Skip to main content

Combining Targeted Therapies

  • Chapter
  • 1063 Accesses

Part of the book series: Current Clinical Oncology™ ((CCO))

Abstract

Many new agents have emerged in the drug development pipeline that target the mechanisms driving the development and progression of specific cancers. Ultimately, the goal is to create personalized treatment plans for each patient’s tumor(s). Despite promising early preclinical data, only a handful of the targeted molecules developed thus far have shown benefit when used as single agents. The need to combine individual agents with existing therapies or in novel combinations has become increasingly important. A primary objective is to design drug combinations that can overcome drug resistance. Cross talk among signaling pathways and parallel pathways that contribute to tumor pathogenesis is thought to contribute to single-agent resistance. Combining cytostatic and cytotoxic therapies with targeted agents could help overcome resistance or prevent its development. The issues surrounding the combinatorial approach that are covered in this chapter are patient selection, toxicity profiles from additive and synergistic effects of combining chemotherapy with targeted therapy, and the importance of timing when combining targeted therapy with cytotoxic chemotherapy. The variables that need to be considered when designing effective combinations of targeted agents are discussed. Finally, the chapter looks at ways to improve preclinical models. Sophisticated technologies, including microarray technologies leading to genomic profiling through gene set enrichment analysis (GSEA) or reverse phase array (RPPA) proteomic technology, which evaluates microarry data at the level of the gene and protein, are also covered along with the experience that investigators have had with various targeted agents that have been tested in preclinical and clinical studies, including trastuzumab, epithelial growth factor receptor tyrosine kinase inhibitors, sorafenib and its combinations, and others.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 2006;5(8):649–59.

    Article  PubMed  CAS  Google Scholar 

  2. Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 2001;28(suppl 3):13–9.

    Article  PubMed  CAS  Google Scholar 

  3. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005;353(16):1673–84.

    Article  PubMed  CAS  Google Scholar 

  4. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244(4905):707–12.

    Article  PubMed  CAS  Google Scholar 

  5. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235(4785):177–82.

    Article  PubMed  CAS  Google Scholar 

  6. Park JW, Kerbel RS, Kelloff GJ, et al. Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin Cancer Res 2004;10(11):3885–96.

    Article  PubMed  CAS  Google Scholar 

  7. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344(11):783–92.

    Article  PubMed  CAS  Google Scholar 

  8. Pegram MD, Konecny GE, O’Callaghan C, et al. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004;96:739–49.

    Article  PubMed  CAS  Google Scholar 

  9. Seidman AD, Berry D, Cirrincione C, et al. CALGB 9840: phase III study of weekly (W) paclitaxel (P) via 1-hour(h) infusion versus standard (S) 3h infusion every third week in the treatment of metastatic breast cancer (MBC), with trastuzumab (T) for HER2 positive MBC and randomized for T in HER2 normal MBC. ASCO Annu Meet Proc (Post Meet Ed) 2004;22(14S):512.

    Google Scholar 

  10. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999;17(9):2639–48.

    PubMed  CAS  Google Scholar 

  11. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 2004;22(5):777–84.

    Article  PubMed  CAS  Google Scholar 

  12. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol 2004;22(5):785–94.

    Article  PubMed  CAS  Google Scholar 

  13. Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005;23(25):5892–9.

    Article  PubMed  CAS  Google Scholar 

  14. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304(5676):1497–500.

    Article  PubMed  CAS  Google Scholar 

  15. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350(21):2129–39.

    Article  PubMed  CAS  Google Scholar 

  16. Han SW, Kim TY, Hwang PG, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2005;23(11):2493–501.

    Article  PubMed  CAS  Google Scholar 

  17. Cappuzzo F, Varella-Garcia M, Shigematsu H, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005;23(22):5007–18.

    Article  PubMed  CAS  Google Scholar 

  18. Chou TY, Chiu CH, Li LH, et al. Mutation in the tyrosine kinase domain of epidermal growth factor receptor is a predictive and prognostic factor for gefitinib treatment in patients with non-small cell lung cancer. Clin Cancer Res 2005;11(10):3750–7.

    Article  PubMed  CAS  Google Scholar 

  19. Cortes-Funes H, Gomez C, Rosell R, et al. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. Ann Oncol 2005;16(7):1081–6.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang GC, Lin JY, Wang Z, et al. Epidermal growth factor receptor double activating mutations involving both exons 19 and 21 exist in Chinese non-small cell lung cancer patients. Clin Oncol (R Coll Radiol) 2007;19:499–506.

    Google Scholar 

  21. Takano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005;23(28):6829–37.

    Article  PubMed  CAS  Google Scholar 

  22. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005;23(25):5900–9.

    Article  PubMed  CAS  Google Scholar 

  23. Tracy S, Mukohara T, Hansen M, et al. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res 2004;64:7241–4.

    Article  PubMed  CAS  Google Scholar 

  24. Gandara DR, Gumerlock PH. Epidermal growth factor receptor tyrosine kinase inhibitors plus chemotherapy: case closed or is the jury still out? J Clin Oncol 2005;23(25):5856–8.

    Article  PubMed  Google Scholar 

  25. Motwani M, Delohery TM, Schwartz GK. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 1999;5(7):1876–83.

    PubMed  CAS  Google Scholar 

  26. Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 2005;23(36):9408–21.

    Article  PubMed  CAS  Google Scholar 

  27. Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1999;1:82–7.

    Article  PubMed  CAS  Google Scholar 

  28. Wang S, Wang Z, Boise L, et al. Loss of the bcl-2 phosphorylation loop domain increases resistance of human leukemia cells (U937) to paclitaxel-mediated mitochondrial dysfunction and apoptosis. Biochem Biophys Res Commun 1999;259(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartz GK, O’Reilly E, Ilson D, et al. Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 2002;20(8):2157–70.

    Article  PubMed  CAS  Google Scholar 

  30. Baselga J. Targeting of the EGFR as a modulator of cancer chemotherapy. In: Schwartz GK (ed). Combination Chemotherapy. Totowa, NJ: Humana Press Inc.; 2005:1–26.

    Google Scholar 

  31. Schwartz GK. Combination Cancer Therapy. Totowa, NJ: Humana; 2005.

    Google Scholar 

  32. Sosman JA, Puzanov I, Atkins MB. Opportunities and obstacles to combination targeted therapy in renal cell cancer. Clin Cancer Res 2007;13(2 Pt 2):764s-9s.

    Article  PubMed  CAS  Google Scholar 

  33. Hong D. Phase I study of tipifarnib and sorafenib in patients with bioppsable advanced cancers. ASCO Annu Meet Proc 2007;25(18S):150s.

    Google Scholar 

  34. Patnaik A. A phase I pharmacokinetic and pharmacodynamic study of sorafenib, a multi-targeted kinase inhibitor in combination with temsirolimus, an mTOR inhibitor in patients with advanced solid malignancies. ASCO Annu Meet Proc 2007;25(18s):141s.

    Google Scholar 

  35. Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov 2005;4(2):161–5.

    Article  PubMed  CAS  Google Scholar 

  36. Gitler MS, Monks A, Sausville EA. Preclinical models for defining efficacy of drug combinations: mapping the road to the clinic. Mol Cancer Ther 2003;2(9):929–32.

    PubMed  CAS  Google Scholar 

  37. Bild AH, Potti A, Nevins JR. Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 2006;6(9):735–41.

    Article  PubMed  CAS  Google Scholar 

  38. Ma’ayan A, Jenkins SL, Neves S, et al. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 2005;309(5737):1078–83.

    Article  PubMed  CAS  Google Scholar 

  39. Baak JP, Bol MG, van Diermen B, et al. DNA cytometric features in biopsies of TaT1 urothelial cell cancer predict recurrence and stage progression more accurately than stage, grade, or treatment modality. Urology 2003;61(6):1266–72.

    Article  PubMed  Google Scholar 

  40. Segal E, Friedman N, Kaminski N, et al. From signatures to models: understanding cancer using microarrays. Nat Genet 2005;37(suppl):S38–45.

    Article  CAS  Google Scholar 

  41. Brennan DJ, O’Brien SL, Fagan A, et al. Application of DNA microarray technology in determining breast cancer prognosis and therapeutic response. Expert Opin Biol Ther 2005;5(8):1069–83.

    Article  PubMed  CAS  Google Scholar 

  42. Wulfkuhle JD, Edmiston KH, Liotta LA, et al. Technology insight: pharmacoproteomics for cancer–promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 2006;3(5):256–68.

    Article  PubMed  CAS  Google Scholar 

  43. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–50.

    Article  PubMed  CAS  Google Scholar 

  44. Nishizuka S, Charboneau L, Young L, et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 2003;100:14229–34.

    Article  PubMed  CAS  Google Scholar 

  45. Charboneau L, Scott H, Chen T, et al. Utility of reverse phase protein arrays: applications to signalling pathways and human body arrays. Brief Funct Genomic Proteomic 2002;1(3):305–15.

    Article  PubMed  CAS  Google Scholar 

  46. Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001;20(16):1981–9.

    Article  PubMed  CAS  Google Scholar 

  47. Wulfkuhle JD, Aquino JA, Calvert VS, et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 2003;3(11):2085–90.

    Article  PubMed  CAS  Google Scholar 

  48. Pusztai L, Ayers M, Stec J, et al. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res 2003;9(7):2406–15.

    PubMed  CAS  Google Scholar 

  49. Gygi SP, Rochon Y, Franza BR, et al. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999;19(3):1720–30.

    PubMed  CAS  Google Scholar 

  50. Diks SH, Peppelenbosch MP. Single cell proteomics for personalised medicine. Trends Mol Med 2004;10(12):574–7.

    Article  PubMed  CAS  Google Scholar 

  51. Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004;1695:189–207.

    Article  PubMed  CAS  Google Scholar 

  52. Grubb RL, Calvert VS, Wulkuhle JD, et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 2003;3(11):2142–6.

    Article  PubMed  CAS  Google Scholar 

  53. Zha H, Raffeld M, Charboneau L, et al. Similarities of prosurvival signals in Bcl-2-positive and Bcl-2-negative follicular lymphomas identified by reverse phase protein microarray. Lab Invest 2004;84(2):235–44.

    Article  PubMed  CAS  Google Scholar 

  54. Ideker T. Systems biology 101—what you need to know. Nat Biotechnol 2004;22(4):473–5.

    Article  PubMed  CAS  Google Scholar 

  55. Bhalla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 2002;297(5583):1018–23.

    Article  PubMed  CAS  Google Scholar 

  56. Janes KA, Albeck JG, Gaudet S, et al. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005;310(5754):1646–53.

    Article  PubMed  CAS  Google Scholar 

  57. Sachs K, Perez O, Pe’er D, et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005;308(5721):523–9.

    Article  PubMed  CAS  Google Scholar 

  58. DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol 2007;25(2):209–16.

    Article  PubMed  Google Scholar 

  59. Schrag D. The price tag on progress—chemotherapy for colorectal cancer. N Engl J Med 2004;351:317–9.

    Article  PubMed  CAS  Google Scholar 

  60. Starling N, Tilden D, White J, et al. Cost-effectiveness analysis of cetuximab/irinotecan vs active/best supportive care for the treatment of metastatic colorectal cancer patients who have failed previous chemotherapy treatment. Br J Cancer 2007;96(2):206–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Hong, D., Chintala, L. (2008). Combining Targeted Therapies. In: Kurzrock, R., Markman, M. (eds) Targeted Cancer Therapy. Current Clinical Oncology™. Humana Press. https://doi.org/10.1007/978-1-60327-424-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-424-1_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-423-4

  • Online ISBN: 978-1-60327-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics