Skip to main content

Application of Molecular Diagnosis Techniques in the Diagnosis and Management of Endocrine Tumors

  • Chapter
  • First Online:
  • 1285 Accesses

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Molecular alterations in endocrine tumors can be related to genetic syndromes or can be somatic mutations that are restricted to tumor tissues. Tumors associated with genetic syndromes have been described for all endocrine organs and include medullary thyroid carcinoma, parathyroid tumors, pituitary adenomas, adrenal cortical tumors, and pheochromocytomas. The endocrine syndromes are discussed in detail, with particular attention to mutational analysis. In terms of somatic mutations, the most advanced understanding is for thyroid and parathyroid lesions, where established markers are making their way slowly into clinical practice. Somatic mutations for endocrine tumors are also discussed, with an emphasis on testing that has clinical diagnostic and therapeutic implications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xing M. BRAF Mutation in Papillary Thyroid Cancer: Pathogenic Role, Molecular Bases, and Clinical Implications. Endocr Rev 2007;28:742–62.

    PubMed  CAS  Google Scholar 

  2. Capella G, Matias-Guiu X, Ampudia X, et al. Ras oncogene mutations in thyroid tumors: polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagnostic Molecular Pathology 1996;5:45–52.

    PubMed  CAS  Google Scholar 

  3. Vasko V, Ferrand M, Di Cristofaro J, et al. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:2745–52.

    PubMed  CAS  Google Scholar 

  4. Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 2006;30:216–22.

    PubMed  Google Scholar 

  5. Wang YL, Wang JC, Wu Y, et al. Incidentally simultaneous occurrence of RET/PTC, H4-PTEN and BRAF mutation in papillary thyroid carcinoma. Cancer Lett 2008;263:44–52.

    PubMed  CAS  Google Scholar 

  6. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocrine Pathology 2002;13:3–16.

    PubMed  CAS  Google Scholar 

  7. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Research 1997;57:1690–4.

    PubMed  CAS  Google Scholar 

  8. Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab 1999;84:4232–8.

    PubMed  CAS  Google Scholar 

  9. Santoro M, Thomas GA, Vecchio G, et al. Gene rearrangement and Chernobyl related thyroid cancers. Br J Cancer 2000;82:315–22.

    PubMed  CAS  Google Scholar 

  10. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 2008;8:83–95.

    PubMed  CAS  Google Scholar 

  11. Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003;95:625–7.

    PubMed  CAS  Google Scholar 

  12. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003;63:1454–7.

    PubMed  CAS  Google Scholar 

  13. Lima J, Trovisco V, Soares P, et al. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab 2004;89:4267–71.

    PubMed  CAS  Google Scholar 

  14. Lupi C, Giannini R, Ugolini C, et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 2007;92:4085–90.

    PubMed  CAS  Google Scholar 

  15. Lee JH, Lee ES, Kim YS. Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer 2007;110:38–46.

    PubMed  Google Scholar 

  16. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003;88:5399–404.

    PubMed  CAS  Google Scholar 

  17. Costa AM, Herrero A, Fresno MF, et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2007;

    Google Scholar 

  18. Kim TY, Kim WB, Song JY, et al. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol (Oxf) 2005;63:588–93.

    CAS  Google Scholar 

  19. Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 2007;246:466–70; discussion 70–1.

    PubMed  Google Scholar 

  20. Costa AM, Herrero A, Fresno MF, et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2008;68:618–34.

    CAS  Google Scholar 

  21. Trovisco V, Soares P, Preto A, et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Archiv 2005;446:589–95.

    PubMed  CAS  Google Scholar 

  22. Xing M, Tufano RP, Tufaro AP, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 2004;89:2867–72.

    PubMed  CAS  Google Scholar 

  23. Cohen Y, Rosenbaum E, Clark DP, et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res 2004;10:2761–5.

    PubMed  CAS  Google Scholar 

  24. Fagin JA. How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy. J Endocrinol 2004;183:249–56.

    PubMed  CAS  Google Scholar 

  25. Shibru D, Chung KW, Kebebew E. Recent developments in the clinical application of thyroid cancer biomarkers. Curr Opin Oncol 2008;20:13–8.

    PubMed  CAS  Google Scholar 

  26. Namba H, Gutman RA, Matsuo K, Alvarez A, Fagin JA. H-ras protooncogene mutations in human thyroid neoplasms. J Clin Endocrinol Metab 1990;71:223–9.

    PubMed  CAS  Google Scholar 

  27. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol1990;4:1474–9.

    PubMed  CAS  Google Scholar 

  28. Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 2003;21:3226–35.

    PubMed  CAS  Google Scholar 

  29. Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 2000;289:1357–60.

    PubMed  CAS  Google Scholar 

  30. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 2002;26:1016–23.

    PubMed  Google Scholar 

  31. Marques AR, Espadinha C, Catarino AL, et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002;87:3947–52.

    PubMed  CAS  Google Scholar 

  32. Cheung L, Messina M, Gill A, et al. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2003;88:354–7.

    PubMed  CAS  Google Scholar 

  33. Castro P, Roque L, Magalhaes J, Sobrinho-Simoes M. A subset of the follicular variant of papillary thyroid carcinoma harbors the PAX8-PPARgamma translocation. Int J Surg Pathol 2005;13:235–8.

    PubMed  Google Scholar 

  34. Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2006;91:213–20.

    PubMed  CAS  Google Scholar 

  35. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003;88:2318–26.

    PubMed  CAS  Google Scholar 

  36. Giordano TJ, Au AY, Kuick R, et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with PAX8-PPARG translocation. Clin Cancer Res 2006;1:1983.

    Google Scholar 

  37. Marques AR, Espadinha C, Frias MJ, et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)gamma in PAX8/PPARgamma-negative thyroid tumours. Br J Cancer 2004;91:732–8.

    PubMed  CAS  Google Scholar 

  38. Hunt JL, Yim JH, Carty SE. Fractional allelic loss of tumor suppressor genes identifies malignancy and predicts clinical outcome in follicular thyroid tumors. Thyroid 2006;16:643–9.

    PubMed  CAS  Google Scholar 

  39. Hunt JL, Livolsi VA, Baloch ZW, et al. A novel microdissection and genotyping of follicular-derived thyroid tumors to predict aggressiveness. Human Pathol 2003;34:375–80.

    CAS  Google Scholar 

  40. Feldman PL, Lambert MH, Henke BR. PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors? Curr Top Med Chem 2008;8:728–49.

    PubMed  CAS  Google Scholar 

  41. Haluska P, Dy GK, Adjei AA. Farnesyl transferase inhibitors as anticancer agents. Eur J Cancer 2002;38:1685–700.

    PubMed  CAS  Google Scholar 

  42. Khuri FR, Cohen V. Molecularly targeted approaches to the chemoprevention of lung cancer. Clin Cancer Res 2004;10:15.

    Google Scholar 

  43. Ukkat J, Lorenz K, Hinze R, Thomusch O, Dralle H. Importance of early screening and prophylactic thyroidectomy in asymptomatic nonindex RET germline carriers. World J Surg 2001;25:713–7.

    PubMed  CAS  Google Scholar 

  44. Dvorakova S, Vaclavikova E, Sykorova V, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol Cell Endocrinol 2008;284:21–7.

    PubMed  CAS  Google Scholar 

  45. Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008;93:682–7.

    PubMed  CAS  Google Scholar 

  46. Schilling T, Burck J, Sinn HP, et al. Prognostic value of codon 918 (ATG-->ACG) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. Int J Cancer 2001;95:62–6.

    PubMed  CAS  Google Scholar 

  47. Szinnai G, Sarnacki S, Polak M. Hereditary medullary thyroid carcinoma: how molecular genetics made multiple endocrine neoplasia type 2 a paediatric disease. Endocr Dev 2007;10:173–87.

    PubMed  CAS  Google Scholar 

  48. Raue F, Frank-Raue K. Multiple endocrine neoplasia type 2: 2007 update. Horm Res 2007;68 Suppl 5:101–4.

    PubMed  Google Scholar 

  49. Frank-Raue K, Fabel M, Delorme S, Haberkorn U, Raue F. Efficacy of imatinib mesylate in advanced medullary thyroid carcinoma. Eur J Endocrinol 2007;157:215–20.

    PubMed  CAS  Google Scholar 

  50. Volante M, Collini P, Nikiforov YE, et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol 2007;31:1256–64.

    PubMed  Google Scholar 

  51. Farid NR. P53 mutations in thyroid carcinoma: tidings from an old foe. J Endocrinol Invest 2001;24:536–45.

    PubMed  CAS  Google Scholar 

  52. Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 2004;15:319–27.

    PubMed  CAS  Google Scholar 

  53. Fugazzola L, Mannavola D, Cirello V, et al. BRAF mutations in an Italian cohort of thyroid cancers. Clinical Endocrinol 2004;61:239–43.

    CAS  Google Scholar 

  54. Tallini G, Santoro M, Helie M, et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clinical Cancer Res 1998;4:287–94.

    CAS  Google Scholar 

  55. Santoro M, Papotti M, Chiappetta G, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 2002;87:370–9.

    PubMed  CAS  Google Scholar 

  56. Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 2000;10:19–23.

    PubMed  CAS  Google Scholar 

  57. Soares P, Cameselle-Teijeiro J, Sobrinho-Simoes M. Immunohistochemical detection of p53 in differentiated, poorly differentiated and undifferentiated carcinomas of the thyroid. Histopathology 1994;24:205–10.

    PubMed  CAS  Google Scholar 

  58. Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993;91:179–84.

    PubMed  CAS  Google Scholar 

  59. Ho YS, Tseng SC, Chin TY, Hsieh LL, Lin JD. p53 gene mutation in thyroid carcinoma. Cancer Lett 1996;103:57–63.

    PubMed  CAS  Google Scholar 

  60. Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol 1994;3:9–14.

    PubMed  CAS  Google Scholar 

  61. Soares P, Trovisco V, Rocha AS, et al. BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Archiv 2004;444:572–6.

    PubMed  Google Scholar 

  62. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 2005;103:2261–8.

    PubMed  CAS  Google Scholar 

  63. Wiseman SM, Griffith OL, Deen S, et al. Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 2007;142:717–27; discussion 27–9.

    PubMed  CAS  Google Scholar 

  64. Freda PU, Chung WK, Matsuoka N, et al. Analysis of GNAS mutations in 60 growth hormone secreting pituitary tumors: correlation with clinical and pathological characteristics and surgical outcome based on highly sensitive GH and IGF-I criteria for remission. Pituitary 2007;10:275–82.

    PubMed  CAS  Google Scholar 

  65. Takano T, Ito Y, Hirokawa M, Yoshida H, Miyauchi A. BRAF V600E mutation in anaplastic thyroid carcinomas and their accompanying differentiated carcinomas. Br J Cancer 2007;96:1549–53.

    PubMed  CAS  Google Scholar 

  66. Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI. PI3K/Akt and Ras/Raf-MAPK pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab 2007;

    Google Scholar 

  67. Santos L, Loo C, Chandraratnam E, Gune S. Anaplastic carcinoma dedifferentiation of solid variant of papillary thyroid carcinoma. Pathology 2004;36:196–211.

    PubMed  Google Scholar 

  68. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003;88:5399–404.

    PubMed  CAS  Google Scholar 

  69. Hunt JL, Tometsko M, LiVolsi VA, et al. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. American J Surg Pathol 2003;27:1559–64.

    Google Scholar 

  70. Wang HM, Huang YW, Huang JS, et al. Anaplastic carcinoma of the thyroid arising more often from follicular carcinoma than papillary carcinoma. Ann Surg Oncol 2007;14:3011–8.

    PubMed  Google Scholar 

  71. La Perle KM, Jhiang SM, Capen CC. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol 2000;157:671–7.

    PubMed  Google Scholar 

  72. Matias-Guiu X, Villanueva A, Cuatrecasas M, et al. p53 in a thyroid follicular carcinoma with foci of poorly differentiated and anaplastic carcinoma. Pathol Res Pract 1996;192:1242–9; discussion 50–1.

    PubMed  CAS  Google Scholar 

  73. Patel KN, Shaha AR. Poorly differentiated and anaplastic thyroid cancer. Cancer Control 2006;13:119–28.

    PubMed  Google Scholar 

  74. Jiang JY, Tseng FY. Prognostic factors of anaplastic thyroid carcinoma. J Endocrinol Invest 2006;29:11–7.

    PubMed  CAS  Google Scholar 

  75. Miccoli P, Materazzi G, Antonelli A, et al. New trends in the treatment of undifferentiated carcinomas of the thyroid. Langenbecks Arch Surg 2007;392:397–404.

    PubMed  Google Scholar 

  76. Cornett WR, Sharma AK, Day TA, et al. Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep 2007;9:152–8.

    PubMed  Google Scholar 

  77. Kim S, Schiff BA, Yigitbasi OG, et al. Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788. Mol Cancer Ther 2005;4:632–40.

    PubMed  CAS  Google Scholar 

  78. Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32:676–80.

    PubMed  CAS  Google Scholar 

  79. Shattuck TM, Valimaki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med 2003;349:1722–9.

    PubMed  CAS  Google Scholar 

  80. Rubio MP, Correa KM, Ueki K, et al. The putative glioma tumor suppressor gene on chromosome 19q maps between APOC2 and HRC. Cancer Res 1994;54:4760–3.

    PubMed  CAS  Google Scholar 

  81. McPherson JD, Marra M, Hillier L, et al. A physical map of the human genome. Nature 2001;409:934–41.

    PubMed  CAS  Google Scholar 

  82. Cryns VL, Thor A, Xu HJ, et al. Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N Engl J Med 1994;330:757–61.

    PubMed  CAS  Google Scholar 

  83. Cetani F, Pardi E, Viacava P, et al. A reappraisal of the Rb1 gene abnormalities in the diagnosis of parathyroid cancer. Clin Endocrinol (Oxf) 2004;60:99–106.

    CAS  Google Scholar 

  84. Cetani F, Pardi E, Giovannetti A, et al. Genetic analysis of the MEN1 gene and HPRT2 locus in two Italian kindreds with familial isolated hyperparathyroidism. Clinical Endocrinol 2002;56:457–64.

    CAS  Google Scholar 

  85. Vaidya B, Imrie H, Perros P, et al. Evidence for a new Graves disease susceptibility locus at chromosome 18q21. Am J Human Genetics 2000;66:1710–4.

    CAS  Google Scholar 

  86. Szijan I, Orlow I, Dalamon V, et al. Alterations in the retinoblastoma pathway of cell cycle control in parathyroid tumors. Oncol Rep 2000;7:421–5.

    PubMed  CAS  Google Scholar 

  87. Awwad RA, Sergina N, Yang H, et al. The role of transforming growth factor alpha in determining growth factor independence. Cancer Res 2003;63:4731–8.

    PubMed  CAS  Google Scholar 

  88. Ranganathan S, Lynshue K, Hunt JL, Kane T, Jaffe R. Unusual adrenal cortical tumor of unknown biologic potential: a nodule in a nodule in a nodule. Pediatr Dev Pathol 2005;8:483–8.

    PubMed  Google Scholar 

  89. Juhlin C, Larsson C, Yakoleva T, et al. Loss of parafibromin expression in a subset of parathyroid adenomas. Endocr Relat Cancer 2006;13:509–23.

    PubMed  CAS  Google Scholar 

  90. Cetani F, Ambrogini E, Viacava P, et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur J Endocrinol 2007;156:547–54.

    PubMed  CAS  Google Scholar 

  91. Gill AJ, Clarkson A, Gimm O, et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 2006;30:1140–9.

    PubMed  Google Scholar 

  92. Cetani F, Pardi E, Ambrogini E, et al. Different somatic alterations of the HRPT2 gene in a patient with recurrent sporadic primary hyperparathyroidism carrying an HRPT2 germline mutation. Endocr Relat Cancer 2007;14:493–9.

    PubMed  CAS  Google Scholar 

  93. Juhlin CC, Villablanca A, Sandelin K, et al. Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer 2007;14:501–12.

    PubMed  CAS  Google Scholar 

  94. Asa SL, Ezzat S. Genetics and proteomics of pituitary tumors. Endocrine 2005;28:43–7.

    PubMed  CAS  Google Scholar 

  95. Asa SL, Ezzat S. Molecular basis of pituitary development and cytogenesis. Front Horm Res 2004;32:1–19.

    PubMed  CAS  Google Scholar 

  96. Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab 2005;90:5747–53.

    PubMed  CAS  Google Scholar 

  97. Ezzat S, Asa SL. Mechanisms of disease: The pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2006;2:220–30.

    PubMed  CAS  Google Scholar 

  98. Trouillas J, Labat-Moleur F, Sturm N, et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol 2008;32:534–43.

    PubMed  Google Scholar 

  99. Horvath A, Stratakis CA. Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune-Albright syndrome, familial acromegaly and genetic defects in sporadic tumors. Rev Endocr Metab Disord 2008;9:1–11.

    PubMed  CAS  Google Scholar 

  100. Boikos SA, Stratakis CA. Molecular mechanisms of medullary thyroid carcinoma: current approaches in diagnosis and treatment. Histol Histopathol 2008;23:109–16.

    PubMed  CAS  Google Scholar 

  101. Stergiopoulos SG, Abu-Asab MS, Tsokos M, Stratakis CA. Pituitary pathology in Carney complex patients. Pituitary 2004;7:73–82.

    PubMed  Google Scholar 

  102. Kirschner LS, Sandrini F, Monbo J, et al. Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with Carney complex. Hum Mol Genet 2000;9:3037–46.

    PubMed  CAS  Google Scholar 

  103. Georgitsi M, Raitila A, Karhu A, et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc Natl Acad Sci U S A 2007;104:4101–5.

    PubMed  CAS  Google Scholar 

  104. Leontiou CA, Gueorguiev M, van der Spuy J, et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J Clin Endocrinol Metab 2008;93:2390–401.

    PubMed  CAS  Google Scholar 

  105. Toledo RA, Lourenco DM, Jr., Liberman B, et al. Germline mutation in the aryl hydrocarbon receptor interacting protein gene in familial somatotropinoma. J Clin Endocrinol Metab 2007;92:1934–7.

    PubMed  CAS  Google Scholar 

  106. Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in AIP gene. Science 2006;312:1228–30.

    PubMed  CAS  Google Scholar 

  107. Valler L, Spada A, Giannattasio G. Altered Gs and adenlyate cyclase activity in human GH-secreting pituitary adenomas. . Nature 1987;330:566–8.

    Google Scholar 

  108. Villa C, Magri F, Morbini P, et al. Silent Familial Isolated Pituitary Adenomas: Histopathological and Clinical Case Report. Endocr Pathol 2008;

    Google Scholar 

  109. Donangelo I, Araujo PB, Antenuzi D, et al. Tumor deletion mapping of chromosomal region 13q14 in 43 growth hormone secreting pituitary adenomas. Endocrine 2005;28:131–6.

    PubMed  CAS  Google Scholar 

  110. Ogino A, Yoshino A, Katayama Y, et al. The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 2005;64:398–403.

    PubMed  CAS  Google Scholar 

  111. Yoshino A, Katayama Y, Ogino A, et al. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 2007;83:153–62.

    PubMed  CAS  Google Scholar 

  112. Donangelo I, Marcos HP, Araujo PB, et al. Expression of retinoblastoma protein in human growth hormone-secreting pituitary adenomas. Endocr Pathol 2005;16:53–62.

    PubMed  CAS  Google Scholar 

  113. Toumpanakis CG, Caplin ME. Molecular genetics of gastroenteropancreatic neuroendocrine tumors. Am J Gastroenterol 2008;103:729–32.

    PubMed  CAS  Google Scholar 

  114. Duerr EM, Mizukami Y, Ng A, et al. Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr Relat Cancer 2008;15:243–56.

    PubMed  CAS  Google Scholar 

  115. Vortmeyer AO, Lubensky IA, Skarulis M, et al. Multiple endocrine neoplasia type 1: atypical presentation, clinical course, and genetic analysis of multiple tumors. Modern Pathol 1999;12:919–24.

    CAS  Google Scholar 

  116. Yao JC, Hoff PM. Molecular targeted therapy for neuroendocrine tumors. Hematol Oncol Clin North Am 2007;21:575–81; x.

    PubMed  Google Scholar 

  117. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008;9:61–72.

    PubMed  CAS  Google Scholar 

  118. Subramaniam MM, Putti TC, Anuar D, et al. Clonal characterization of sporadic cribriform-morular variant of papillary thyroid carcinoma by laser microdissection-based APC mutation analysis. Am J Clin Pathol 2007;128:994–1001.

    PubMed  CAS  Google Scholar 

  119. Barlaskar FM, Hammer GD. The molecular genetics of adrenocortical carcinoma. Rev Endocr Metab Disord 2007;8:343–8.

    PubMed  Google Scholar 

  120. Bougeard G, Sesboue R, Baert-Desurmont S, et al. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet 2008;45(8):535–8.

    Google Scholar 

  121. Gonzalez K, Fong C, Buzin C, Sommer SS, Saldivar JS. p53 Testing for Li-Fraumeni and Li-Fraumeni-like syndromes. Curr Protoc Hum Genet 2008; Chapter 10:Unit 10

    Google Scholar 

  122. Zambetti GP. The p53 mutation “gradient effect” and its clinical implications. J Cell Physiol 2007;213:370–3.

    PubMed  CAS  Google Scholar 

  123. Cohen MM, Jr. Beckwith-Wiedemann syndrome: historical, clinicopathological, and etiopathogenetic perspectives. Pediatr Dev Pathol 2005;8:287–304.

    PubMed  Google Scholar 

  124. Kerr NJ, Fukuzawa R, Reeve AE, Sullivan MJ, Fukazawa R. Beckwith-Wiedemann syndrome, pancreatoblastoma, and the wnt signaling pathway. Am J Pathol 2002;160:1541–2.

    PubMed  Google Scholar 

  125. Volante M, Rapa I, Papotti M. Poorly Differentiated Thyroid Carcinoma: Diagnostic Features and Controversial Issues. Endocr Pathol 2008;

    Google Scholar 

  126. McNicol AM. Assessment of malignancy in adrenal cortical tumors. Endocr Pathol 2006;17:131–6.

    PubMed  CAS  Google Scholar 

  127. Giordano TJ. Molecular pathology of adrenal cortical tumors: separating adenomas from carcinomas. Endocr Pathol 2006;17:355–63.

    PubMed  CAS  Google Scholar 

  128. Stephan EA, Chung TH, Grant CS, et al. Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther 2008;7:425–31.

    PubMed  CAS  Google Scholar 

  129. Kuruba R, Gallagher SF. Current management of adrenal tumors. Curr Opin Oncol 2008;20:34–46.

    PubMed  Google Scholar 

  130. Gimenez-Roqueplo AP, Burnichon N, Amar L, et al. Recent advances in the genetics of phaeochromocytoma and functional paraganglioma. Clin Exp Pharmacol Physiol 2008;35:376–9.

    PubMed  CAS  Google Scholar 

  131. Thouennon E, Elkahloun AG, Guillemot J, et al. Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. J Clin Endocrinol Metab 2007;92:4865–72.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunt, J.L. (2009). Application of Molecular Diagnosis Techniques in the Diagnosis and Management of Endocrine Tumors. In: Khan, A. (eds) Surgical Pathology of Endocrine and Neuroendocrine Tumors. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60327-396-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-396-1_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-395-4

  • Online ISBN: 978-1-60327-396-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics