Skip to main content

The Mitochondrial Pathway: Focus on Shape Changes

  • Chapter
  • First Online:
  • 1476 Accesses

Abstract

Mitochondria are key participants in cell death. They amplify death signals by releasing proapoptotic proteins normally stored in their intermembrane space, such as cytochrome c. In recent years, cytochrome c release has been demonstrated to be not only highly regulated by the proteins of the Bcl-2 family, but also influenced by changes in mitochondrial shape, including remodeling of the cristae and fragmentation of the cytosolic network, both orchestrated by a large group of “mitochondria-shaping” proteins. We focus our attention in this chapter on the involvement of mitochondrial shape changes in apoptosis and on their regulatory mechanisms. In particular, we discuss the roles of the pro-fusion OPA1 protein and of the inner mitochondrial membrane rhomboid PARL on cristae remodeling and apoptosis in mammals, and on the relationship among Bcl-2 family members, mitochondrial fragmentation, and cell death. These results open the possibility to modulate mitochondrial morphological changes in order to influence apoptosis and thus to intervene in the natural history of human diseases, from neurodegeneration to cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cereghetti GM, Scorrano L. The many shapes of mitochondrial death. Oncogene 2006;25:4714–24.

    Google Scholar 

  2. Frey TG, Mannella CA. The internal structure of mitochondria. Trends Biochem Sci 2000;25:319–24.

    PubMed  CAS  Google Scholar 

  3. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science 2006;312:1882–3.

    PubMed  Google Scholar 

  4. Vogel F, Bornhovd C, Neupert W, Reichert AS. Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 2006;175:237–47.

    PubMed  CAS  Google Scholar 

  5. Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol 2000;529(Pt 1):37–47.

    PubMed  CAS  Google Scholar 

  6. Ernster L, Schatz G. Mitochondria: A historical review. J Cell Biol 1981;91:227s–55s.

    PubMed  CAS  Google Scholar 

  7. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626–9.

    PubMed  CAS  Google Scholar 

  8. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–12.

    PubMed  CAS  Google Scholar 

  9. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400:886–91.

    PubMed  CAS  Google Scholar 

  10. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    PubMed  CAS  Google Scholar 

  11. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–90.

    PubMed  CAS  Google Scholar 

  12. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15:2922–33.

    PubMed  CAS  Google Scholar 

  13. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004;116:205–19.

    PubMed  CAS  Google Scholar 

  14. Boyd JM, Gallo GJ, Elangovan B, et al. Bik, a novel death-inducing protein, shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 1995;11:1921–8.

    PubMed  CAS  Google Scholar 

  15. Youle RJ, Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47–59.

    PubMed  CAS  Google Scholar 

  16. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science 2003;300:135–9.

    PubMed  CAS  Google Scholar 

  17. Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci 2001;26:112–7.

    PubMed  CAS  Google Scholar 

  18. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–30.

    PubMed  CAS  Google Scholar 

  19. Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007;315:856–9.

    PubMed  CAS  Google Scholar 

  20. Youle RJ. Cell biology. Cellular demolition and the rules of engagement. Science 2007;315:776–7.

    CAS  Google Scholar 

  21. Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999;144:891–901.

    PubMed  CAS  Google Scholar 

  22. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7:683–94.

    PubMed  CAS  Google Scholar 

  23. Nijhawan D, Fang M, Traer E, et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 2003;17:1475–86.

    PubMed  CAS  Google Scholar 

  24. Cuconati A, Mukherjee C, Perez D, White E. DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 2003;17:2922–32.

    PubMed  CAS  Google Scholar 

  25. Willis SN, Chen L, Dewson G, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005;19:1294–1305.

    PubMed  CAS  Google Scholar 

  26. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001;15:1481–6.

    PubMed  CAS  Google Scholar 

  27. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423–32.

    PubMed  CAS  Google Scholar 

  28. Li K, Li Y, Shelton JM, et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 2000;101:389–99.

    PubMed  CAS  Google Scholar 

  29. Yoshida H, Kong YY, Yoshida R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94:739–50.

    PubMed  CAS  Google Scholar 

  30. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94:325–37.

    PubMed  CAS  Google Scholar 

  31. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384:368–72.

    PubMed  CAS  Google Scholar 

  32. Martinou I, Desagher S, Eskes R, et al. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 1999;144:883–9.

    PubMed  CAS  Google Scholar 

  33. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33–42.

    PubMed  CAS  Google Scholar 

  34. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412:95–9.

    PubMed  CAS  Google Scholar 

  35. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996;87:619–28.

    PubMed  CAS  Google Scholar 

  36. Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999;274:1156–63.

    PubMed  CAS  Google Scholar 

  37. Kluck RM, Esposti MD, Perkins G, et al. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol 1999;147:809–22.

    PubMed  CAS  Google Scholar 

  38. Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002;111:331–42.

    PubMed  CAS  Google Scholar 

  39. O'Connor L, Strasser A, O'Reilly LA, et al. Bim: A novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998;17:384–95.

    PubMed  Google Scholar 

  40. Puthalakath H, Villunger A, O'Reilly LA, et al. Bmf: A proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001;293:293–32.

    Google Scholar 

  41. Chang BS, Kelekar A, Harris MH, Harlan JE, Fesik SW, Thompson CB. The BH3 domain of Bcl-x(S) is required for inhibition of the antiapoptotic function of Bcl-x(L). Mol Cell Biol 1999;19:6673–81.

    PubMed  CAS  Google Scholar 

  42. Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001;8:705–11.

    PubMed  CAS  Google Scholar 

  43. Zamzami N, El Hamel C, Maisse C, et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 2000;19:6342–50.

    PubMed  CAS  Google Scholar 

  44. Sugiyama T, Shimizu S, Matsuoka Y, Yoneda Y, Tsujimoto Y. Activation of mitochondrial voltage-dependent anion channel by a pro-apoptotic BH3-only protein Bim. Oncogene 2002;21:4944–56.

    PubMed  CAS  Google Scholar 

  45. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995;80:285–91.

    PubMed  CAS  Google Scholar 

  46. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000;288:1053–8.

    PubMed  CAS  Google Scholar 

  47. Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ. BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem 1997;272:24101–4.

    PubMed  CAS  Google Scholar 

  48. Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 2007;12:171–85.

    PubMed  CAS  Google Scholar 

  49. Certo M, Del Gaizo Moore V, Nishino M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006;9:351–65.

    Google Scholar 

  50. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002;2:183–92.

    PubMed  CAS  Google Scholar 

  51. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14:2060–71.

    PubMed  CAS  Google Scholar 

  52. Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 2000;345(Pt 2):271–8.

    PubMed  CAS  Google Scholar 

  53. Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 2001;276:11615–23.

    PubMed  CAS  Google Scholar 

  54. Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 2000;20:929–35.

    PubMed  CAS  Google Scholar 

  55. Scorrano L. Proteins that fuse and fragment mitochondria in apoptosis: Con-fissing a deadly con-fusion? J Bioenerg Biomembr 2005;37:165–70.

    PubMed  CAS  Google Scholar 

  56. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005;6:657–63.

    PubMed  CAS  Google Scholar 

  57. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999;399:483–7.

    PubMed  CAS  Google Scholar 

  58. Marzo I, Brenner C, Zamzami N, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998;281:2027–31.

    PubMed  CAS  Google Scholar 

  59. Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001;1:515–25.

    PubMed  CAS  Google Scholar 

  60. Scorrano L, Ashiya M, Buttle K, et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002;2:55–67.

    PubMed  CAS  Google Scholar 

  61. Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994;27:198–219.

    PubMed  CAS  Google Scholar 

  62. Praefcke GJ, McMahon HT. The dynamin superfamily: Universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 2004;5:133–47.

    PubMed  CAS  Google Scholar 

  63. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 2001;114:867–74.

    PubMed  CAS  Google Scholar 

  64. Legros F, Lombes A, Frachon P, Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 2002;13:4343–54.

    PubMed  CAS  Google Scholar 

  65. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003;160:189–200.

    PubMed  CAS  Google Scholar 

  66. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007;130:548–62.

    PubMed  CAS  Google Scholar 

  67. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 2004;101:15927–32.

    PubMed  CAS  Google Scholar 

  68. Meeusen S, DeVay R, Block J, et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 2006;127:383–95.

    PubMed  CAS  Google Scholar 

  69. Delettre C, Griffoin JM, Kaplan J, et al. Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 2001;109:584–91.

    PubMed  CAS  Google Scholar 

  70. Ishihara N, Fujita Y, Oka T, Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 2006;25:2966–77.

    PubMed  CAS  Google Scholar 

  71. Dimmer KS, Fritz S, Fuchs F, et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 2002;13:847–53.

    PubMed  CAS  Google Scholar 

  72. Dimmer KS, Navoni F, Casarin A, et al. LETM1, deleted in Wolf-Hirschhorn syndrome, is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 2008;17:201–14.

    PubMed  CAS  Google Scholar 

  73. Nowikovsky K, Froschauer EM, Zsurka G, et al. The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 2004;279:30307–15.

    PubMed  CAS  Google Scholar 

  74. Meeusen S, McCaffery JM, Nunnari J. Mitochondrial fusion intermediates revealed in vitro. Science 2004;305:1747–52.

    PubMed  CAS  Google Scholar 

  75. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science 2004;305:858–62.

    PubMed  CAS  Google Scholar 

  76. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 2004;117:6535–46.

    PubMed  CAS  Google Scholar 

  77. Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 2003;278:17190–7.

    PubMed  CAS  Google Scholar 

  78. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 2006;8:1255–62.

    PubMed  CAS  Google Scholar 

  79. James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003;278:36373–9.

    PubMed  CAS  Google Scholar 

  80. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001;12:2245–56.

    PubMed  CAS  Google Scholar 

  81. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 1998;143:351–8.

    PubMed  CAS  Google Scholar 

  82. Mozdy AD, McCaffery JM, Shaw JM. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 2000;151:367–80.

    PubMed  CAS  Google Scholar 

  83. Yoon Y, Krueger EW, Oswald BJ, McNiven MA. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 2003;23:5409–20.

    PubMed  CAS  Google Scholar 

  84. Yonashiro R, Ishido S, Kyo S, et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 2006;25:3618–26.

    PubMed  CAS  Google Scholar 

  85. Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004;14:340–5.

    PubMed  CAS  Google Scholar 

  86. Karbowski M, Jeong SY, Youle RJ. Endophilin B1 is required for the maintenance of mitochondrial morphology. J Cell Biol 2004;166:1027–39.

    PubMed  CAS  Google Scholar 

  87. Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: New implications for Charcot-Marie-Tooth disease. J Cell Biol 2005;170:1067–78.

    PubMed  CAS  Google Scholar 

  88. Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 2003;278:27781–8.

    PubMed  CAS  Google Scholar 

  89. Sik A, Passer BJ, Koonin EV, Pellegrini L. Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J Biol Chem 2004;279:15323–9.

    PubMed  CAS  Google Scholar 

  90. Cipolat S, Rudka T, Hartmann D, et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006;126:163–75.

    PubMed  CAS  Google Scholar 

  91. Frezza C, Cipolat S, Martins de Brito O, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 2006;126:177–89.

    PubMed  CAS  Google Scholar 

  92. Jeyaraju DV, Xu L, Letellier MC, et al. Phosphorylation and cleavage of presenilin-associated rhomboid-like protein (PARL) promotes changes in mitochondrial morphology. Proc Natl Acad Sci USA 2006;103:18562–7.

    PubMed  CAS  Google Scholar 

  93. Griparic L, Kanazawa T, van der Bliek AM. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 2007;178:757–64.

    PubMed  CAS  Google Scholar 

  94. Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 2007;178:749–55.

    PubMed  CAS  Google Scholar 

  95. Olichon A, Emorine LJ, Descoins E, et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 2002;523:171–6.

    PubMed  CAS  Google Scholar 

  96. Duvezin-Caubet S, Jagasia R, Wagener J, et al. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 2006;281:37972–9.

    PubMed  CAS  Google Scholar 

  97. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 2004;16:59–68.

    PubMed  CAS  Google Scholar 

  98. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 2006;103:2653–8.

    PubMed  CAS  Google Scholar 

  99. Li Z, Okamoto K, Hayashi Y, Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004;119:873–87.

    PubMed  CAS  Google Scholar 

  100. Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz HD. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 2007;9:99–105.

    PubMed  CAS  Google Scholar 

  101. De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 2005;15:678–83.

    PubMed  Google Scholar 

  102. Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL. Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 2002;36:1063–77.

    PubMed  CAS  Google Scholar 

  103. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 2006;203:2879–86.

    PubMed  CAS  Google Scholar 

  104. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483–95.

    PubMed  CAS  Google Scholar 

  105. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N. Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 2004;279:22704–14.

    PubMed  CAS  Google Scholar 

  106. Yi M, Weaver D, Hajnoczky G. Control of mitochondrial motility and distribution by the calcium signal: A homeostatic circuit. J Cell Biol 2004;167:661–72.

    PubMed  CAS  Google Scholar 

  107. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2000;2:156–62.

    PubMed  CAS  Google Scholar 

  108. Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003;10:870–80.

    PubMed  CAS  Google Scholar 

  109. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 2004;15:5001–11.

    PubMed  CAS  Google Scholar 

  110. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 2004;164:493–9.

    PubMed  CAS  Google Scholar 

  111. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 2005;280:35742–50.

    PubMed  CAS  Google Scholar 

  112. Karbowski M, Lee YJ, Gaume B, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 2002;159:931–8.

    PubMed  CAS  Google Scholar 

  113. Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007;8:939–44.

    PubMed  CAS  Google Scholar 

  114. Wang HG, Pathan N, Ethell IM, et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999;284:339–43.

    PubMed  CAS  Google Scholar 

  115. Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007;177:439–50.

    PubMed  CAS  Google Scholar 

  116. Sugioka R, Shimizu S, Tsujimoto Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 2004;279:52726–34.

    PubMed  CAS  Google Scholar 

  117. Tieu Q, Okreglak V, Naylor K, Nunnari J. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 2002;158:445–52.

    PubMed  CAS  Google Scholar 

  118. Shaw JM, Nunnari J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol 2002;12:178–84.

    PubMed  CAS  Google Scholar 

  119. Fannjiang Y, Cheng WC, Lee SJ, et al. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 2004;18:2785–97.

    PubMed  CAS  Google Scholar 

  120. Lettre G, Hengartner MO. Developmental apoptosis in C. elegans: A complex CEDnario. Nat Rev Mol Cell Biol 2006;7:97–108.

    PubMed  CAS  Google Scholar 

  121. Rolland S, Conradt B. The role of mitochondria in apoptosis induction in Caenorhabditis elegans: More than just innocent bystanders? Cell Death Differ 2006;13:1281–6.

    PubMed  CAS  Google Scholar 

  122. Youle RJ. Morphology of mitochondria during apoptosis: Worms-to-beetles in worms. Dev Cell 2005;8:298–9.

    PubMed  CAS  Google Scholar 

  123. Jagasia R, Grote P, Westermann B, Conradt B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 2005;433:754–60.

    PubMed  CAS  Google Scholar 

  124. Hengartner MO, Horvitz HR. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 1994;369:318–20.

    PubMed  CAS  Google Scholar 

  125. Kornbluth S, White K. Apoptosis in Drosophila: Neither fish nor fowl (nor man, nor worm). J Cell Sci 2005;118:1779–87.

    PubMed  CAS  Google Scholar 

  126. Igaki T, Kanuka H, Inohara N, et al. Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc Natl Acad Sci USA 2000;97:662–7.

    PubMed  CAS  Google Scholar 

  127. Zhang H, Huang Q, Ke N, et al. Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 2000;275:27303–6.

    PubMed  CAS  Google Scholar 

  128. Ricci JE, Munoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004;117:773–86.

    PubMed  CAS  Google Scholar 

  129. Cassidy-Stone A, Chipuk JE, Ingerman E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 2008;14:193–204.

    PubMed  CAS  Google Scholar 

  130. Alirol E, James D, Huber D, et al. The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 2006;17:4593–605.

    PubMed  CAS  Google Scholar 

  131. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 2005;280:25060–70.

    PubMed  CAS  Google Scholar 

  132. Jahani-Asl A, Cheung EC, Neuspiel M, et al. Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem 2007;282:23788–98.

    PubMed  CAS  Google Scholar 

  133. Germain M, Mathai JP, McBride HM, Shore GC. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 2005;24:1546–56.

    PubMed  CAS  Google Scholar 

  134. Mandemakers W, Morais VA, De Strooper B. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 2007;120:1707–16.

    PubMed  CAS  Google Scholar 

  135. Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004;36:449–51.

    PubMed  Google Scholar 

  136. Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000;26:211–5.

    PubMed  CAS  Google Scholar 

  137. Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000;26:207–10.

    PubMed  CAS  Google Scholar 

  138. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 2000;70:113–22.

    PubMed  CAS  Google Scholar 

  139. Liston P, Fong WG, Korneluk RG. The inhibitors of apoptosis: There is more to life than Bcl2. Oncogene 2003;22:8568–80.

    PubMed  CAS  Google Scholar 

  140. Chung JG, Yeh KT, Wu SL, et al. Novel transmembrane GTPase of non-small cell lung cancer identified by mRNA differential display. Cancer Res 2001;61:8873–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Scorrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campello, S., Scorrano, L. (2009). The Mitochondrial Pathway: Focus on Shape Changes. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_6

Download citation

Publish with us

Policies and ethics