Skip to main content

Physiology of Paediatric Genitourinary Laparoscopy

  • Chapter
  • First Online:
Pediatric Robotic Urology

Abstract

The expanding scope of paediatric genitourinary laparoscopy has meant that increasingly complex procedures are being carried out in ever younger patient populations. Surgeons and anaesthetists alike have thereby been confronted with and gained awareness of a mounting repertoire of physiological consequences related to both intra and retroperitoneal gaseous insufflation. The physiological responses encountered clinically are mainly due to the mechanical and biochemical effects of carbon dioxide (CO2) insufflation. CO2 is absorbed across the thin peritoneal membrane of paediatric patients resulting in hypercarbia and acidosis and leads to an increased CO2 load presented to the lungs. Mechanically, the increased intraabdominal pressure decreases lung compliance and worsens ventilation perfusion mismatch, ultimately leading to hypoxia. Cardiovascularly, the paediatric patient is prone to developing increases in systemic and pulmonary vascular resistance resulting in significant decreases in cardiac output. These cardiopulmonary effects are pressure dependent and have an occurrence that is inversely proportional to patient age and weight, warranting use of the lowest insufflation pressures possible, especially when dealing with very young and/or acutely ill patients.

Abdominal insufflation also leads to acute elevations in intracranial pressure, a caveat with specific relevance to genitourinary laparoscopy as myelodysplastic patients constitute a significant patient subgroup who stand to benefit from laparoscopic procedures under specific precautionary measures. Other physiological consequences include effects on renal function, thermoregulation, surgical stress and metabolism. Despite this long list of untoward physiological effects the overwhelming majority of genitourinary laparoscopic procedures in paediatric patients are carried out safely as long as proper close monitoring, and required ventilatory adjustments are instituted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalfa, N., Allal, H., Raux, O., Lardy, H., Varlet, F., Reinberg, O. et al.: Multicentric assessment of the safety of neonatal videosurgery. Surg Endosc, 21: 303, 2007.

    Article  PubMed  Google Scholar 

  2. Yokomori, K., Terawaki, K., Kamii, Y., Obana, K., Hashizume, K., Hoshino, T. et al.: A new technique applicable to pediatric laparoscopic surgery: abdominal wall ‘area lifting’ with subcutaneous wiring. J Pediatr Surg, 33: 1589, 1998.

    Article  PubMed  CAS  Google Scholar 

  3. Luks, F. I., Peers, K. H., Deprest, J. A., and Lerut, T. E.: Gasless laparoscopy in infants: the rabbit model. J Pediatr Surg, 30: 1206, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Hasson, H. M.: A modified instrument and method for laparoscopy. Am J Obstet Gynecol, 110: 886, 1971.

    PubMed  CAS  Google Scholar 

  5. Olsen, L. H., Rawashdeh, Y. F., and Jorgensen, T. M.: Pediatric robot assisted retroperitoneoscopic pyeloplasty: a 5-year experience. J Urol, 178: 2137, 2007.

    Article  PubMed  Google Scholar 

  6. Yau, P., Watson, D. I., Lafullarde, T., and Jamieson, G. G.: Experimental study of effect of embolism of different laparoscopy insufflation gases. J Laparoendosc Adv Surg Tech A, 10: 211, 2000.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobi, C. A., Junghans, T., Peter, F., Naundorf, D., Ordemann, J., and Muller, J. M.: Cardiopulmonary changes during laparoscopy and vessel injury: comparison of CO2 and helium in an animal model. Langenbecks Arch Surg, 385: 459, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Makarov, D. V., Kainth, D., Link, R. E., and Kavoussi, L. R.: Physiologic changes during helium insufflation in high-risk patients during laparoscopic renal procedures. Urology, 70: 35, 2007.

    Article  PubMed  Google Scholar 

  9. Menes, T. and Spivak, H.: Laparoscopy: searching for the proper insufflation gas. Surg Endosc, 14: 1050, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. McHoney, M., Corizia, L., Eaton, S., Kiely, E. M., Drake, D. P., Tan, H. L. et al.: Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg, 38: 105, 2003.

    Article  PubMed  Google Scholar 

  11. Streich, B., Decailliot, F., Perney, C., and Duvaldestin, P.: Increased carbon dioxide absorption during retroperitoneal laparoscopy. Br J Anaesth, 91: 793, 2003.

    Article  PubMed  CAS  Google Scholar 

  12. Mullett, C. E., Viale, J. P., Sagnard, P. E., Miellet, C. C., Ruynat, L. G., Counioux, H. C. et al.: Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation. Anesth Analg, 76: 622, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Portilla, E., Garcia, D., Rodriguez-Reynoso, S., Castanon, J., Ramos, L., and Larios, F.: Arterial blood gas changes in New Zealand white rabbits during carbon dioxide-induced pneumoperitoneum. Lab Anim Sci, 48: 398, 1998.

    PubMed  CAS  Google Scholar 

  14. Hazebroek, E. J., Haitsma, J. J., Lachmann, B., Steyerberg, E. W., de Bruin, R. W., Bouvy, N. D. et al.: Impact of carbon dioxide and helium insufflation on cardiorespiratory function during prolonged pneumoperitoneum in an experimental rat model. Surg Endosc, 16: 1073, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Bozkurt, P., Kaya, G., Yeker, Y., Tunali, Y., and Altintas, F.: The cardiorespiratory effects of laparoscopic procedures in infants. Anaesthesia, 54: 831, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. De Waal, E. E. and Kalkman, C. J.: Haemodynamic changes during low-pressure carbon dioxide pneumoperitoneum in young children. Paediatr Anaesth, 13: 18, 2003.

    Article  PubMed  Google Scholar 

  17. Bannister, C. F., Brosius, K. K., and Wulkan, M.: The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Paediatr Anaesth, 13: 785, 2003.

    Article  PubMed  Google Scholar 

  18. Kalfa, N., Allal, H., Raux, O., Lopez, M., Forgues, D., Guibal, M. P. et al.: Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics, 116: e785, 2005.

    Article  PubMed  Google Scholar 

  19. Laffon, M., Gouchet, A., Sitbon, P., Guicheteau, V., Biyick, E., Duchalais, A. et al.: Difference between arterial and end-tidal carbon dioxide pressures during laparoscopy in paediatric patients. Can J Anaesth, 45: 561, 1998.

    Article  PubMed  CAS  Google Scholar 

  20. Fujimoto, T., Segawa, O., Lane, G. J., Esaki, S., and Miyano, T.: Laparoscopic surgery in newborn infants. Surg Endosc, 13: 773, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Lorenzo, A. J., Karsli, C., Halachmi, S., Dolci, M., Luginbuehl, I., Bissonnette, B. et al.: Hemodynamic and respiratory effects of pediatric urological retroperitoneal laparoscopic surgery: a prospective study. J Urol, 175: 1461, 2006.

    Article  PubMed  Google Scholar 

  22. Manner, T., Aantaa, R., and Alanen, M.: Lung compliance during laparoscopic surgery in paediatric patients. Paediatr Anaesth, 8: 25, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Tobias, J. D., Holcomb, G. W., III, Brock, J. W., III, Deshpande, J. K., Lowe, S., and Morgan, W. M., III: Cardiorespiratory changes in children during laparoscopy. J Pediatr Surg, 30: 33, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Hsing, C. H., Hseu, S. S., Tsai, S. K., Chu, C. C., Chen, T. W., Wei, C. F. et al.: The physiological effect of CO2 pneumoperitoneum in pediatric laparoscopy. Acta Anaesthesiol Sin, 33: 1, 1995.

    PubMed  CAS  Google Scholar 

  25. Baird, J. E., Granger, R., Klein, R., Warriner, C. B., and Phang, P. T.: The effects of retroperitoneal carbon dioxide insufflation on hemodynamics and arterial carbon dioxide. Am J Surg, 177: 164, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Wolf, J. S., Jr., Carrier, S., and Stoller, M. L.: Intraperitoneal versus extraperitoneal insufflation of carbon dioxide as for laparoscopy. J Endourol, 9: 63, 1995.

    Article  PubMed  Google Scholar 

  27. Wolf, J. S., Jr., Monk, T. G., McDougall, E. M., McClennan, B. L., and Clayman, R. V.: The extraperitoneal approach and subcutaneous emphysema are associated with greater absorption of carbon dioxide during laparoscopic renal surgery. J Urol, 154: 959, 1995.

    Article  PubMed  Google Scholar 

  28. Waterman, B. J., Robinson, B. C., Snow, B. W., Cartwright, P. C., Hamilton, B. D., and Grasso, M.: Pneumothorax in pediatric patients after urological laparoscopic surgery: experience with 4 patients. J Urol, 171: 1256, 2004.

    Article  PubMed  Google Scholar 

  29. Verreault, J., Lepage, S., Bisson, G., and Plante, A.: Ascites and right pleural effusion: demonstration of a peritoneo-pleural communication. J Nucl Med, 27: 1706, 1986.

    PubMed  CAS  Google Scholar 

  30. Truchon, R.: Anaesthetic considerations for laparoscopic surgery in neonates and infants: a practical review. Best Pract Res Clin Anaesthesiol, 18: 343, 2004.

    Article  PubMed  Google Scholar 

  31. Murdock, C. M., Wolff, A. J., and Van, G. T.: Risk factors for hypercarbia, subcutaneous emphysema, pneumothorax, and pneumomediastinum during laparoscopy. Obstet Gynecol, 95: 704, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Powers, C. J., Levitt, M. A., Tantoco, J., Rossman, J., Sarpel, U., Brisseau, G. et al.: The respiratory advantage of laparoscopic Nissen fundoplication. J Pediatr Surg, 38: 886, 2003.

    Article  PubMed  Google Scholar 

  33. Joris, J. L., Chiche, J. D., Canivet, J. L., Jacquet, N. J., Legros, J. J., and Lamy, M. L.: Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine. J Am Coll Cardiol, 32: 1389, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Sharma, K. C., Brandstetter, R. D., Brensilver, J. M., and Jung, L. D.: Cardiopulmonary physiology and pathophysiology as a consequence of laparoscopic surgery. Chest, 110: 810, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Gueugniaud, P. Y., Abisseror, M., Moussa, M., Godard, J., Foussat, C., Petit, P. et al.: The hemodynamic effects of pneumoperitoneum during laparoscopic surgery in healthy infants: assessment by continuous esophageal aortic blood flow echo-Doppler. Anesth Analg, 86: 290, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Sakka, S. G., Huettemann, E., Petrat, G., Meier-Hellmann, A., Schier, F., and Reinhart, K.: Transoesophageal echocardiographic assessment of haemodynamic changes during laparoscopic herniorrhaphy in small children. Br J Anaesth, 84: 330, 2000.

    PubMed  CAS  Google Scholar 

  37. Kardos, A., Vereczkey, G., Pirot, L., Nyirady, P., and Mekler, R.: Use of impedance cardiography to monitor haemodynamic changes during laparoscopy in children. Paediatr Anaesth, 11: 175, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Terrier, G.: Anaesthesia for laparoscopic procedures in infants and children: indications, intra- and post-operative management, prevention and treatment of complications. Curr Opin Anaesthesiol, 12: 311, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Iwase, K., Takao, T., Watanabe, H., Tanaka, Y., Kido, T., Sunada, S. et al.: Right atrial to left atrial shunt through foramen ovale during pneumoperitoneum for laparoscopic cholecystectomy. Surg Endosc, 8: 1110, 1994.

    Article  PubMed  CAS  Google Scholar 

  40. Mann, C., Boccara, G., Pouzeratte, Y., Eliet, J., Serradel-Le, G. C., Vergnes, C. et al.: The relationship among carbon dioxide pneumoperitoneum, vasopressin release, and hemodynamic changes. Anesth Analg, 89: 278, 1999.

    Article  PubMed  CAS  Google Scholar 

  41. Aldridge, R. D., MacKinlay, G. A., and Aldridge, R. B.: Physiological effects of pneumoperitoneum in laparoscopic pyloromyotomy. J Laparoendosc Adv Surg Tech A, 16: 156, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Mariano, E. R., Boltz, M. G., Albanese, C. T., Abrajano, C. T., and Ramamoorthy, C.: Anesthetic management of infants with palliated hypoplastic left heart syndrome undergoing laparoscopic nissen fundoplication. Anesth Analg, 100: 1631, 2005.

    Article  PubMed  Google Scholar 

  43. Slater, B., Rangel, S., Ramamoorthy, C., Abrajano, C., and Albanese, C. T.: Outcomes after laparoscopic surgery in neonates with hypoplastic heart left heart syndrome. J Pediatr Surg, 42: 1118, 2007.

    Article  PubMed  Google Scholar 

  44. Wahl, E. F., Lahdes-Vasama, T. T., and Churchill, B. M.: Estimation of glomerular filtration rate and bladder capacity: the effect of maturation, ageing, gender and size. BJU Int, 91: 255, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Demyttenaere, S., Feldman, L. S., and Fried, G. M.: Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc, 21: 152, 2007.

    Article  PubMed  Google Scholar 

  46. Gomez Dammeier, B. H., Karanik, E., Gluer, S., Jesch, N. K., Kubler, J., Latta, K. et al.: Anuria during pneumoperitoneum in infants and children: a prospective study. J Pediatr Surg, 40: 1454, 2005.

    Article  PubMed  CAS  Google Scholar 

  47. Razvi, H. A., Fields, D., Vargas, J. C., Vaughan, E. D., Jr., Vukasin, A., and Sosa, R. E.: Oliguria during laparoscopic surgery: evidence for direct renal parenchymal compression as an etiologic factor. J Endourol, 10: 1, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Dolgor, B., Kitano, S., Yoshida, T., Bandoh, T., Ninomiya, K., and Matsumoto, T.: Vasopressin antagonist improves renal function in a rat model of pneumoperitoneum. J Surg Res, 79: 109, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Rosenthal, R. J., Friedman, R. L., Kahn, A. M., Martz, J., Thiagarajah, S., Cohen, D. et al.: Reasons for intracranial hypertension and hemodynamic instability during acute elevations of intra-abdominal pressure: observations in a large animal model. J Gastrointest Surg, 2: 415, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenthal, R. J., Friedman, R. L., Chidambaram, A., Khan, A. M., Martz, J., Shi, Q. et al.: Effects of hyperventilation and hypoventilation on PaCO2 and intracranial pressure during acute elevations of intraabdominal pressure with CO2 pneumoperitoneum: large animal observations. J Am Coll Surg, 187: 32, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Halverson, A., Buchanan, R., Jacobs, L., Shayani, V., Hunt, T., Riedel, C. et al.: Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc, 12: 266, 1998.

    Article  PubMed  CAS  Google Scholar 

  52. Halverson, A. L., Barrett, W. L., Iglesias, A. R., Lee, W. T., Garber, S. M., and Sackier, J. M.: Decreased cerebrospinal fluid absorption during abdominal insufflation. Surg Endosc, 13: 797, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Rosin, D., Brasesco, O., Varela, J., Saber, A. A., You, S., Rosenthal, R. J. et al.: Low-pressure laparoscopy may ameliorate intracranial hypertension and renal hypoperfusion. J Laparoendosc Adv Surg Tech A, 12: 15, 2002.

    Article  PubMed  Google Scholar 

  54. De Waal, E. E., de Vries, J. W., Kruitwagen, C. L., and Kalkman, C. J.: The effects of low-pressure carbon dioxide pneumoperitoneum on cerebral oxygenation and cerebral blood volume in children. Anesth Analg, 94: 500, 2002.

    Article  PubMed  Google Scholar 

  55. Mobbs, R. J. and Yang, M. O.: The dangers of diagnostic laparoscopy in the head injured patient. J Clin Neurosci, 9: 592, 2002.

    Article  PubMed  Google Scholar 

  56. Gaskill, S. J., Cossman, R. M., Hickman, M. S., and Marlin, A. E.: Laparoscopic surgery in a patient with a ventriculoperitoneal shunt: a new technique. Pediatr Neurosurg, 28: 106, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Al-Mufarrej, F., Nolan, C., Sookhai, S., and Broe, P.: Laparoscopic procedures in adults with ventriculoperitoneal shunts. Surg Laparosc Endosc Percutan Tech, 15: 28, 2005.

    Article  PubMed  Google Scholar 

  58. Kimura, T., Nakajima, K., Wasa, M., Yagi, M., Kawahara, H., Soh, H. et al.: Successful laparoscopic fundoplication in children with ventriculoperitoneal shunts. Surg Endosc, 16: 215, 2002.

    Article  PubMed  CAS  Google Scholar 

  59. Uzzo, R. G., Bilsky, M., Mininberg, D. T., and Poppas, D. P.: Laparoscopic surgery in children with ventriculoperitoneal shunts: effect of pneumoperitoneum on intracranial pressure – preliminary experience. Urology, 49: 753, 1997.

    Article  PubMed  CAS  Google Scholar 

  60. Jackman, S. V., Weingart, J. D., Kinsman, S. L., and Docimo, S. G.: Laparoscopic surgery in patients with ventriculoperitoneal shunts: safety and monitoring. J Urol, 164: 1352, 2000.

    Article  PubMed  CAS  Google Scholar 

  61. Neale, M. L. and Falk, G. L.: In vitro assessment of back pressure on ventriculoperitoneal shunt valves. Is laparoscopy safe? Surg Endosc, 13: 512, 1999.

    CAS  Google Scholar 

  62. Pierro, A.: Metabolism and nutritional support in the surgical neonate. J Pediatr Surg, 37: 811, 2002.

    Article  PubMed  Google Scholar 

  63. Hazebroek, E. J., Schreve, M. A., Visser, P., de Bruin, R. W., Marquet, R. L., and Bonjer, H. J.: Impact of temperature and humidity of carbon dioxide pneumoperitoneum on body temperature and peritoneal morphology. J Laparoendosc Adv Surg Tech A, 12: 355, 2002.

    Article  PubMed  Google Scholar 

  64. Moore, S. S., Green, C. R., Wang, F. L., Pandit, S. K., and Hurd, W. W.: The role of irrigation in the development of hypothermia during laparoscopic surgery. Am J Obstet Gynecol, 176: 598, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. Holland, A. J. and Ford, W. D.: The influence of laparoscopic surgery on perioperative heat loss in infants. Pediatr Surg Int, 13: 350, 1998.

    Article  PubMed  CAS  Google Scholar 

  66. Tan, H. L., Tantoco, J. G., and Ee, M. Z.: The role of diagnostic laparoscopy in micropremmies with suspected necrotizing enterocolitis. Surg Endosc, 21: 485, 2007.

    Article  PubMed  CAS  Google Scholar 

  67. Ros, A., Gustafsson, L., Krook, H., Nordgren, C. E., Thorell, A., Wallin, G. et al.: Laparoscopic cholecystectomy versus mini-laparotomy cholecystectomy: a prospective, randomized, single-blind study. Ann Surg, 234: 741, 2001.

    Article  PubMed  CAS  Google Scholar 

  68. Fujimoto, T., Lane, G. J., Segawa, O., Esaki, S., and Miyano, T.: Laparoscopic extramucosal pyloromyotomy versus open pyloromyotomy for infantile hypertrophic pyloric stenosis: which is better? J Pediatr Surg, 34: 370, 1999.

    Article  PubMed  CAS  Google Scholar 

  69. Li, P., Xu, Q., Ji, Z., Gao, Y., Zhang, X., Duan, Y. et al.: Comparison of surgical stress between laparoscopic and open appendectomy in children. J Pediatr Surg, 40: 1279, 2005.

    Article  PubMed  Google Scholar 

  70. McHoney, M., Klein, N. J., Eaton, S., and Pierro, A.: Decreased monocyte class II MHC expression following major abdominal surgery in children is related to operative stress. Pediatr Surg Int, 22: 330, 2006.

    Article  PubMed  CAS  Google Scholar 

  71. McHoney, M., Eaton, S., Wade, A., Klein, N. J., Stefanutti, G., Booth, C. et al.: Inflammatory response in children after laparoscopic vs open Nissen fundoplication: randomized controlled trial. J Pediatr Surg, 40: 908, 2005.

    Article  PubMed  Google Scholar 

  72. Allen, M. L., Peters, M. J., Goldman, A., Elliott, M., James, I., Callard, R. et al.: Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care. Crit Care Med, 30: 1140, 2002.

    Article  PubMed  Google Scholar 

  73. Andersson, R., Andersson, B., Andersson, E., Eckerwall, G., Norden, M., and Tingstedt, B.: Immunomodulation in surgical practice. HPB (Oxford), 8: 116, 2006.

    CAS  Google Scholar 

  74. Werdan, K.: Pathophysiology of septic shock and multiple organ dysfunction syndrome and various therapeutic approaches with special emphasis on immunoglobulins. Ther Apher, 5: 115, 2001.

    Article  PubMed  CAS  Google Scholar 

  75. West, M. A., Hackam, D. J., Baker, J., Rodriguez, J. L., Bellingham, J., and Rotstein, O. D.: Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide: relevance to laparoscopic surgery. Ann Surg, 226: 179, 1997.

    Article  PubMed  CAS  Google Scholar 

  76. Hanly, E. J., Mendoza-Sagaon, M., Murata, K., Hardacre, J. M., De, M. A., and Talamini, M. A.: CO2 Pneumoperitoneum modifies the inflammatory response to sepsis. Ann Surg, 237: 343, 2003.

    Article  PubMed  Google Scholar 

  77. Fuentes, J. M., Hanly, E. J., Aurora, A. R., De, M. A., Shih, S. P., Marohn, M. R. et al.: CO2 abdominal insufflation pretreatment increases survival after a lipopolysaccharide-contaminated laparotomy. J Gastrointest Surg, 10: 32, 2006.

    Article  PubMed  Google Scholar 

  78. Hanly, E. J., Aurora, A. R., Fuentes, J. M., Shih, S. P., Marohn, M. R., De, M. A. et al.: Abdominal insufflation with CO2 causes peritoneal acidosis independent of systemic pH. J Gastrointest Surg, 9: 1245, 2005.

    Article  PubMed  Google Scholar 

  79. Hanly, E. J., Aurora, A. A., Shih, S. P., Fuentes, J. M., Marohn, M. R., De, M. A. et al.: Peritoneal acidosis mediates immunoprotection in laparoscopic surgery. Surgery, 142: 357, 2007.

    Article  PubMed  Google Scholar 

  80. Lee, S. W., Feingold, D. L., Carter, J. J., Zhai, C., Stapleton, G., Gleason, N. et al.: Peritoneal macrophage and blood monocyte functions after open and laparoscopic-assisted cecectomy in rats. Surg Endosc, 17: 1996, 2003.

    Article  PubMed  CAS  Google Scholar 

  81. Are, C. and Talamini, M. A.: Laparoscopy and malignancy. J Laparoendosc Adv Surg Tech A, 15: 38, 2005.

    Article  PubMed  Google Scholar 

  82. Micali, S., Celia, A., Bove, P., De, S. S., Sighinolfi, M. C., Kavoussi, L. R. et al.: Tumor seeding in urological laparoscopy: an international survey. J Urol, 171: 2151, 2004.

    Article  PubMed  CAS  Google Scholar 

  83. Mathew, G., Watson, D. I., Ellis, T., De, Y. N., Rofe, A. M., and Jamieson, G. G.: The effect of laparoscopy on the movement of tumor cells and metastasis to surgical wounds. Surg Endosc, 11: 1163, 1997.

    Article  PubMed  CAS  Google Scholar 

  84. Neuhaus, S. J., Watson, D. I., Ellis, T., Rowland, R., Rofe, A. M., Pike, G. K. et al.: Wound metastasis after laparoscopy with different insufflation gases. Surgery, 123: 579, 1998.

    Article  PubMed  CAS  Google Scholar 

  85. Neuhaus, S. J., Ellis, T. S., Barrett, M. W., Rofe, A. M., Jamieson, G. G., and Watson, D. I.: In vitro inhibition of tumour growth in a helium-rich environment: implications for laparoscopic surgery. Aust N Z J Surg, 69: 52, 1999.

    Article  PubMed  CAS  Google Scholar 

  86. Dahn, S., Schwalbach, P., Maksan, S., Wohleke, F., Benner, A., and Kuntz, C.: Influence of different gases used for laparoscopy (helium, carbon dioxide, room air, and xenon) on tumor volume, histomorphology, and leukocyte-tumor-endothelium interaction in intravital microscopy. Surg Endosc, 19: 65, 2005.

    Article  PubMed  CAS  Google Scholar 

  87. Schmidt, A. I., Reismann, M., Kubler, J. F., Vieten, G., Bangen, C., Shimotakahara, A. et al.: Exposure to carbon dioxide and helium reduces in vitro proliferation of pediatric tumor cells. Pediatr Surg Int, 22: 72, 2006.

    Article  PubMed  Google Scholar 

  88. Iwanaka, T., Arya, G., and Ziegler, M. M.: Minimally invasive surgery does not improve the outcome in a model of retroperitoneal murine neuroblastoma. Pediatr Surg Int, 13: 149, 1998.

    Article  PubMed  CAS  Google Scholar 

  89. Iwanaka, T., Arai, M., Yamamoto, H., Fukuzawa, M., Kubota, A., Kouchi, K. et al.: No incidence of port-site recurrence after endosurgical procedure for pediatric malignancies. Pediatr Surg Int, 19: 200, 2003.

    PubMed  Google Scholar 

  90. Leclair, M. D., de, L. P., Becmeur, F., Varlet, F., Thomas, C., Valla, J. S. et al.: Laparoscopic resection of abdominal neuroblastoma. Ann Surg Oncol, 15: 117, 2008.

    Article  PubMed  Google Scholar 

  91. Chan, K. W., Lee, K. H., Tam, Y. H., and Yeung, C. K.: Minimal invasive surgery in pediatric solid tumors. J Laparoendosc Adv Surg Tech A, 17: 817, 2007.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a Part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rawashdeh, Y.F., Olsen, L.H., Jørgensen, T.M. (2009). Physiology of Paediatric Genitourinary Laparoscopy. In: Palmer, J. (eds) Pediatric Robotic Urology. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-60327-422-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-422-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-421-0

  • Online ISBN: 978-1-60327-422-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics