Skip to main content

Targeted Therapy in Myelodysplastic Syndrome

  • Chapter
  • 1048 Accesses

Part of the book series: Current Clinical Oncology™ ((CCO))

Abstract

Managing patients with myelodysplastic syndrome (MDS) is a highly challenging endeavor. MDS appears to arise from intrinsic or acquired genetic defects in stem cells that confer a proliferative advantage to the malignant clone over normal stem cells. Recurrent chromosomal abnormalities are present in 40% to 70% of patients at diagnosis and in 95% of patients with treatment-related MDS. Until now, allogeneic stem cell transplantation and occasionally high-dose chemotherapy have been viewed as possibly curative options for patients with MDS disorders, but they are limited by the advanced age of most patients, concomitant co-morbidities, and/or in the case of stem cell transplantation the lack of donors. The escalating unraveling of numerous pathogenetic pathways in MDS has spurred development of novel targeted approaches for the treatment of these complex disorders. The recognition of the importance that epigentic phenomena play in the regulation of gene transcription led to the development of methylation inhibitors and histone deacetylase inhibitors in hematologic malignancies. Currently, these agents constitute the mainstay of therapy for MDS. Several agents with antiangiogenic properties have also been evaluated for the treatment of MDS, and immunotherapeutic approaches are under investigation for patients with MDS. Identifying the genes that are associated with recurrent chromosomal deletions and numerical abnormalities in patients with MDS, including studies and tests for haplo-insufficiency, are important directions to pursue in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int J Hematol 2001;73:405–10.

    Google Scholar 

  2. Ma X, Does M, Raza, A, et al. Myelodysplastic syndromes: incidence and survival in the United States. Cancer 2007;109:1536–42.

    Article  PubMed  Google Scholar 

  3. Cazzola M, Malcovati L. Myelodysplastic syndromes—coping with ineffective hematopoiesis. N Engl J Med 2005;352:536–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982;51:189–99.

    PubMed  CAS  Google Scholar 

  5. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–302.

    Article  PubMed  CAS  Google Scholar 

  6. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079–88.

    PubMed  CAS  Google Scholar 

  7. Olney HJ, Le Beau MM. The cytogenetics of myelodysplastic syndromes. Best Pract Res Clin Haematol 2001;14:479–95.

    Article  PubMed  CAS  Google Scholar 

  8. Bianchi E, Rogge L. Dissecting oncogenes and tyrosine kinases in AML cells. Med Gen Med 2003;5:10.

    Google Scholar 

  9. Russell M, List A, Greenberg P, et al. Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood 1994;84:1243–8.

    PubMed  CAS  Google Scholar 

  10. Dreyfus F, Bouscary D, Melle J,et al. Expression of the Evi-1 gene in myelodysplastic syndromes. Leukemia 1995;9:203–5.

    PubMed  CAS  Google Scholar 

  11. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002;3:179–98.

    Article  PubMed  CAS  Google Scholar 

  12. Corey SJ, Minden MD, Barber DL, et al. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007;7:118–29.

    Article  PubMed  CAS  Google Scholar 

  13. Quesnel B, Guillerm G, Vereecque R, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998;91:2985–90.

    PubMed  CAS  Google Scholar 

  14. Uchida T, Kinoshita T, Nagai H, et al. Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood 1997;90:1403–9.

    PubMed  CAS  Google Scholar 

  15. Nightingale KP, O’Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 2006;16:125–36.

    Article  PubMed  CAS  Google Scholar 

  16. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81–120.

    Article  PubMed  CAS  Google Scholar 

  17. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002;20:2429–40.

    Article  PubMed  CAS  Google Scholar 

  18. Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 2005;11:3604–8.

    Article  PubMed  CAS  Google Scholar 

  19. Gryn J, Zeigler ZR, Shadduck RK, et al. Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk Res 2002;26:893–7.

    Article  PubMed  CAS  Google Scholar 

  20. Hellstrom-Lindberg E. Update on supportive care and new therapies: immunomodulatory drugs, growth factors and epigenetic-acting agents. Hematology (Am Soc Hematol Educ Program) 2005;161–6.

    Google Scholar 

  21. Momparler RL, Rossi M, Bouchard J, et al. Kinetic interaction of 5-AZA-2’-deoxycytidine-5’-monophosphate and its 5’-triphosphate with deoxycytidylate deaminase. Mol Pharmacol 1984;25:436–40.

    PubMed  CAS  Google Scholar 

  22. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001;134:573–86.

    PubMed  CAS  Google Scholar 

  23. Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2’-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 1994;91:11797–801.

    Article  PubMed  CAS  Google Scholar 

  24. Rivard GE, Momparler RL, Demers J, et al. Phase I study on 5-aza-2’-deoxycytidine in children with acute leukemia. Leuk Res 1981;5:453–62.

    Article  PubMed  CAS  Google Scholar 

  25. Van Groeningen CJ, Leyva A, O’Brien AM, Gall HE, Pinedo HM. Phase I and pharmacokinetic study of 5-aza-2’-deoxycytidine (NSC 127716) in cancer patients. Cancer Res 1986; 46:4831–6.

    PubMed  Google Scholar 

  26. Zagonel V, Lo Re G, Marotta G, et al. 5-Aza-2’-deoxycytidine (Decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia 1993;7(suppl 1):30–5.

    PubMed  Google Scholar 

  27. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103:1635–40.

    Article  PubMed  CAS  Google Scholar 

  28. Wijermans PW, Krulder JW, Huijgens PC, et al. Continuous infusion of low-dose 5-aza-2’-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 1997;11(suppl 1):S19–23.

    Google Scholar 

  29. Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2’-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956–62.

    PubMed  CAS  Google Scholar 

  30. Lubbert M, Wijermans P, Kunzmann R, et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2’-deoxycytidine. Br J Haematol 2001;114:349–57.

    Article  PubMed  CAS  Google Scholar 

  31. Van den Bosch J, Lubbert M, Verhoef G, et al. The effects of 5-aza-2’-deoxycytidine (Decitabine) on the platelet count in patients with intermediate and high-risk myelodysplastic syndromes. Leuk Res 2004;28:785–90.

    Article  PubMed  CAS  Google Scholar 

  32. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006;106:1794–803.

    Article  PubMed  CAS  Google Scholar 

  33. Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007;109:52–7.

    Article  PubMed  CAS  Google Scholar 

  34. Gao L, Cueto, MA, Asselbergs, F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002;277:25748–55.

    Article  PubMed  CAS  Google Scholar 

  35. Novogrodsky A, Dvir A, Ravid A, et al. Effect of polar organic compounds on leukemic cells: butyrate-induced partial remission of acute myelogenous leukemia in a child. Cancer 1983;51:9–14.

    Article  PubMed  CAS  Google Scholar 

  36. Gore SD, Weng LJ, Zhai S, et al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 2001;7:2330–9.

    PubMed  CAS  Google Scholar 

  37. Marcucci G, Bruner, RJ, Binkley, PE, et al. Phase I trial of the histone deacetylase inhibitor depsipeptide (FR901228) in acute myeloid leukemia (AML). Blood 2002;100:86a. Abstract.

    Google Scholar 

  38. Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005;105:959–67.

    Article  PubMed  CAS  Google Scholar 

  39. Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20:6969–78.

    Article  PubMed  CAS  Google Scholar 

  40. Kuendgen A, Strupp C, Aivado M, et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004;104:1266–9.

    Article  PubMed  CAS  Google Scholar 

  41. Pilatrino C, Cilloni D, Messa E, et al. Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer 2005;104:101–9.

    Article  PubMed  CAS  Google Scholar 

  42. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol 2003;3:344–51.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly WK, Richon VM, O’Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003;9:3578–88.

    PubMed  CAS  Google Scholar 

  44. Garcia-Manero G, Yang, H, Sanchez-Gonzalez, B, et al. Final results of a phase I study of the histone deacetylase inhibitor vorinostat (suberoyanilide hydroxamic acid, SAHA), in patients with leukemia and myelodysplastic syndrome. Blood 2005;106. Abstract 2801.

    Google Scholar 

  45. Garcia-Manero G, Minden, M, Estrov, Z, et al. Clinical activity and safety of the histone deacetylase inhibitor MGCD0103: results of a phase I study in patients with leukemia or myelodysplastic syndromes (MDS). J Clin Oncol 2006;24. Abstract 6500.

    Google Scholar 

  46. Giles F, Fischer T, Cortes J, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006;12:4628–35.

    Article  PubMed  CAS  Google Scholar 

  47. Plumb JA, Finn PW, Williams RJ, et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 2003;2:721–8.

    PubMed  CAS  Google Scholar 

  48. Gimsing P, Wu, F, Qian, X, et al. Activity of the histone deacetylase (HDAC) inhibitor PXD101 in preclinical studies and in a phase I study in patients with advanced haematological tumors. Blood 2005;106. Abstract 3337.

    Google Scholar 

  49. Gojo I, Jiemjit A, Trepel JB, et al. Phase 1 and pharmacological study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 2007;109:2781–90.

    PubMed  CAS  Google Scholar 

  50. Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 2006;66:6361–9.

    Article  PubMed  CAS  Google Scholar 

  51. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia. Blood 2006;108:3271–9.

    Article  PubMed  CAS  Google Scholar 

  52. Gore S, Jiemjit, A, Silverman, LB, et al. Combined methyltransferase/histone deacetylase inhibition with 5-azacitidine and MS-275 in patients with MDS, CMMoL and AML: clinical response, histone acetylation and DNA damage. Blood 2006;108. Abstract 517.

    Google Scholar 

  53. Sanchez-Gonzalez B, Yang H, Bueso-Ramos C, et al. Antileukemia activity of the combination of an anthracycline with a histone deacetylase inhibitor. Blood 2006;108:1174–82.

    Article  PubMed  CAS  Google Scholar 

  54. Aguayo A, Kantarjian, H, Manshouri, T, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000;96:2240–5.

    PubMed  CAS  Google Scholar 

  55. Albitar M. Angiogenesis in acute myeloid leukemia and myelodysplastic syndrome. Acta Haematol 2001;106:170–6.

    Article  PubMed  CAS  Google Scholar 

  56. Bellamy WT, Richter L, Sirjani D, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001;97:1427–34.

    Article  PubMed  CAS  Google Scholar 

  57. Aguayo A, Kantarjian, H, Estey, EH, et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002;95:1923–30.

    Article  PubMed  Google Scholar 

  58. Schafer PH, Gandhi AK, Loveland MA, et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther 2003;305:1222–32.

    Article  PubMed  CAS  Google Scholar 

  59. Raza A, Meyer P, Dutt D, et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 2001;98:958–65.

    Article  PubMed  CAS  Google Scholar 

  60. Strupp C, Germing U, Aivado M, et al. Thalidomide for the treatment of patients with myelodysplastic syndromes. Leukemia 2002;16:1–6.

    Article  PubMed  CAS  Google Scholar 

  61. Musto P, Falcone A, Sanpaolo G, et al. Thalidomide abolishes transfusion-dependence in selected patients with myelodysplastic syndromes. Haematologica 2002;87:884–6.

    PubMed  Google Scholar 

  62. Moreno-Aspitia A, Colon-Otero G, Hoering A, et al. Thalidomide therapy in adult patients with myelodysplastic syndrome: a North Central Cancer Treatment Group phase II trial. Cancer 2006;107:767–72.

    Article  PubMed  CAS  Google Scholar 

  63. Bouscary D, Legros L, Tulliez M, et al. A non-randomised dose-escalating phase II study of thalidomide for the treatment of patients with low-risk myelodysplastic syndromes: the Thal-SMD-2000 trial of the Groupe Francais des Myelodysplasies. Br J Haematol 2005;131:609–18.

    Article  PubMed  CAS  Google Scholar 

  64. Musto P, Falcone A, Sanpaolo G, et al. Combination of erythropoietin and thalidomide for the treatment of anemia in patients with myelodysplastic syndromes. Leuk Res 2006;30:385–8.

    Article  PubMed  CAS  Google Scholar 

  65. Raza A, Lisak L, Billmeier J, et al. Phase II study of topotecan and thalidomide in patients with high-risk myelodysplastic syndromes. Leuk Lymphoma 2006;47:433–40.

    Article  PubMed  CAS  Google Scholar 

  66. Muller GW, Chen R, Huang SY, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett 1999;9:1625–30.

    Article  PubMed  CAS  Google Scholar 

  67. Dredge K, Horsfall R, Robinson SP, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 2005;69:56–63.

    Article  PubMed  CAS  Google Scholar 

  68. Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 2004;4:314–22.

    Article  PubMed  CAS  Google Scholar 

  69. Sole F, Espinet B, Sanz GF, et al. Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes: Grupo Cooperativo Espanol de Citogenetica Hematologica. Br J Haematol 2000;108:346–56.

    Article  PubMed  CAS  Google Scholar 

  70. Van den Berghe H, Vermaelen K, Mecucci C, et al. The 5q-anomaly. Cancer Genet Cytogenet 1985;17:189–255.

    Article  PubMed  Google Scholar 

  71. Gandhi AK, Kang J, Naziruddin S, et al. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leuk Res 2006;30:849–58.

    Article  PubMed  CAS  Google Scholar 

  72. List A, Kurtin S, Roe DJ, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 2005;352:549–57.

    Article  PubMed  CAS  Google Scholar 

  73. List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 2006;355:1456–65.

    Article  PubMed  CAS  Google Scholar 

  74. List A, Dewald, GW, Bennettt, JM, et al. Long-term clinical benefit of lenalidomide (Revlimid) treatment in patients with myelodysplastic syndrome and chromosome deletion 5q. Blood 2006;108. Abstract 251.

    Google Scholar 

  75. Raza A, Reeves, J, Feldman, EJ, et al. Long term clinical benefit of lenalidomide (Revlimid) treatment in patients with myelodysplastic syndrome without Del 5q cytogenetic abnormalities. Blood 2006;108. Abstract 250.

    Google Scholar 

  76. Ferrara N. VEGF as a therapeutic target in cancer. Oncology 2005;69(suppl 3):11–6.

    Article  PubMed  CAS  Google Scholar 

  77. Gotlib J, Jamieson CHM, List A, et al. Phase II study of bevacizumab (anti-VEGF humanized monoclonal antibody) in patients with myelodysplastic syndrome (MDS): preliminary results. Blood 2003;102. Abstract 1545.

    Google Scholar 

  78. Giles FJ, Stopeck AT, Silverman LR, et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003;102:795–801.

    Article  PubMed  CAS  Google Scholar 

  79. Foran J, Paquette, R, Copper, M, et al. A phase I study of repeated oral dosing with SU11248 for the treatment of patients with acute myeloid leukemia who have failed or are not eligible for conventional chemotherapy. Blood 2002;100:558a. Abstract.

    Google Scholar 

  80. Roboz GJ, Giles FJ, List AF, et al. Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 2006;20:952–7.

    Article  PubMed  CAS  Google Scholar 

  81. Giles FJ, Bellamy WT, Estrov Z, et al. The anti-angiogenesis agent, AG-013736, has minimal activity in elderly patients with poor prognosis acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Leuk Res 2006;30:801–11.

    Article  PubMed  CAS  Google Scholar 

  82. John AM, Thomas NS, Mufti GJ, et al. Targeted therapies in myeloid leukemia. Semin Cancer Biol 2004;14:41–62.

    Article  PubMed  CAS  Google Scholar 

  83. Beaupre DM, Kurzrock R. RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999;17:1071–9.

    PubMed  CAS  Google Scholar 

  84. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003;3:11–22.

    Article  PubMed  CAS  Google Scholar 

  85. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol 1999;17:3631–52.

    PubMed  CAS  Google Scholar 

  86. Lackner MR, Kindt RM, Carroll PM, et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 2005;7:325–36.

    Article  PubMed  CAS  Google Scholar 

  87. Ashar HR, James L, Gray K, et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 2000;275:30451–7.

    Article  PubMed  CAS  Google Scholar 

  88. Kurzrock R, Kantarjian, HM, Cortes, JE, et al. Farnesyltrasnferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase I setting. Blood 2003;102:4527–34.

    Article  PubMed  CAS  Google Scholar 

  89. Kurzrock R, Albitar M, Cortes JE, et al. Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J Clin Oncol 2004;22:1287–92.

    Article  PubMed  CAS  Google Scholar 

  90. Feldman E, Cortes, J, Holyoake, TL, et al. Continuous oral lonafarnib (Sarasar) for the treatment of patients with myelodysplastic syndrome. Blood 2003;102:421a. Abstract.

    Article  CAS  Google Scholar 

  91. Cortes J, Faderl S, Estey E, et al. Phase I study of BMS-214662, a farnesyl transferase inhibitor in patients with acute leukemias and high-risk myelodysplastic syndromes. J Clin Oncol 2005;23:2805–12.

    Article  PubMed  CAS  Google Scholar 

  92. Heidel F, Cortes J, Rucker FG, et al. Results of a multicenter phase II trial for older patients with c-Kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and Imatinib. Cancer 2007;109:907–14.

    Article  PubMed  CAS  Google Scholar 

  93. Golub TR, Barker GF, Lovett M, et al. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77:307–16.

    Article  PubMed  CAS  Google Scholar 

  94. Ross TS, Bernard OA, Berger R, et al. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 1998;91:4419–26.

    PubMed  CAS  Google Scholar 

  95. Drechsler M, Hildebrandt B, Kundgen A, et al. Fusion of H4/D10S170 to PDGFRbeta in a patient with chronic myelomonocytic leukemia and long-term responsiveness to imatinib. Ann Hematol 2007;86:353–4.

    Article  PubMed  Google Scholar 

  96. Apperley JF, Gardembas M, Melo JV, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002;347:481–7.

    Article  PubMed  CAS  Google Scholar 

  97. David M, Cross NC, Burgstaller S, et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood 2007;109:61–4.

    Article  PubMed  CAS  Google Scholar 

  98. Griffin JD. FLT3 tyrosine kinase as a target in acute leukemias. Hematol J 2004;5(suppl 3):S188–90.

    Article  PubMed  CAS  Google Scholar 

  99. Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103:3669–76.

    Article  PubMed  CAS  Google Scholar 

  100. Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and activating mutations in FLT3 respond to small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  101. Braun T, Carvalho G, Coquelle A, et al. NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 2006;107:1156–65.

    Article  PubMed  CAS  Google Scholar 

  102. Shetty V, Verspoor, F, Nguyen, H, et al. Effect of proteasome inhibition by bortezomib on tumor necrosis factor alpha (TNF-alpha) and apoptosis in patients with myelodysplastic syndromes (MDS). Blood 2003;102:1534. Abstract.

    Article  CAS  Google Scholar 

  103. Raza A, Buonamici S, Lisak L, et al. Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 2004;28:791–803.

    Article  PubMed  CAS  Google Scholar 

  104. Schiller GJ, Slack J, Hainsworth JD, et al. Phase II multicenter study of arsenic trioxide in patients with myelodysplastic syndromes. J Clin Oncol 2006;24:2456–64.

    Article  PubMed  CAS  Google Scholar 

  105. Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000;6:1018–23.

    Article  PubMed  CAS  Google Scholar 

  106. Molldrem JJ, Lee PP, Kant S, et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003;111:639–47.

    PubMed  CAS  Google Scholar 

  107. Qazilbash M, Wieder, E, Rios, R, et al. Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 2004;104. Abstract 259.

    Google Scholar 

  108. Cilloni D, Saglio G. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol 2004;112:79–84.

    Article  PubMed  CAS  Google Scholar 

  109. Bellantuono I, Gao L, Parry S, et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 2002;100:3835–7.

    Article  PubMed  CAS  Google Scholar 

  110. Mailander V, Scheibenbogen C, Thiel E, et al. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 2004;18:165–6.

    Article  PubMed  CAS  Google Scholar 

  111. Oka Y, Tsuboi A, Murakami M, et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol 2003;78:56–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Quintás-Cardama, A., Kantarjian, H., Garcia-Manero, G., Cortes, J. (2008). Targeted Therapy in Myelodysplastic Syndrome. In: Kurzrock, R., Markman, M. (eds) Targeted Cancer Therapy. Current Clinical Oncology™. Humana Press. https://doi.org/10.1007/978-1-60327-424-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-424-1_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-423-4

  • Online ISBN: 978-1-60327-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics