Skip to main content

Imaging of Endocrine and Neuroendocrine Tumors

  • Chapter
  • First Online:
Surgical Pathology of Endocrine and Neuroendocrine Tumors

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 1305 Accesses

Abstract

Endocrine and neuroendocrine tumors, which secrete hormones or vasoactive substances, comprise a broad and divergent group of diseases. In the following section we have chosen some of the more common functional tumors to illustrate the spectrum of imaging findings, cross sectionally as well as scintigraphically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonneville JF, Bonneville F, Cattin F. Magnetic resonance imaging of pituitary adenomas. European Radiology 2005;15(3):543–8.

    Article  PubMed  Google Scholar 

  2. Miki Y, Matsuo M, Nishizawa S, et al. Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 1990;177(1):35–8.

    PubMed  CAS  Google Scholar 

  3. Cottier JP, Destrieux C, Brunereau L, et al. Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology 2000;215(2):463–9.

    PubMed  CAS  Google Scholar 

  4. Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement. Radiology 2005;237(3):794–800.

    Article  PubMed  Google Scholar 

  5. Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US Features of thyroid malignancy: pearls and pitfalls. Radiographics 2007;27(3):847–60; discussion 61–5.

    Article  PubMed  Google Scholar 

  6. Brunese L, Romeo A, Iorio S, et al. A new marker for diagnosis of thyroid papillary cancer: B-flow twingling sign. Journal of Ultrasound in Medicine 2008;27:1187–94.

    PubMed  Google Scholar 

  7. Brunese L, Romeo A, Iorio S, et al. Thyroid B-flow twingling sign: a new feature of papillary carcinoma. European Journal of Endocrinology 2008;159(4):447–51.

    Article  PubMed  CAS  Google Scholar 

  8. Kabala JE. Computed tomography and magnetic resonance imaging in diseases of the thyroid and parathyroid. European Journal of Radiology 2008;66(3):480–92.

    Article  PubMed  CAS  Google Scholar 

  9. Hay ID. Papillary thyroid carcinoma. Endocrinology and metabolism clinics of North America 1990;19(3):545–76.

    PubMed  CAS  Google Scholar 

  10. Noguchi S, Noguchi A, Murakami N. Papillary carcinoma of the thyroid. I. Developing pattern of metastasis. Cancer 1970;26(5):1053–60.

    Article  PubMed  CAS  Google Scholar 

  11. Som PM, Brandwein M, Lidov M, Lawson W, Biller HF. The varied presentations of papillary thyroid carcinoma cervical nodal disease: CT and MR findings. American Journal of Neuroradiology 1994;15(6):1123–8.

    PubMed  CAS  Google Scholar 

  12. Kessler A, Rappaport Y, Blank A, Marmor S, Weiss J, Graif M. Cystic appearance of cervical lymph nodes is characteristic of metastatic papillary thyroid carcinoma. Journal of Clinical Ultrasound 2003;31(1):21–5.

    Article  PubMed  Google Scholar 

  13. Arslan N, Ilgan S, Yuksel D, et al. Comparison of In-111 octreotide and Tc-99m (V) DMSA scintigraphy in the detection of medullary thyroid tumor foci in patients with elevated levels of tumor markers after surgery. Clinical Nuclear Medicine 2001;26(8):683–8.

    Article  PubMed  CAS  Google Scholar 

  14. Rufini V, Salvatori M, Garganese MC, Di Giuda D, Lodovica Maussier M, Troncone L. Role of nuclear medicine in the diagnosis and therapy of medullary thyroid carcinoma. Rays 2000;25(2):273–82.

    PubMed  CAS  Google Scholar 

  15. Kaltsas G, Korbonits M, Heintz E, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. The Journal of Clinical Endocrinology and Metabolism 2001;86(2):895–902.

    Article  PubMed  CAS  Google Scholar 

  16. Lee VS, Spritzer CE, Coleman RE, Wilkinson RH, Jr., Coogan AC, Leight GS, Jr. The complementary roles of fast spin-echo MR imaging and double-phase 99m Tc-sestamibi scintigraphy for localization of hyperfunctioning parathyroid glands. American Journal of Roentgenology 1996;167(6):1555–62.

    PubMed  CAS  Google Scholar 

  17. McHenry CR, Lee K, Saadey J, Neumann DR, Esselstyn CB, Jr. Parathyroid localization with technetium-99m-sestamibi: A prospective evaluation. Journal of the American College of Surgeons 1996;183(1):25–30.

    PubMed  CAS  Google Scholar 

  18. Neumann DR, Esselstyn CB, Jr., Go RT, Wong CO, Rice TW, Obuchowski NA. Comparison of double-phase 99mTc-sestamibi with 123I-99mTc-sestamibi subtraction SPECT in hyperparathyroidism. American Journal of Roentgenology 1997;169(6):1671–4.

    PubMed  CAS  Google Scholar 

  19. Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). Journal of Nuclear Medicine 1992;33(10):1801–7.

    PubMed  CAS  Google Scholar 

  20. Ishibashi M, Nishida H, Hiromatsu Y, Kojima K, Tabuchi E, Hayabuchi N. Comparison of technetium-99m-MIBI, technetium-99m-tetrofosmin, ultrasound and MRI for localization of abnormal parathyroid glands. Journal of Nuclear Medicine 1998;39(2):320–4.

    PubMed  CAS  Google Scholar 

  21. Ishibashi M, Nishida H, Hiromatsu Y, Kojima K, Uchida M, Hayabuchi N. Localization of ectopic parathyroid glands using technetium-99m sestamibi imaging: comparison with magnetic resonance and computed tomographic imaging. European Journal of Nuclear Medicine 1997;24(2):197–201.

    Article  PubMed  CAS  Google Scholar 

  22. Ishibashi M, Uchida M, Nishida H, et al. Pre-surgical localization of ectopic parathyroid glands using three-dimensional CT imaging, 99Tcm sestamibi, and 99Tcm tetrofosmin imaging. The British Journal of Radiology 1999;72(855):296–300.

    PubMed  CAS  Google Scholar 

  23. Moka D, Voth E, Dietlein M, Larena-Avellaneda A, Schicha H. Preoperative localization of parathyroid adenomas using 99mTc-MIBI scintigraphy. The American Journal of Medicine 2000;108(9):733–6.

    Article  PubMed  CAS  Google Scholar 

  24. Nichols KJ, Tomas MB, Tronco GG, et al. Preoperative parathyroid scintigraphic lesion localization: accuracy of various types of readings. Radiology 2008;248(1):221–32.

    Article  PubMed  Google Scholar 

  25. Reading CC, Charboneau JW, James EM, et al. High-resolution parathyroid sonography. American Journal of Roentgenology 1982;139(3):539–46.

    PubMed  CAS  Google Scholar 

  26. Prager G, Czerny C, Kurtaran A, et al. Minimally invasive open parathyroidectomy in an endemic goiter area: a prospective study. Archives of Surgery 2001;136(7):810–6.

    Article  PubMed  CAS  Google Scholar 

  27. Prager G, Czerny C, Ofluoglu S, et al. Impact of localization studies on feasibility of minimally invasive parathyroidectomy in an endemic goiter region. Journal of the American College of Surgeons 2003;196(4):541–8.

    Article  PubMed  Google Scholar 

  28. Sukan A, Reyhan M, Aydin M, et al. Preoperative evaluation of hyperparathyroidism: the role of dual-phase parathyroid scintigraphy and ultrasound imaging. Annals of Nuclear Medicine 2008;22(2):123–31.

    Article  PubMed  Google Scholar 

  29. Kang YS, Rosen K, Clark OH, Higgins CB. Localization of abnormal parathyroid glands of the mediastinum with MR imaging. Radiology 1993;189(1):137–41.

    PubMed  CAS  Google Scholar 

  30. Stevens SK, Chang JM, Clark OH, Chang PJ, Higgins CB. Detection of abnormal parathyroid glands in postoperative patients with recurrent hyperparathyroidism: sensitivity of MR imaging. American Journal of Roentgenology 1993;160(3):607–12.

    PubMed  CAS  Google Scholar 

  31. Scarsbrook AF, Ganeshan A, Statham J, et al. Anatomic and functional imaging of metastatic carcinoid tumors. Radiographics 2007;27(2):455–77.

    Article  PubMed  Google Scholar 

  32. Pantongrag-Brown L, Buetow PC, Carr NJ, Lichtenstein JE, Buck JL. Calcification and fibrosis in mesenteric carcinoid tumor: CT findings and pathologic correlation. Americal Journal of Roentgenology 1995;164(2):387–91.

    Google Scholar 

  33. Bader TR, Semelka RC, Chiu VC, Armao DM, Woosley JT. MRI of carcinoid tumors: spectrum of appearances in the gastrointestinal tract and liver. Journal of Magnetic Resonance Imaging 2001;14(3):261–9.

    Google Scholar 

  34. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. Journal Nuclear Medicine 2008;49(4):573–86.

    Google Scholar 

  35. Intenzo CM, Jabbour S, Lin HC, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographics 2007;27(5):1355–69.

    Google Scholar 

  36. Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics 2006;26(1):41–57; discussion -8.

    Google Scholar 

  37. Herwick S, Miller FH, Keppke AL. MRI of islet cell tumors of the pancreas. American Journal of Roentgenology 2006;187(5):W472–80.

    Google Scholar 

  38. Horton KM, Hruban RH, Yeo C, Fishman EK. Multi-detector row CT of pancreatic islet cell tumors. Radiographics 2006;26(2):453–64.

    Google Scholar 

  39. McLean A. Endoscopic ultrasound in the detection of pancreatic islet cell tumours. Cancer Imaging 2004;4(2):84–91.

    Google Scholar 

  40. Bessell-Browne R, O’Malley ME. CT of pheochromocytoma and paraganglioma: risk of adverse events with i.v. administration of nonionic contrast material. American Journal of Roentgenology 2007;188(4):970–4.

    Google Scholar 

  41. Park BK, Kim CK, Kwon GY, Kim JH. Re-evaluation of pheochromocytomas on delayed contrast-enhanced CT: washout enhancement and other imaging features. European Radiology 2007;17(11):2804–9.

    Google Scholar 

  42. Blake MA, Kalra MK, Maher MM, et al. Pheochromocytoma: an imaging chameleon. Radiographics 2004;24(Suppl 1):S87–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gul Moonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moonis, G., Mani, K. (2009). Imaging of Endocrine and Neuroendocrine Tumors. In: Khan, A. (eds) Surgical Pathology of Endocrine and Neuroendocrine Tumors. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60327-396-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-396-1_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-395-4

  • Online ISBN: 978-1-60327-396-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics