane MP, Burdick MD, Xue YY, et al. The chemokine receptor, CXCR2, mediates the tumorigenic effects of ELR+ CXC chemokines. Chest 2004;125(suppl):133S.

    Article  PubMed  Google Scholar 

  147. Keane MP, Belperio JA, Xue YY, et al. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 2004;172(5):2853–60.

    PubMed  CAS  Google Scholar 

  148. Wislez M, Rabbe N, Marchal J, et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 2003;63(6):1405–12.

    PubMed  CAS  Google Scholar 

  149. Dazzi C, Cariello A, Maioli P, et al. Prognostic and predictive value of intratumoral microvessels density in operable non-small-cell lung cancer. Lung Cancer 1999;24(2):81–8.

    Article  PubMed  CAS  Google Scholar 

  150. Yuan A, Yang PC, Yu CJ, et al. Interleukin-8 messenger ribonucleic acid expression correlates with tumor progression, tumor angiogenesis, patient survival, and timing of relapse in non-small-cell lung cancer. Am J Respir Crit Care Med 2000;162(5):1957–63.

    PubMed  CAS  Google Scholar 

  151. Addison CL, Daniel TO, Burdick MD, et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 2000;165(9):5269–77.

    PubMed  CAS  Google Scholar 

  152. Strieter RM, Belperio JA, Burdick MD, et al. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci 2004;1028:351–60.

    Article  PubMed  CAS  Google Scholar 

  153. Shi Q, Abbruzzese JL, Huang S, et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999;5(11):3711–21.

    PubMed  CAS  Google Scholar 

  154. Shi Q, Le X, Abbruzzese JL, et al. Cooperation between transcription factor AP-1 and NF-kappaB in the induction of interleukin-8 in human pancreatic adenocarcinoma cells by hypoxia. J Interferon Cytokine Res 1999;19(12):1363–71.

    Article  PubMed  CAS  Google Scholar 

  155. Bruns CJ, Solorzano CC, Harbison MT, et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 2000;60(11):2926–35.

    PubMed  CAS  Google Scholar 

  156. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004;6(5):447–58.

    Article  PubMed  CAS  Google Scholar 

  157. Wislez M, Fujimoto N, Izzo JG, et al. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 2006;66(8):4198–207.

    Article  PubMed  CAS  Google Scholar 

  158. Wislez M, Spencer ML, Izzo JG, et al. Inhibition of mammalian target of rapamycin reverses alveolar epithelial neoplasia induced by oncogenic K-ras. Cancer Res 2005;65(8):3226–35.

    PubMed  CAS  Google Scholar 

  159. Shalinsky DR, Brekken J, Zou H, et al. Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: single agent and combination chemotherapy studies. Clin Cancer Res 1999;5(7):1905–17.

    PubMed  CAS  Google Scholar 

  160. Douillard JY, Peschel C, Shepherd F, et al. Randomized phase II feasibility study of combining the matrix metalloproteinase inhibitor BMS-275291 with paclitaxel plus carboplatin in advanced non-small cell lung cancer. Lung Cancer 2004;46(3):361–8.

    Article  PubMed  Google Scholar 

  161. Leighl NB, Paz-Ares L, Douillard JY, et al. Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: National Cancer Institute of Canada-Clinical Trials Group Study BR.18. J Clin Oncol 2005;23(12):2831–9.

    Article  PubMed  CAS  Google Scholar 

  162. Bissett D, O’Byrne KJ, von Pawel J, et al. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 2005;23(4):842–9.

    Article  PubMed  CAS  Google Scholar 

  163. Behrendt CE, Ruiz RB. Venous thromboembolism among patients with advanced lung cancer randomized to prinomastat or placebo, plus chemotherapy. Thromb Haemost 2003;90(4):734–7.

    PubMed  CAS  Google Scholar 

  164. Shepherd FA, Giaccone G, Seymour L, et al. Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 2002;20(22):4434–9.

    Article  PubMed  CAS  Google Scholar 

  165. Majewski S, Marczak M, Mlynarczyk B, et al. Imiquimod is a strong inhibitor of tumor cell-induced angiogenesis. Int J Dermatol 2005;44(1):14–9.

    Article  PubMed  CAS  Google Scholar 

  166. Maasilta P, Holsti LR, Halme M, et al. Natural alpha-interferon in combination with hyperfractionated radiotherapy in the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 1992;23(4):863–8.

    PubMed  CAS  Google Scholar 

  167. Kataja V, Yap A. Combination of cisplatin and interferon-alpha 2a (Roferon-A) in patients with non-small cell lung cancer (NSCLC): an open phase II multicentre study. Eur J Cancer 1995;31A(1):35–40.

    PubMed  CAS  Google Scholar 

  168. Chao TY, Hwang WS, Yang MJ, et al. Combination chemoimmunotherapy with interferon-alpha and cisplatin in patients with advanced non-small cell lung cancer. Zhonghua Yi Xue Za Zhi (Taipei) 1995;56(4):232–8.

    CAS  Google Scholar 

  169. Mandanas R, Einhorn LH, Wheeler B, et al. Carboplatin (CBDCA) plus alpha interferon in metastatic non-small cell lung cancer: a Hoosier Oncology Group phase II trial. Am J Clin Oncol 1993;16(6):519–21.

    Article  PubMed  CAS  Google Scholar 

  170. Fuxius S, Mross K, Mansouri K, et al. Gemcitabine and interferon-alpha 2b in solid tumors: a phase I study in patients with advanced or metastatic non-small cell lung, ovarian, pancreatic or renal cancer. Anticancer Drugs 2002;13(9):899–905.

    Article  PubMed  CAS  Google Scholar 

  171. Quan WD, Jr., Casal R, Rosenfeld M, et al. Alpha interferon-2b, leucovorin, and 5-fluorouracil (ALF) in non-small cell lung cancer. Cancer Biother Radiopharm 1996;11(4):229–34.

    PubMed  CAS  Google Scholar 

  172. Ardizzoni A, Rosso R, Salvati F, et al. Combination chemotherapy and interferon alpha 2b in the treatment of advanced non-small-cell lung cancer: the Italian Lung Cancer Task Force (FONICAP). Am J Clin Oncol 1991;14(2):120–3.

    Article  PubMed  CAS  Google Scholar 

  173. Silva RR, Bascioni R, Rossini S, et al. A phase II study of mitomycin C, vindesine and cisplatin combined with alpha interferon in advanced non-small cell lung cancer. Tumori 1996;82(1):68–71.

    PubMed  CAS  Google Scholar 

  174. Athanasiadis I, Kies MS, Miller M, et al. Phase II study of all-trans-retinoic acid and alpha-interferon in patients with advanced non-small cell lung cancer. Clin Cancer Res 1995;1(9):973–9.

    PubMed  CAS  Google Scholar 

  175. Goncalves A, Camerlo J, Bun H, et al. Phase II study of a combination of cisplatin, all-trans-retinoic acid and interferon-alpha in squamous cell carcinoma: clinical results and pharmacokinetics. Anticancer Res 2001;21(2B):1431–7.

    PubMed  CAS  Google Scholar 

  176. Roth AD, Abele R, Alberto P. 13-Cis-retinoic acid plus interferon-alpha: a phase II clinical study in squamous cell carcinoma of the lung and the head and neck. Oncology 1994;51(1):84–6.

    PubMed  CAS  Google Scholar 

  177. Roth AD, Morant R, Alberto P. High dose etretinate and interferon-alpha—a phase I study in squamous cell carcinomas and transitional cell carcinomas. Acta Oncol 1999;38(5):613–7.

    Article  PubMed  CAS  Google Scholar 

  178. Rinaldi DA, Lippman SM, Burris HA 3rd, et al. Phase II study of 13-cis-retinoic acid and interferon-alpha 2a in patients with advanced squamous cell lung cancer. Anticancer Drugs 1993;4(1):33–6.

    PubMed  CAS  Google Scholar 

  179. Salvati F, Rasi G, Portalone L, et al. Combined treatment with thymosin-alpha1 and low-dose interferon-alpha after ifosfamide in non-small cell lung cancer: a phase-II controlled trial. Anticancer Res 1996;16(2):1001–4.

    PubMed  CAS  Google Scholar 

  180. Ardizzoni A, Salvati F, Rosso R, et al. Combination of chemotherapy and recombinant alpha-interferon in advanced non-small cell lung cancer: multicentric randomized FONICAP trial report; the Italian Lung Cancer Task Force. Cancer 1993;72(10):2929–35.

    Article  PubMed  CAS  Google Scholar 

  181. Wheeler RH, Herndon JE, Clamon GH, et al. A phase II study of recombinant beta-interferon at maximum tolerated dose in patients with advanced non-small cell lung cancer: a cancer and leukemia group B study. J Immunother Emphasis Tumor Immunol 1994;15(3):212–6.

    PubMed  CAS  Google Scholar 

  182. McDonald S, Chang AY, Rubin P, et al. Combined Betaseron R (recombinant human interferon beta) and radiation for inoperable non-small cell lung cancer. Int J Radiat Oncol Biol Phys 1993;27(3):613–9.

    PubMed  CAS  Google Scholar 

  183. Byhardt RW, Vaickus L, Witt PL, et al. Recombinant human interferon-beta (rHuIFN-beta) and radiation therapy for inoperable non-small cell lung cancer. J Interferon Cytokine Res 1996;16(11):891–902.

    PubMed  CAS  Google Scholar 

  184. Bunn PA Jr. Early-stage non-small-cell lung cancer: current perspectives in combined-modality therapy. Clin Lung Cancer 2004;6(2):85–98.

    PubMed  CAS  Google Scholar 

  185. Bradley JD, Scott CB, Paris KJ, et al. A phase III comparison of radiation therapy with or without recombinant beta-interferon for poor-risk patients with locally advanced non-small-cell lung cancer (RTOG 93–04). Int J Radiat Oncol Biol Phys 2002;52(5):1173–9.

    Article  PubMed  CAS  Google Scholar 

  186. Tester WJ, Kim KM, Krigel RL, et al. A randomized phase II study of interleukin-2 with and without beta-interferon for patients with advanced non-small cell lung cancer: an Eastern Cooperative Oncology Group study (PZ586). Lung Cancer 1999;25(3):199–206.

    Article  PubMed  CAS  Google Scholar 

  187. Recchia F, Sica G, De Filippis S, et al. Combined chemotherapy and differentiation therapy in the treatment of advanced non-small-cell lung cancer. Anticancer Res 1997;17(5B):3761–5.

    PubMed  CAS  Google Scholar 

  188. Halme M, Maasilta PK, Pyrhonen SO, et al. Interferons combined with chemotherapy in the treatment of stage III-IV non-small cell lung cancer—a randomised study. Eur J Cancer 1994;30A(1):11–5.

    Article  PubMed  CAS  Google Scholar 

  189. Zhang J, Kalyankrishna S, Wislez M, et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol 2007;170(1):366–76.

    Article  PubMed  CAS  Google Scholar 

  190. Masaki T, Igarashi K, Tokuda M, et al. pp60c-src activation in lung adenocarcinoma. Eur J Cancer 2003;39(10):1447–55.

    Article  PubMed  CAS  Google Scholar 

  191. Johnson FM, Saigal B, Talpaz M, et al. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin Cancer Res 2005;11(19 Pt 1):6924–32.

    Article  PubMed  CAS  Google Scholar 

  192. Schiller JH, Adak S, Feins RH, et al. Lack of prognostic significance of p53 and K-ras mutations in primary resected non-small-cell lung cancer on E4592: a laboratory ancillary study on an Eastern Cooperative Oncology Group prospective randomized trial of postoperative adjuvant therapy. J Clin Oncol 2001;19(2):448–57.

    PubMed  CAS  Google Scholar 

  193. Rosell R, Font A, Pifarre A, et al. The role of induction (neoadjuvant) chemotherapy in stage IIIA NSCLC. Chest 1996;109(suppl):102S-6S.

    Article  PubMed  CAS  Google Scholar 

  194. Adjei AA, Mauer A, Bruzek L, et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21(9):1760–6.

    Article  PubMed  CAS  Google Scholar 

  195. Evans T, Fidias P, Skarin A, et al. A phase II study of the efficacy and tolerability of the farnesyl transferase inhibitor L-778,123 as first-line therapy in patients with advanced non-small cell lung cancer. Proc Am Soc Clin Oncol 2002;21. Abstract 1861.

    Google Scholar 

  196. Velcheti V, Govindan R. Insulin-like growth factor and lung cancer. J Thorac Oncol 2006;1(7):607–10.

    Article  PubMed  Google Scholar 

  197. Karp D, Paz-Ares L, Blakely L, et al. Efficacy of the anti-insulin like growth factor 1 receptor (IGF-1R) antibody CP-751871 in combination with paclitaxel and carboplatin as first-line treatment for advanced non-small cell lung cancer. J Clin Oncol 2007;25(suppl). Abstract 7506.

    Google Scholar 

  198. Morgillo F, Kim WY, Kim ES, et al. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin Cancer Res 2007;13(9):2795–803.

    Article  PubMed  CAS  Google Scholar 

  199. Morgillo F, Woo JK, Kim ES, et al. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 2006;66(20):10100–11.

    Article  PubMed  CAS  Google Scholar 

  200. Han JY, Choi BG, Choi JY, et al. The prognostic significance of pretreatment plasma levels of insulin-like growth factor (IGF)-1, IGF-2, and IGF binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer 2006;54(2):227–34.

    Article  PubMed  Google Scholar 

  201. Papadimitrakopoulou V, Soria JC, Douillard JY, et al. A phase II study of RAD001 (everolimus) monotherapy in patients with advanced non-small cell lung cancer failing prior platinum-based chemotherapy of prior chemotherapy and EGFR inhibitors. J Clin Oncol 2007;25(suppl). Abstract 7589.

    Google Scholar 

  202. Kris MG, Riely GJ, Azzoli CG, et al. Combined inhibtion of mTOR and EGFR with everolimus (RAD001) and gefitinib in patients with non-small cell lung cancer who have smoked cigarettes: a phase II trial. J Clin Oncol 2007;25(suppl). Abstract 7575.

    Google Scholar 

  203. Lara PN Jr, Gandara DR, Wurz GT, et al. High-dose toremifene as a cisplatin modulator in metastatic non-small cell lung cancer: targeted plasma levels are achievable clinically. Cancer Chemother Pharmacol 1998;42(6):504–8.

    Article  Google Scholar 

  204. Bepler G, Oh Y, Burris A, et al. A phase II study of enzastaurin as second- or third-line treatment of non-small cell lung cancer. J Clin Oncol 2007;25(suppl). Abstract 7543.

    Google Scholar 

  205. Fanucchi MP, Fossella FV, Belt R, et al. Randomized phase II study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer. J Clin Oncol 2006;24(31):5025–33.

    Article  PubMed  CAS  Google Scholar 

  206. Govindan R, Crowley J, Schwartzberg L, et al. Phase II trial of bexarotene capsules in patients with advanced non-small-cell lung cancer after failure of two or more previous therapies. J Clin Oncol 2006;24(30):4848–54.

    Article  PubMed  CAS  Google Scholar 

  207. Dragnev KH, Petty WJ, Shah S, et al. Bexarotene and erlotinib for aerodigestive tract cancer. J Clin Oncol 2005;23(34):8757–64.

    Article  PubMed  CAS  Google Scholar 

  208. Edelman MJ, Smith R, Hausner P, et al. Phase II trial of the novel retinoid, bexarotene, and gemcitabine plus carboplatin in advanced non-small-cell lung cancer. J Clin Oncol 2005;23(24):5774–8.

    Article  PubMed  CAS  Google Scholar 

  209. Khuri FR, Rigas JR, Figlin RA, et al. Multi-institutional phase I/II trial of oral bexarotene in combination with cisplatin and vinorelbine in previously untreated patients with advanced non-small-cell lung cancer. J Clin Oncol 2001;19(10):2626–37.

    PubMed  CAS  Google Scholar 

  210. Blumenschein G, Khuri FR, Gatzemeier U, et al. A randomized phase III trial comparing bexarotene/carbo-platin/paclitaxel versus carboplatin/paclitaxel in chemotherapy-naive patients with advanced or metastatic non-small cell lung cancer. J Clin Oncol 2005;23(suppl). Abstract 7001.

    Google Scholar 

  211. Csiki I, Morrow JD, Sandler A, et al. Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase II trial of celecoxib and docetaxel. Clin Cancer Res 2005;11(18):6634–40.

    Article  PubMed  CAS  Google Scholar 

  212. Gasparini G, Meo S, Comella G, et al. The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: a phase II study with biological correlates. Cancer J 2005;11(3):209–16.

    Article  PubMed  CAS  Google Scholar 

  213. Liao Z, Komaki R, Milas L, et al. A phase I clinical trial of thoracic radiotherapy and concurrent celecoxib for patients with unfavorable performance status inoperable/unresectable non-small cell lung cancer. Clin Cancer Res 2005;11(9):3342–8.

    Article  PubMed  CAS  Google Scholar 

  214. Altorki NK, Keresztes RS, Port JL, et al. Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 2003;21(14):2645–50.

    Article  PubMed  CAS  Google Scholar 

  215. Gadgeel SM, Ruckdeschel JC, Heath EI, et al. Phase II study of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), and celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, in patients with platinum refractory non-small cell lung cancer (NSCLC). J Thorac Oncol 2007;2(4):299–305.

    Article  PubMed  Google Scholar 

  216. Ross HJ, Hart LL, Swanson PM, et al. A randomized, multicenter study to determine the safety and efficacy of the immunoconjugate SGN-15 plus docetaxel for the treatment of non-small cell lung carcinoma. Lung Cancer 2006;54(1):69–77.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Stewart, D.J. (2008). Targeted Therapy in Non-Small Cell Lung Cancer. In: Kurzrock, R., Markman, M. (eds) Targeted Cancer Therapy. Current Clinical Oncology™. Humana Press. https://doi.org/10.1007/978-1-60327-424-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-424-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-423-4

  • Online ISBN: 978-1-60327-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics