Skip to main content

Targeted Therapy in Acute Myelogenous Leukemia

  • Chapter
  • 1065 Accesses

Part of the book series: Current Clinical Oncology™ ((CCO))

Abstract

This chapter explores the antiacute myelogenous leukemia effects of various targeted therapies. It discusses combinations of targeted therapies with each other and particularly with chemotherapy. The extent to which a “targeted therapy’s” target is known a priori and the adequacy of relevant trial designs are discussed along with the relevance of new criteria for response, which patients are candidates for targeted therapy, and the appropriateness of conventional statistical methodology. The utility of identifying the “maximum tolerated” dose and emphasis on single-arm, Phase II trials followed by large randomized trials versus alternative methods such as a focus on the “optimal biologic” dose, more adaptive single-arm designs, and smaller randomized trials are also covered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scaglioni P, Pandolfi P. The theory of APL revisited. Curr Top Immunol Microbiol 2007;313:85–100.

    CAS  Google Scholar 

  2. Tallman M, Sanz M, Lo Coco F. Tricks of the trade for the appropriate management of newly diagnosed acute promyelocytic leukemia. Blood 2005;105:3019–25.

    Article  PubMed  CAS  Google Scholar 

  3. Fenaux P, Le Deley MC, Castaigne S, et al. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia: results of a multicenter randomized trial; European APL 91 Group. Blood 1993;82:3241–9.

    PubMed  CAS  Google Scholar 

  4. Fenaux P, Chastang C, Chevret S, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia; the European APL Group. Blood 1999;94:1192–200.

    PubMed  CAS  Google Scholar 

  5. Sanz M, Martin G, Gonzalez M, et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood 2004;103:1237–43.

    Article  PubMed  CAS  Google Scholar 

  6. Estey E, Koller C, Tsimberidou AM, et al. Potential curability of newly diagnosed acute promyelocytic leukemia without use of chemotherapy: the example of liposomal all-trans retinoic acid. Blood 2005;105:1366–7.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou DC, Kim SH, Ding W, et al. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 2002;99:1356–63.

    Article  PubMed  CAS  Google Scholar 

  8. Shen ZX, Shi ZZ, Fang J, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A 2004;101:5328–35.

    Article  PubMed  CAS  Google Scholar 

  9. Matthews V, George B, Lakshmi K et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity Blood 2006;107;2627–32.

    Article  CAS  Google Scholar 

  10. Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006;107; 3469–73.

    Article  PubMed  CAS  Google Scholar 

  11. Patel SP, Garcia-Manero G, Ferrajoli A, et al. Cardiotoxicity in African-American patients treated with arsenic trioxide for acute promyelocytic leukemia. Leuk Res 2006;30:362–3.

    Article  PubMed  CAS  Google Scholar 

  12. Jurcic JG, DeBlasio T, Dumont L, et al. Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Cancer Res 2000;6:372–80.

    CAS  Google Scholar 

  13. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 2005;23:4110–6.

    Article  PubMed  CAS  Google Scholar 

  14. Estey E, Giles F, Beran M, et al. Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002;99;4222–4.

    Google Scholar 

  15. Lo Coco F, Cimino G, Breccia M, et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 2004;104;1995–9.

    Google Scholar 

  16. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive AML in first relapse. J Clin Oncol 2001;19:3244–54.

    PubMed  CAS  Google Scholar 

  17. Giles FJ, Kantarjian HM, Kornblau SM, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001;92:406–13.

    Article  PubMed  CAS  Google Scholar 

  18. Wadleigh M, Richardson PG, Zahrieh D, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003;102:1578–82.

    Article  PubMed  CAS  Google Scholar 

  19. Leopold LH, Berger MS, Cheng SC, et al. Comparative efficacy and safety of gemtuzumab ozogamicin monotherapy and high-dose cytarabine combination therapy in patients with acute myeloid leukemia in first relapse. Clin Adv Hematol Oncol 2003;1:220–5.

    PubMed  Google Scholar 

  20. Estey EH, Thall PF, Giles FG, et al. Gemtuzumab ozogamycin with or without interleukin 11 in patients 65 years of age or older with untreated AML or high-risk MDS: comparison with idarubicin plus high-dose continuous infusion cytosine arabinoside. Blood 2002;99:4343–9.

    Article  PubMed  CAS  Google Scholar 

  21. Amadori S, Suciu S, Stasi R, et al. Gemtuzumab ozogamycin as single-agent treatment for frail patients age 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European Organization for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell’ Adulto Leukemia groups. Leukemia 2005;19:1768–73.

    Article  PubMed  CAS  Google Scholar 

  22. Burnett A, Kell W, Goldstone A et al. The addition of gemtuzumb ozogamycin to induction chemotherapy for AML improves disease-free survival without extra toxicity: preliminary analysis of 1,115 patients in the MRC AML 15 trial. Blood 2006;108(11):8. Abstract 13.

    Google Scholar 

  23. Eom K-S, Kim H-J, Min C-K, et al. Gemtuzumab ozogamycin in combination with attenuated doses of standard induction chemotherapy can successfully induce complete remission without increasing toxicity in patients with newly-diagnosed AML age 55 or older. Blood 2006;108(11):561. Abstract 1982.

    Google Scholar 

  24. Pagel JM, Appelbaum FR, Eary JF, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 2006;107:2184–91.

    Article  PubMed  CAS  Google Scholar 

  25. Fröhling S, Scholl C, Gilliland DG, et al. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005;23:6285–95.

    Article  PubMed  CAS  Google Scholar 

  26. Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res 2001;61:7233–9.

    PubMed  CAS  Google Scholar 

  27. Yanada M, Matsuo K, Suzuki T, et al. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005;19:1345–9.

    Article  PubMed  CAS  Google Scholar 

  28. Mead A, Linch D, Hills R, et al. Favourable prognosis associated with FLT3 tyrosine kinase domain mutations in AML in contrast to the adverse outcome associated with internal tandem duplications. Blood 2005;106. Abstract 334.

    Google Scholar 

  29. Mrojek K, Marcucci G, Paschka P, et al. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007;109:431–48.

    Article  CAS  Google Scholar 

  30. Kottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002;100:2393–8.

    Article  PubMed  CAS  Google Scholar 

  31. Stone R, DeAngelo D, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105:54–60.

    Article  PubMed  CAS  Google Scholar 

  32. Knapper S, Burnett A, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006;108:3262–70.

    Article  PubMed  CAS  Google Scholar 

  33. Stone R, Fischer T, Paquette R, et al. Phase 1b study of PKC412, an oral flt3 kinase inhibitor, in sequential and simultaneous combinations with daunorubicin and cytarabine induction and high-dose cytarabine consolidation in newly-diagnosed adult patients with AML under age 61. Blood 2006;108(11):50a. Abstract 157.

    Google Scholar 

  34. Levis M, Brown P, Smith BD, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood 2006;108:3477–83.

    Article  PubMed  CAS  Google Scholar 

  35. Beaupre D, Kurzrock R. RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999;7:1071–9.

    Google Scholar 

  36. Harousseau JL, Lancet JE, Reiffers J, et al. A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 2007;109:5151–6.

    Article  PubMed  CAS  Google Scholar 

  37. Lancet J, Gojo I, Gotlib J, et al. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 2007;109:1387–94.

    Article  PubMed  CAS  Google Scholar 

  38. Von Hoff DD, Slavik M, Muggia FM. 5-Azacytidine: a new anticancer drug with effectiveness in acute myelogenous leukemia. Ann Intern Med 1976;85:237–45.

    Google Scholar 

  39. Silverman LR, Holland JF, Weinberg RS, et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 1993;7(suppl 1):21–9.

    PubMed  Google Scholar 

  40. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457–63.

    Article  PubMed  CAS  Google Scholar 

  41. Boumber YA, Kondo Y, Chen X, et al. RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res 2007;67:1997–2005.

    Article  PubMed  CAS  Google Scholar 

  42. Shen L, Kantarjian H, Saba H, et al. CpG island methylation is a poor prognostic factor in myelodysplastic syndrome patients and is reversed by decitabine therapy: results of a phase III randomized study. Blood 2005;106:790a. Abstract.

    Google Scholar 

  43. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the Cancer and Leukemia Group B. J Clin Oncol 2002;20:2429–40.

    Article  PubMed  CAS  Google Scholar 

  44. Silverman LR, McKenzie DR, Peterson BL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006;24:3895–903.

    Article  PubMed  CAS  Google Scholar 

  45. Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 2006;108:419–25.

    Article  PubMed  CAS  Google Scholar 

  46. Zwierzina H, Suciu S, Loeffler-Ragg J, et al. Low-dose cytosine arabinoside (LD-AraC) vs LD-AraC plus granulocyte/macrophage colony stimulating factor vs LD-AraC plus interleukin-3 for myelodysplastic syndrome patients with a high risk of developing acute leukemia: final results of a randomized phase III study (06903) of the EORTC Leukemia Cooperative Group. Leukemia 2005;19:1929–33.

    Article  PubMed  CAS  Google Scholar 

  47. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006;106:1794–803.

    Article  PubMed  CAS  Google Scholar 

  48. Yang AS, Doshi KD, Choi SW, et al. DNA methylation changes after 5-aza-2’-deoxycytidine therapy in patients with leukemia. Cancer Res 2006;66:5495–503.

    Article  PubMed  CAS  Google Scholar 

  49. Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007;109:52–7.

    Article  PubMed  CAS  Google Scholar 

  50. Casten A, Schiller G, Larsen J, et al. Phase 2 study of low-dose decitabine for the front-line treatment of older patients with acute myeloid leukemia. Blood 2006;108. Abstract 1984.

    Google Scholar 

  51. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5:769–84.

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 2006;108:3271–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kong XB, Tong WP, Chou TC, et al. Induction of deoxycytidine kinase by 5 dyacytidine in ML-60 cell line resistant to anabnosylcytosine. Mol Pharmacol 1991;39:250–7.

    PubMed  CAS  Google Scholar 

  54. Balaian L, Ball ED. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia 2006;20:2093–101.

    Article  PubMed  CAS  Google Scholar 

  55. Marcucci G, Moser B, Blum W, et al. A phase III randomized trial of intensive induction and consolidation chemotherapy +/- genasense (oblimersen sodium;G3139), a pro-apoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients > 60 years old: a Cancer and Acute Leukemia Group B study. Presented at ASCO 2007.

    Google Scholar 

  56. Cripe L, Li X, Litzow M, et al. A randomized placebo-controlled, double-blind trial of the MDR modulator Zosuquidar during conventional induction and post-remission therapy for patients > 60 years of age with newly-dignosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 2006;108(11):129a. Abstract 423.

    Google Scholar 

  57. Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B study 9720. Blood 2002;100:1224–32.

    PubMed  CAS  Google Scholar 

  58. Doggrell S. Dawn of aurora kinase inhibitors as anticancer drugs. Expert Opin Invest Drugs 2004;13:1199–201.

    Article  CAS  Google Scholar 

  59. Gautschi O, Mack P, Davies A, et al. Aurora kinase inhibitors: a new class of targeted drugs in cancer. Clin Lung Cancer 2006;8:93–8.

    Article  PubMed  CAS  Google Scholar 

  60. Brune M, Castaigne S, Catalano J, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood 2006;108:88–96.

    Article  PubMed  CAS  Google Scholar 

  61. Molldrem JJ. Vaccination for leukemia. Biol Blood Marrow Transpl 2006;12:13–8.

    Article  Google Scholar 

  62. Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000;6:1018–23.

    Article  PubMed  CAS  Google Scholar 

  63. Molldrem JJ, Lee PP, Kant S, et al. Chronic myelogenous leukemia shapes host immunity by selective elimination of high-avidity leukemia-specific T cells. J Clin Invest 2003;111:639–47.

    PubMed  CAS  Google Scholar 

  64. Qazilbash M, Wieder E, Rios R, et al. Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 2004;104. Abstract 259.

    Google Scholar 

  65. Azuma T, Makita M, Ninomiya K, et al. Identification of a novel WT-1-derived peptide which induces human leukocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br J Haematol 2002;116:601–3.

    Article  PubMed  CAS  Google Scholar 

  66. Keilholz U, Scheibenbogen C, Letsch A, et al. WT1-peptide vaccination shows high immunogenicity and clinical activity in patients with acute myeloid leukemia. Blood 2005;106:122a. Abstract.

    Google Scholar 

  67. Estey E. Acute myeloid leukemia and myelodysplastic syndrome in older patients. J Clin Oncol 2007;25:1908–15.

    Article  PubMed  Google Scholar 

  68. Tsimberidou A-M, Kantarjian H, O’Brien S, et al. Prognostic significance of β2-microglobulin levels in acute myeloid leukemia. Blood 2006;108(11):240a. Abstract.

    Google Scholar 

  69. Estey E, Dohner H. Acute myeloid leukemia. Lancet 2006;368:1894–907.

    Article  PubMed  Google Scholar 

  70. Sekeres MA, Stone RM, Zahrieh D, et al. Decision-making and quality of life in older adults with AML or advanced MDS. Leukemia 2004;18:809–16.

    Article  PubMed  CAS  Google Scholar 

  71. Estey E, Garcia-Manero G, Giles F, et al. Clinical relevance of CRp in untreated AML. Blood 2005;106. Abstract 541.

    Google Scholar 

  72. Yanada M, Huang X, Garcia-Manero G, et al. Effect of hematologic improvement on survival in patients given targeted therapy as initial treatment of acute myeloid leukemia or high risk myelodysplastic syndrome. Br J Haematol 2007;138:555–7.

    Article  PubMed  Google Scholar 

  73. Estey E. Clinical trials in AML of the elderly: should we change our methodology? Leukemia 2004;18:1772–4.

    Article  PubMed  CAS  Google Scholar 

  74. Estey E, Thall P. New designs for phase 2 clinical trials. Blood 2003;102:442–8.

    Article  PubMed  CAS  Google Scholar 

  75. Karp J , Feldman E, Morris L, et al. Active oral regimen for elderly adults with newly-diagnosed AML: phase 1 trial of oral tipifarnib combined with oral etoposide for adults age 70 who are not candidates for traditional cytotoxic chemotherapy. Blood 2006;108(11):130a. Abstract 426.

    Google Scholar 

  76. Lubbert M, Ruter B, Schmid M, et al. Continued low-dose decitabine is an active first-line treatment of older AML patients: first results of a multicenter phase II study. Blood 2005;106:527a. Abstract 1852.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Estey, E. (2008). Targeted Therapy in Acute Myelogenous Leukemia. In: Kurzrock, R., Markman, M. (eds) Targeted Cancer Therapy. Current Clinical Oncology™. Humana Press. https://doi.org/10.1007/978-1-60327-424-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-424-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-423-4

  • Online ISBN: 978-1-60327-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics