Skip to main content

Apoptosis in Liver Injury and Liver Diseases

  • Chapter
  • First Online:
Essentials of Apoptosis

Abstract

The liver is a multifunctional organ that has important roles such as metabolism, synthesis, and detoxification. Enhanced hepatocyte apoptosis and impaired liver regeneration are the most common liver disorders in acute liver failure. Hepatocyte apoptosis also emerges as a fundamental component of chronic liver diseases. Liver tissue fibrosis is triggered by hepatocyte apoptosis, and the excess fibrosis causes liver disease to progress to cirrhosis, which causes chronic liver failure. Although hepatocyte apoptosis is a cardinal feature of liver diseases, it is generally believed that apoptosis deletes hepatitis virus-infected hepatocytes and prevents carcinogenesis and that antiapoptotic factors are activated in the chronic injured liver. This chapter highlights the mechanism of pro- and antiapoptosis in liver diseases’ underlying molecular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991;66:233–43.

    Article  PubMed  CAS  Google Scholar 

  2. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;14:5579–88.

    PubMed  CAS  Google Scholar 

  3. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383–424.

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu S, Yamada Y, Okuno M, et al. Liver injury induced by lipopolysaccharide is mediated by TNFR-1 but not by TNFR-2 or Fas in mice. Hepatol Res 2005;31:136–42.

    Article  PubMed  CAS  Google Scholar 

  5. Kresse M, Latta M, Kunstle G, et al. Kupffer cell-expressed membrane-bound TNF mediates melphalan hepatotoxicity via activation of both TNF receptors. J Immunol 2005;175:4076–83.

    PubMed  CAS  Google Scholar 

  6. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003;10:45–65.

    Article  PubMed  CAS  Google Scholar 

  7. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–30.

    Article  PubMed  CAS  Google Scholar 

  8. Imao M, Nagaki M, Imose M, Moriwaki H. Differential caspase-9-dependent signaling pathway between tumor necrosis factor receptor- and Fas-mediated hepatocyte apoptosis in mice. Liver Int 2006;26:137–46.

    Article  PubMed  CAS  Google Scholar 

  9. de la Coste A, Fabre M, McDonell N, et al. Differential protective effects of Bcl-xL and Bcl-2 on apoptotic liver injury in transgenic mice. Am J Physiol 1999;277:G702–8.

    PubMed  Google Scholar 

  10. Van Molle W, Denecker G, Rodriguez I, Brouckaert P, Vandenabeele P, Libert C. Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins. J Immunol 1999;163:5235–41.

    PubMed  Google Scholar 

  11. Nagaki M, Sugiyama A, Osawa Y, et al. Lethal hepatic apoptosis mediated by tumor necrosis factor receptor, unlike Fas-mediated apoptosis, requires hepatocyte sensitization in mice. J Hepatol 1999;31:997–1005.

    Article  PubMed  CAS  Google Scholar 

  12. Decker K, Keppler D. Galactosamine hepatitis: Key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev Physiol Biochem Pharmacol 1974; 77–106.

    Google Scholar 

  13. Nagaki M, Naiki T, Brenner DA, et al. Tumor necrosis factor alpha prevents tumor necrosis factor receptor-mediated mouse hepatocyte apoptosis, but not Fas-mediated apoptosis: Role of nuclear factor-kappaB. Hepatology 2000;32:1272–9.

    Article  PubMed  CAS  Google Scholar 

  14. Osawa Y, Hannun YA, Proia RL, Brenner DA. Roles of AKT and sphingosine kinase in the antiapoptotic effects of bile duct ligation in mouse liver. Hepatology 2005;42:1320–8.

    Article  PubMed  CAS  Google Scholar 

  15. Schwabe RF, Brenner DA. Mechanisms of liver injury. I. TNF-alpha-induced liver injury: Role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006;290:G583–9.

    Article  PubMed  CAS  Google Scholar 

  16. Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 2001;15:1419–26.

    Article  PubMed  CAS  Google Scholar 

  17. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000;103:239–52.

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Singh R, Lefkowitch JH, Rigoli RM, Czaja MJ. Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. J Biol Chem 2006;281:15258–67.

    Article  PubMed  CAS  Google Scholar 

  19. Qiao L, Han SI, Fang Y, Park JS, et al. Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol Cell Biol 2003;23:3052–66.

    Article  PubMed  CAS  Google Scholar 

  20. Liu J, Minemoto Y, Lin A. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Mol Cell Biol 2004;24:10844–56.

    Article  PubMed  CAS  Google Scholar 

  21. Matsumaru K, Ji C, Kaplowitz N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology 2003;37:1425–34.

    Article  PubMed  CAS  Google Scholar 

  22. Okuyama H, Nakamura H, Shimahara Y, et al. Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology 2003;37:1015–25.

    Article  PubMed  CAS  Google Scholar 

  23. Lin Y, Choksi S, Shen HM, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 2004;279:10822–8.

    Article  PubMed  CAS  Google Scholar 

  24. Chandel NS, Schumacker PT, Arch RH. Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J Biol Chem 2001;276:42728–36.

    Article  PubMed  CAS  Google Scholar 

  25. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005;120:649–61.

    Article  PubMed  CAS  Google Scholar 

  26. Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters JJ, Brenner DA. Differential requirement for c-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes. FASEB J 2004;18:720–2.

    PubMed  CAS  Google Scholar 

  27. Guicciardi ME, Miyoshi H, Bronk SF, Gores GJ. Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: Implications for therapeutic applications. Am J Pathol 2001;159:2045–54.

    Article  PubMed  CAS  Google Scholar 

  28. Werneburg N, Guicciardi ME, Yin XM, Gores GJ. TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 2004;287:G436–43.

    Article  PubMed  CAS  Google Scholar 

  29. Iimuro Y, Nishiura T, Hellerbrand C, et al. NFkappaB prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest 1998;101:802–11.

    Article  PubMed  CAS  Google Scholar 

  30. Maeda S, Chang L, Li ZW, Luo JL, Leffert H, Karin M. IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunity 2003;19:725–37.

    Article  PubMed  CAS  Google Scholar 

  31. Geisler F, Algul H, Paxian S, Schmid RM. Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology 2007;132:2489–503.

    Article  PubMed  CAS  Google Scholar 

  32. Luedde T, Assmus U, Wustefeld T, et al. Mans MP, Pasparakis M, Trautwein C. Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. J Clin Invest 2005;115:849–59.

    PubMed  CAS  Google Scholar 

  33. Beraza N, Ludde T, Assmus U, Roskams T, Vander Borght S, Trautwein C. Hepatocyte-specific IKK gamma/NEMO expression determines the degree of liver injury. Gastroenterology 2007;132:2504–17.

    Article  PubMed  CAS  Google Scholar 

  34. Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol 2006;72:1090–101.

    Article  PubMed  CAS  Google Scholar 

  35. Luedde T, Trautwein C. Intracellular survival pathways in the liver. Liver Int 2006;26:1163–74.

    Article  PubMed  CAS  Google Scholar 

  36. Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Gastroenterology 2001;120:1251–62.

    Article  PubMed  CAS  Google Scholar 

  37. De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 2001;414:308–13.

    Article  PubMed  Google Scholar 

  38. Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, Lin A. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001;414:313–7.

    Article  PubMed  CAS  Google Scholar 

  39. Wong GH, Goeddel DV. Induction of manganese superoxide dismutase by tumor necrosis factor: Possible protective mechanism. Science 1988;242:941–4.

    Article  PubMed  CAS  Google Scholar 

  40. Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 2005;280:27879–87.

    Article  PubMed  CAS  Google Scholar 

  41. Osawa Y, Banno Y, Nagaki M, et al. TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol 2001;167:173–80.

    PubMed  CAS  Google Scholar 

  42. Sebolt-Leopold JS, English JM. Mechanisms of drug inhibition of signalling molecules. Nature 2006;441:457–62.

    Article  PubMed  CAS  Google Scholar 

  43. Schulze-Bergkamen H, Brenner D, Krueger A, et al. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology 2004;39:645–54.

    Article  PubMed  CAS  Google Scholar 

  44. Osawa Y, Nagaki M, Banno Y, et al. xpression of the NF-kappa B target gene X-ray-inducible immediate early response factor-1 short enhances TNF-alpha-induced hepatocyte apoptosis by inhibiting Akt activation. J Immunol 2003;170:4053–60.

    PubMed  CAS  Google Scholar 

  45. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996;274:1855–9.

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Ruiz C, Colell A, Mari M, et al. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 2003;111:197–208.

    PubMed  CAS  Google Scholar 

  47. Maceyka M, Payne SG, Milstien S, Spiegel S. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 2002;1585:193–201.

    Article  PubMed  CAS  Google Scholar 

  48. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling and termination at lipid phosphate receptors. Biochim Biophys Acta 2002;1582:121–31.

    Article  PubMed  CAS  Google Scholar 

  49. Griffith TS, Lynch DH. TRAIL: A molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998;10:559–63.

    Article  PubMed  CAS  Google Scholar 

  50. Lawrence D, Shahrokh Z, Marsters S, et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001;7:383–5.

    Article  PubMed  CAS  Google Scholar 

  51. Ganten TM, Koschny R, Sykora J, et al. Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 2006;12:2640–6.

    Article  PubMed  CAS  Google Scholar 

  52. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002;195:161–9.

    Article  PubMed  CAS  Google Scholar 

  53. Herr I, Schemmer P, Buchler MW. On the TRAIL to therapeutic intervention in liver disease. Hepatology 2007;46:266–74.

    Article  PubMed  CAS  Google Scholar 

  54. Mundt B, Kuhnel F, Zender L, et al. Involvement of TRAIL and its receptors in viral hepatitis. FASEB J 2003;17:94–6.

    PubMed  CAS  Google Scholar 

  55. Oberhammer FA, Pavelka M, Sharma S, et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci USA 1992;89:5408–12.

    Article  PubMed  CAS  Google Scholar 

  56. Kremer M, Perry AW, Milton RJ, Rippe RA, Wheeler MD, Hines IN. Pivotal role of Smad3 in a mouse model of T cell-mediated hepatitis. Hepatology 2008;47:113–26.

    Article  PubMed  CAS  Google Scholar 

  57. Herrera B, Fernandez M, Alvarez AM, et al. Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor beta in rat fetal hepatocytes. Hepatology 2001;34:548–56.

    Article  PubMed  CAS  Google Scholar 

  58. Freathy C, Brown DG, Roberts RA, Cain K. Transforming growth factor-beta(1) induces apoptosis in rat FaO hepatoma cells via cytochrome c release and oligomerization of Apaf-1 to form an approximately 700-kd apoptosome caspase-processing complex. Hepatology 2000;32:750–60.

    Article  PubMed  CAS  Google Scholar 

  59. Chisari FV. Cytotoxic T cells and viral hepatitis. J Clin Invest 1997;99:1472–7.

    Article  PubMed  CAS  Google Scholar 

  60. Maini MK, Boni C, Ogg GS, et al. Direct ex vivo analysis of hepatitis B virus-specific CD8(+) T cells associated with the control of infection. Gastroenterology 1999;117:1386–96.

    Article  PubMed  CAS  Google Scholar 

  61. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005;5:215–29.

    Article  PubMed  CAS  Google Scholar 

  62. Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991;351:317–20.

    Article  PubMed  CAS  Google Scholar 

  63. Chirillo P, Pagano S, Natoli G, et al. The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc Natl Acad Sci USA 1997;94:8162–7.

    Article  PubMed  CAS  Google Scholar 

  64. Terradillos O, Pollicino T, Lecoeur H, et al. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 1998;17:2115–23.

    Article  PubMed  CAS  Google Scholar 

  65. Kim KH, Seong BL. Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal. EMBO J 2003;22:2104–16.

    Article  PubMed  CAS  Google Scholar 

  66. Su F, Schneider RJ. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci USA 1997;94:8744–9.

    Article  PubMed  CAS  Google Scholar 

  67. Su F, Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 1996;70:4558–66.

    PubMed  CAS  Google Scholar 

  68. Waris G, Siddiqui A. Regulatory mechanisms of viral hepatitis B and C. J Biosci 2003;28:311–21.

    Article  PubMed  CAS  Google Scholar 

  69. Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3 K/AKT pathways: Involvement of invasive potential. FASEB J 2004;18:1123–5.

    Article  PubMed  CAS  Google Scholar 

  70. Foo NC, Ahn BY, Ma X, Hyun W, Yen TS. Cellular vacuolization and apoptosis induced by hepatitis B virus large surface protein. Hepatology 2002;36:1400–7.

    PubMed  CAS  Google Scholar 

  71. Baumert TF, Yang C, Schurmann P, et al. Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes. Hepatology 2005;41:247–56.

    Article  PubMed  CAS  Google Scholar 

  72. Lenhoff RJ, Summers J. Construction of avian hepadnavirus variants with enhanced replication and cytopathicity in primary hepatocytes. J Virol 1994;68:5706–13.

    PubMed  CAS  Google Scholar 

  73. Mengshol JA, Golden-Mason L, Rosen HR. Mechanisms of disease: HCV-induced liver injury. Nat Clin Pract Gastroenterol Hepatol 2007;4:622–34.

    Article  PubMed  CAS  Google Scholar 

  74. Bertoletti A, Maini MK. Protection or damage: A dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr Opin Microbiol 2000;3:387–92.

    PubMed  CAS  Google Scholar 

  75. Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 2005;436:946–52.

    Article  PubMed  CAS  Google Scholar 

  76. Cooper S, Erickson AL, Adams EJ, et al. Analysis of a successful immune response against hepatitis C virus. Immunity 1999;10:439–49.

    Article  PubMed  CAS  Google Scholar 

  77. Golden-Mason L, Rosen HR. Natural killer cells: Primary target for hepatitis C virus immune evasion strategies? Liver Transpl 2006;12:363–72.

    Google Scholar 

  78. Liu ZX, Govindarajan S, Okamoto S, Dennert G. NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection. J Immunol 2000;164:6480–6.

    PubMed  CAS  Google Scholar 

  79. Morita M, Watanabe Y, Akaike T. Protective effect of hepatocyte growth factor on interferon-gamma-induced cytotoxicity in mouse hepatocytes. Hepatology 1995;21:1585–93.

    PubMed  CAS  Google Scholar 

  80. Kaneko Y, Harada M, Kawano T, et al. Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 2000;191:105–14.

    Article  PubMed  CAS  Google Scholar 

  81. Exley MA, Koziel MJ. To be or not to be NKT: Natural killer T cells in the liver. Hepatology 2004;40:1033–40.

    Article  PubMed  Google Scholar 

  82. Fischer R, Baumert T, Blum HE. Hepatitis C virus infection and apoptosis. World J Gastroenterol 2007;13:4865–72.

    PubMed  CAS  Google Scholar 

  83. Ciccaglione AR, Marcantonio C, Tritarelli E, et al. The transmembrane domain of hepatitis C virus E1 glycoprotein induces cell death. Virus Res 2004;104:1–9.

    Article  PubMed  CAS  Google Scholar 

  84. Chiou HL, Hsieh YS, Hsieh MR, Chen TY. HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. Biochem Biophys Res Commun 2006;345:453–8.

    Article  PubMed  CAS  Google Scholar 

  85. Hiscott J, Lin R, Nakhaei P, Paz S. MasterCARD: A priceless link to innate immunity. Trends Mol Med 2006;12:53–6.

    Article  PubMed  CAS  Google Scholar 

  86. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005;122:669–82.

    Article  PubMed  CAS  Google Scholar 

  87. Prikhod'ko EA, Prikhod'ko GG, Siegel RM, Thompson P, Major ME, Cohen JI. The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology 2004;329:53–67.

    Article  PubMed  CAS  Google Scholar 

  88. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology 2006;130:794–809.

    Article  PubMed  CAS  Google Scholar 

  89. Wang J, Tong W, Zhang X, et al. Hepatitis C virus non-structural protein NS5A interacts with FKBP38 and inhibits apoptosis in Huh7 hepatoma cells. FEBS Lett 2006;580:4392–400.

    Article  PubMed  CAS  Google Scholar 

  90. Zhao M, Laissue JA, Zimmermann A. TUNEL-positive hepatocytes in alcoholic liver disease. A retrospective biopsy study using DNA nick end-labelling. Virchows Arch 1997;431:337–44.

    Article  PubMed  CAS  Google Scholar 

  91. Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc 2006;65:278–90.

    Article  PubMed  CAS  Google Scholar 

  92. Neuman MG, Shear NH, Bellentani S, Tiribelli C. Role of cytokines in ethanol-induced cytotoxicity in vitro in Hep G2 cells. Gastroenterology 1998;115:157–66.

    Article  PubMed  CAS  Google Scholar 

  93. Fernandez-Checa JC, Kaplowitz N. Hepatic mitochondrial glutathione: Transport and role in disease and toxicity. Toxicol Appl Pharmacol 2005;204:263–73.

    Article  PubMed  CAS  Google Scholar 

  94. Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: A dysfunctional relationship. Gastroenterology 2002;122:2049–63.

    Article  PubMed  CAS  Google Scholar 

  95. Deaciuc IV, Fortunato F, D'Souza NB, et al. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaccharide. Alcohol Clin Exp Res 1999;23:349–56.

    Article  PubMed  CAS  Google Scholar 

  96. Natori S, Rust C, Stadheim LM, Srinivasan A, Burgart LJ, Gores GJ. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis. J Hepatol 2001;34:248–53.

    Article  PubMed  CAS  Google Scholar 

  97. Adachi M, Brenner DA. Clinical syndromes of alcoholic liver disease. Dig Dis 2005;23:255–63.

    Article  PubMed  Google Scholar 

  98. Nanji AA, Jokelainen K, Fotouhinia M, et al. Increased severity of alcoholic liver injury in female rats: Role of oxidative stress, endotoxin, and chemokines. Am J Physiol Gastrointest Liver Physiol 2001;281:G1348–56.

    PubMed  CAS  Google Scholar 

  99. Yin M, Wheeler MD, Kono H, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 1999;117:942–52.

    Article  PubMed  CAS  Google Scholar 

  100. Neuman MG. Cytokines—Central factors in alcoholic liver disease. Alcohol Res Health 2003;27:307–16.

    PubMed  Google Scholar 

  101. Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: A population-based cohort study. Gastroenterology 2005;129:113–21.

    Article  PubMed  Google Scholar 

  102. Dam-Larsen S, Franzmann M, Andersen IB, et al. Long term prognosis of fatty liver: Risk of chronic liver disease and death. Gut 2004;53:750–5.

    Article  PubMed  CAS  Google Scholar 

  103. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: Summary of an AASLD Ssingle Ttopic Cconference. Hepatology 2003;37:1202–19.

    Article  PubMed  Google Scholar 

  104. Cuadrado A, Orive A, Garcia-Suarez C, et al. Non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma. Obes Surg 2005;15:442–6.

    Article  PubMed  Google Scholar 

  105. Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003;125:437–43.

    Article  PubMed  Google Scholar 

  106. Solis Herruzo JA, Garcia Ruiz I, Perez Carreras M, Munoz Yague MT. Non-alcoholic fatty liver disease. From insulin resistance to mitochondrial dysfunction. Rev Esp Enferm Dig 2006;98:844–74.

    PubMed  CAS  Google Scholar 

  107. Chalasani N, Gorski JC, Asghar MS, et al. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 2003;37:544–50.

    Article  PubMed  CAS  Google Scholar 

  108. Pessayre D, Fromenty B, Mansouri A. Mitochondrial injury in steatohepatitis. Eur J Gastroenterol Hepatol 2004;16:1095–105.

    Article  PubMed  CAS  Google Scholar 

  109. Crespo J, Cayon A, Fernandez-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 2001;34:1158–63.

    Article  PubMed  CAS  Google Scholar 

  110. Schattenberg JM, Singh R, Wang Y, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 2006;43:163–72.

    Article  PubMed  CAS  Google Scholar 

  111. Czaja AJ, Freese DK. Diagnosis and treatment of autoimmune hepatitis. Hepatology 2002;36:479–97.

    Article  PubMed  Google Scholar 

  112. Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver 2001;21:272–9.

    Article  PubMed  CAS  Google Scholar 

  113. Lohr HF, Schlaak JF, Lohse AW, et al. Autoreactive CD4+ LKM-specific and anticlonotypic T-cell responses in LKM-1 antibody-positive autoimmune hepatitis. Hepatology 1996;24:1416–21.

    Article  PubMed  CAS  Google Scholar 

  114. Lapierre P, Beland K, Alvarez F. Pathogenesis of autoimmune hepatitis: From break of tolerance to immune-mediated hepatocyte apoptosis. Transl Res 2007;149:107–13.

    Article  PubMed  CAS  Google Scholar 

  115. Ichiki Y, Aoki CA, Bowlus CL, Shimoda S, Ishibashi H, Gershwin ME. T cell immunity in autoimmune hepatitis. Autoimmun Rev 2005;4:315–21.

    Article  PubMed  CAS  Google Scholar 

  116. Czaja AJ, Carpenter HA. Histological features associated with relapse after corticosteroid withdrawal in type 1 autoimmune hepatitis. Liver Int 2003;23:116–23.

    Article  PubMed  Google Scholar 

  117. Sokol RJ, Devereaux M, Dahl R, Gumpricht E. “Let there be bile”--understanding hepatic injury in cholestasis. J Pediatr Gastroenterol Nutr 2006;43 Suppl 1:S4–9.

    Article  PubMed  Google Scholar 

  118. Guicciardi ME, Gores GJ. Bile acid-mediated hepatocyte apoptosis and cholestatic liver disease. Dig Liver Dis 2002;34:387–92.

    Article  PubMed  CAS  Google Scholar 

  119. Higuchi H, Gores GJ. Bile acid regulation of hepatic physiology: IV. Bile acids and death receptors. Am J Physiol Gastrointest Liver Physiol 2003;284:G734–8.

    PubMed  CAS  Google Scholar 

  120. Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ. Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 2001;33:616–26.

    Article  PubMed  CAS  Google Scholar 

  121. Pizarro M, Balasubramaniyan N, Solis N, et al. Bile secretory function in the obese Zucker rat: Evidence of cholestasis and altered canalicular transport function. Gut 2004;53:1837–43.

    Article  PubMed  CAS  Google Scholar 

  122. Kass GE. Mitochondrial involvement in drug-induced hepatic injury. Chem Biol Interact 2006;163:145–59.

    Article  PubMed  CAS  Google Scholar 

  123. Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 2006;89:31–41.

    Article  PubMed  CAS  Google Scholar 

  124. Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 2004;40:1170–9.

    Article  PubMed  CAS  Google Scholar 

  125. Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 2006;44:778–87.

    Article  PubMed  CAS  Google Scholar 

  126. Glantzounis GK, Salacinski HJ, Yang W, Davidson BR, Seifalian AM. The contemporary role of antioxidant therapy in attenuating liver ischemia-reperfusion injury: A review. Liver Transpl 2005;11:1031–47.

    Article  Google Scholar 

  127. Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 2000;32:169–73.

    Article  PubMed  CAS  Google Scholar 

  128. Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation 1993;55:1265–72.

    Article  PubMed  CAS  Google Scholar 

  129. Caldwell CC, Okaya T, Martignoni A, Husted T, Schuster R, Lentsch AB. Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2005;289:G969–76.

    Article  PubMed  CAS  Google Scholar 

  130. Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol 2000;15:718–24.

    Article  PubMed  CAS  Google Scholar 

  131. Gujral JS, Bucci TJ, Farhood A, Jaeschke H. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: Apoptosis or necrosis? Hepatology 2001;33:397–405.

    PubMed  CAS  Google Scholar 

  132. Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 2003;124:494–503.

    Article  PubMed  CAS  Google Scholar 

  133. Contreras JL, Vilatoba M, Eckstein C, Bilbao G, Anthony Thompson J, Eckhoff DE. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery 2004;136:390–400.

    Article  PubMed  Google Scholar 

  134. Fabregat I, Roncero C, Fernandez M. Survival and apoptosis: A dysregulated balance in liver cancer. Liver Int 2007;27:155–62.

    Article  PubMed  CAS  Google Scholar 

  135. Guicciardi ME, Gores GJ. Apoptosis: A mechanism of acute and chronic liver injury. Gut 2005;54:1024–33.

    Article  PubMed  CAS  Google Scholar 

  136. Vousden KH, Lu X. Live or let die: The cell's response to p53. Nat Rev Cancer 2002;2:594–604.

    Article  PubMed  CAS  Google Scholar 

  137. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28:622–9.

    Article  PubMed  CAS  Google Scholar 

  138. Hu TH, Huang CC, Lin PR, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 2003;97:1929–40.

    Article  PubMed  CAS  Google Scholar 

  139. Horie Y, Suzuki A, Kataoka E, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004;113:1774–83.

    PubMed  CAS  Google Scholar 

  140. Osawa Y, Nagaki M, Banno Y, Nozawa Y, Moriwaki H, Nakashima S. Sphingosine kinase regulates hepatoma cell differentiation: Roles of hepatocyte nuclear factor and retinoid receptor. Biochem Biophys Res Commun 2001;286:673–7.

    Article  PubMed  CAS  Google Scholar 

  141. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H. Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 2001;34:55–61.

    Article  PubMed  CAS  Google Scholar 

  142. Sieghart W, Losert D, Strommer S, et al. Mcl-1 overexpression in hepatocellular carcinoma: A potential target for antisense therapy. J Hepatol 2006;44:151–7.

    Article  PubMed  CAS  Google Scholar 

  143. Notarbartolo M, Cervello M, Giannitrapani L, et al. Expression of IAPs and alternative splice variants in hepatocellular carcinoma tissues and cells. Ann NY Acad Sci 2004;1028:289–93.

    Article  PubMed  CAS  Google Scholar 

  144. Tai DI, Tsai SL, Chang YH, et al. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 2000;89:2274–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Osawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Osawa, Y., Seki, E., Brenner, D.A. (2009). Apoptosis in Liver Injury and Liver Diseases. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_24

Download citation

Publish with us

Policies and ethics