Skip to main content

Cell Death in Drosophila

  • Chapter
  • First Online:
Essentials of Apoptosis

Abstract

The fruit fly, Drosophila melanogaster, has been instrumental in identifying pathways regulating development and signal transduction. Drosophila has been a relatively late entrant into the world of apoptosis, but with its powerful genetic tools, studies in the fruit fly are destined to contribute essential insights into cell death. Drosophila has homologues to mammalian apoptotic genes, and their function can be studied at the cellular level as well as in the developing organism. As in other organisms, cell death in the fruit fly removes damaged and unneeded cells. Beyond this, however, experiments in the fruit fly have provided unique insights into how cell death removes cells that initiate the incorrect developmental program. Furthermore, Drosophila studies have begun to elucidate how cell death is spatially regulated for precise pattern formation. In this chapter, we introduce the molecular players in Drosophila cell death, discuss current knowledge about cell death during development, introduce the idea that dying cells induce neighboring cells to proliferate, and finish with nonapoptotic roles for cell death proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239–57.

    PubMed  CAS  Google Scholar 

  2. Cashio P, Lee TV, Bergmann A. Genetic control of programmed cell death in Drosophila melanogaster. Sem Cell Dev Biol 2005;16(2):225–35.

    CAS  Google Scholar 

  3. Kornbluth S, White K. Apoptosis in Drosophila: Neither fish nor fowl (nor man, nor worm). J Cell Sci 2005;118(Pt 9):1779–87.

    PubMed  CAS  Google Scholar 

  4. Hay BA, Guo M. Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 2006;22:623–50.

    PubMed  CAS  Google Scholar 

  5. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407 (6805):770–6.

    PubMed  CAS  Google Scholar 

  6. Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S. DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci USA 1999;96 (8):4307–12.

    PubMed  CAS  Google Scholar 

  7. Xu D, Li Y, Arcaro M, Lackey M, Bergmann A. The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 2005;132 (9):2125–34.

    PubMed  CAS  Google Scholar 

  8. Doumanis J, Quinn L, Richardson H, Kumar S. STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ 2001;8 (4):387–94.

    PubMed  CAS  Google Scholar 

  9. Baum JS, Arama E, Steller H, McCall K. The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 2007;14 (8):1508–17.

    PubMed  CAS  Google Scholar 

  10. Hawkins CJ, Yoo SJ, Peterson EP, Wang SL, Vernooy SY, Hay BA. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem 2000;275 (35):27084–93.

    PubMed  CAS  Google Scholar 

  11. Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 2006;13(10):1697–706.

    Google Scholar 

  12. Fraser AG, Evan GI. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO J 1997;16(10):2805–13.

    PubMed  CAS  Google Scholar 

  13. Song Z, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development. Science 1997;275(5299):536–40.

    PubMed  CAS  Google Scholar 

  14. McCall K, Steller H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science 1998;279(5348):230–4.

    PubMed  CAS  Google Scholar 

  15. Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 2006;13(10):1697–706.

    PubMed  CAS  Google Scholar 

  16. Harvey NL, Daish T, Mills K, et al. Characterization of the Drosophila caspase, DAMM. J Biol Chem 2001;276(27):25342–50.

    PubMed  CAS  Google Scholar 

  17. Dorstyn L, Read S, Cakouros D, Huh JR, Hay BA, Kumar S. The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 2002;156(6):1089–98.

    PubMed  CAS  Google Scholar 

  18. Zimmermann KC, Ricci JE, Droin NM, Green DR. The role of ARK in stress-induced apoptosis in Drosophila cells. J Cell Biol 2002;156(6):1077–87.

    PubMed  CAS  Google Scholar 

  19. Yu X, Wang L, Acehan D, Wang X, Akey CW. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J Mol Biol 2006;355(3):577–89.

    PubMed  CAS  Google Scholar 

  20. Means JC, Muro I, Clem RJ. Lack of involvement of mitochondrial factors in caspase activation in a Drosophila cell-free system. Cell Death Differ 2006;13(7):1222–34.

    PubMed  CAS  Google Scholar 

  21. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K. Mitochondrial disruption in Drosophila apoptosis. Dev Cell 2007;12(5):793–806.

    PubMed  CAS  Google Scholar 

  22. Varkey J, Chen P, Jemmerson R, Abrams JM. Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol 1999;144(4):701–10.

    PubMed  CAS  Google Scholar 

  23. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 2000;288(5467):874–7.

    PubMed  CAS  Google Scholar 

  24. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science 1994;264(5159):677–83.

    PubMed  CAS  Google Scholar 

  25. Jiang C, Lamblin AF, Steller H, Thummel CS. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 2000;5(3):445–55.

    PubMed  CAS  Google Scholar 

  26. Lee CY, Simon CR, Woodard CT, Baehrecke EH. Genetic mechanism for the stage- and tissue-specific regulation of steroid triggered programmed cell death in Drosophila. Dev Biol 2002;252(1):138–48.

    PubMed  CAS  Google Scholar 

  27. Lee CY, Cooksey BA, Baehrecke EH. Steroid regulation of midgut cell death during Drosophila development. Dev Biol 2002;250(1):101–11.

    PubMed  CAS  Google Scholar 

  28. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell 2000;101(1):103–13.

    PubMed  CAS  Google Scholar 

  29. Sogame N, Kim M, Abrams JM. Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci USA 2003;100(8):4696–701.

    PubMed  CAS  Google Scholar 

  30. Yokokura T, Dresnek D, Huseinovic N, et al. Dissection of DIAP1 functional domains via a mutant replacement strategy. J Biol Chem 2004; 279(50):52603–12.

    PubMed  CAS  Google Scholar 

  31. Shi Y. Caspase activation, inhibition, and reactivation: A mechanistic view. Protein Sci 2004;13(8):1979–87.

    PubMed  CAS  Google Scholar 

  32. Bergmann A, Yang AY, Srivastava M. Regulators of IAP function: Coming to grips with the grim reaper. Curr Opin Cell Biol 2003;15(6):717–24.

    PubMed  CAS  Google Scholar 

  33. Martin SJ. Destabilizing influences in apoptosis: Sowing the seeds of IAP destruction. Cell 2002;109(7):793–6.

    PubMed  CAS  Google Scholar 

  34. Colussi PA, Quinn LM, Huang DC, et al. Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery [see comments]. J Cell Biol 2000;148(4):703–14.

    PubMed  CAS  Google Scholar 

  35. Brachmann CB, Jassim OW, Wachsmuth BD, Cagan RL. The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr Biol 2000;10(9):547–50.

    PubMed  CAS  Google Scholar 

  36. Quinn L, Coombe M, Mills K, et al. Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 2003;22(14):3568–79.

    PubMed  CAS  Google Scholar 

  37. Igaki T, Kanuka H, Inohara N, et al. Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc Natl Acad Sci USA 2000;97(2):662–7.

    PubMed  CAS  Google Scholar 

  38. Zhang H, Holzgreve W, De Geyter C. Evolutionarily conserved Bok proteins in the Bcl-2 family. FEBS Lett 2000;480(2–3):311–3.

    PubMed  CAS  Google Scholar 

  39. Zhang H, Huang Q, Ke N, et al. Drosophila pro-apoptotic bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 2000;275(35):27303–6.

    PubMed  CAS  Google Scholar 

  40. Igaki T, Kanuka H, Inohara N, et al. Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc Natl Acad Sci USA 2000;97(2):662–7.

    PubMed  CAS  Google Scholar 

  41. Colussi PA, Quinn LM, Huang DC, et al. Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 2000;148(4):703–14.

    PubMed  CAS  Google Scholar 

  42. Doumanis J, Dorstyn L, Kumar S. Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY. Cell Death Differ 2007;14(5):907–15.

    PubMed  CAS  Google Scholar 

  43. Senoo-Matsuda N, Igaki T, Miura M. Bax-like protein Drob-1 protects neurons from expanded polyglutamine-induced toxicity in Drosophila. EMBO J 2005;24(14):2700–13.

    PubMed  CAS  Google Scholar 

  44. Sevrioukov EA, Burr J, Huang EW, et al. Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 2007;45(4):184–93.

    PubMed  CAS  Google Scholar 

  45. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 1999;98(4):453–63.

    PubMed  CAS  Google Scholar 

  46. Rodriguez A, Chen P, Oliver H, Abrams JM. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J 2002;21(9):2189–97.

    PubMed  CAS  Google Scholar 

  47. Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth S. A GH3-like domain in reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 2003;278(45):44758–68.

    PubMed  CAS  Google Scholar 

  48. Claveria C, Caminero E, Martinez AC, Campuzano S, Torres M. GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J 2002;21(13):3327–36.

    PubMed  CAS  Google Scholar 

  49. Haining WN, Carboy-Newcomb C, Wei CL, Steller H. The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci USA 1999;96(9):4936–41.

    PubMed  CAS  Google Scholar 

  50. Challa M, Malladi S, Pellock BJ, et al. Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 2007;26(13):3144–56.

    PubMed  CAS  Google Scholar 

  51. Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila. Biochem Biophys Res Commun 2007;356(4):993–7.

    PubMed  CAS  Google Scholar 

  52. Khan FS, Fujioka M, Datta P, Fernandes-Alnemri T, Jaynes JB, Alnemri ES. The interaction of DIAP1 with dOmi/HtrA2 regulates cell death in Drosophila. Cell Death Differ 2008;15(6):1073–83.

    Google Scholar 

  53. Herzig S, Martinou JC. Mitochondrial dynamics: To be in good shape to survive. Curr Mol Med 2008;8(2):131–7.

    PubMed  CAS  Google Scholar 

  54. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998;281(5381):1305–8.

    PubMed  CAS  Google Scholar 

  55. Kauppila S, Maaty WS, Chen P, et al. Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene 2003;22(31):4860–7.

    PubMed  CAS  Google Scholar 

  56. Chen P, Rodriguez A, Erskine R, Thach T, Abrams JM. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev Biol 1998;201(2):202–16.

    PubMed  CAS  Google Scholar 

  57. Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep 2000;1(4):353–8.

    PubMed  CAS  Google Scholar 

  58. Bergmann A, Tugentman M, Shilo BZ, Steller H. Regulation of cell number by MAPK-dependent control of apoptosis: A mechanism for trophic survival signaling. Dev Cell 2002;2(2):159–70.

    PubMed  CAS  Google Scholar 

  59. Bergmann A, Agapite J, McCall K, Steller H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 1998;95(3):331–41.

    PubMed  CAS  Google Scholar 

  60. Kurada P, White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 1998;95(3):319–29.

    PubMed  CAS  Google Scholar 

  61. Karim FD, Rubin GM. Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 1998;125(1):1–9.

    PubMed  CAS  Google Scholar 

  62. Yu SY, Yoo SJ, Yang L, et al. A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 2002;129(13):3269–78.

    PubMed  CAS  Google Scholar 

  63. Delic J, Coppey J, Magdelenat H, Coppey-Moisan M. Impossibility of acridine orange intercalation in nuclear DNA of the living cell. Exp Cell Res 1991;194(1):147–53.

    PubMed  CAS  Google Scholar 

  64. White K, Lisi S, Kurada P, Franc N, Bangs P. Methods for studying apoptosis and phagocytosis of apoptotic cells in Drosophila tissues and cell lines. Methods Cell Biol 2001;66:321–38.

    PubMed  CAS  Google Scholar 

  65. Abbott MK, Lengyel JA. Embryonic head involution and rotation of male terminalia require the Drosophila locus head involution defective. Genetics 1991;129(3):783–9.

    PubMed  CAS  Google Scholar 

  66. Meier P, Silke J, Leevers SJ, Evan GI. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J 2000;19(4):598–611.

    PubMed  CAS  Google Scholar 

  67. Baum JS, St George JP, McCall K. Programmed cell death in the germline. Semin Cell Dev Biol 2005;16(2):245–59.

    PubMed  CAS  Google Scholar 

  68. Foley K, Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 1998;125(6):1075–82.

    PubMed  CAS  Google Scholar 

  69. Peterson JS, Bass BP, Jue D, Rodriguez A, Abrams JM, McCall K. Noncanonical cell death pathways act during Drosophila oogenesis. Genesis 2007;45(6):396–404.

    PubMed  CAS  Google Scholar 

  70. Twombly V, Blackman RK, Jin H, Graff JM, Padgett RW, Gelbart WM. The TGF-beta signaling pathway is essential for Drosophila oogenesis. Development 1996;122(5):1555–65.

    PubMed  CAS  Google Scholar 

  71. DiNardo S, Heemskerk J, Dougan S, O'Farrell PH. The making of a maggot: Patterning the Drosophila embryonic epidermis. Curr Opin Genet Dev 1994;4(4):529–34.

    PubMed  CAS  Google Scholar 

  72. Pazdera TM, Janardhan P, Minden JS. Patterned epidermal cell death in wild-type and segment polarity mutant Drosophila embryos. Development 1998;125(17):3427–36.

    PubMed  CAS  Google Scholar 

  73. Tepass U, Fessler LI, Aziz A, Hartenstein V. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 1994;120(7):1829–37.

    PubMed  CAS  Google Scholar 

  74. Bejsovec A, Wieschaus E. Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos. Development 1993;119(2):501–17.

    PubMed  CAS  Google Scholar 

  75. Perrimon N, Mahowald AP. Multiple functions of segment polarity genes in Drosophila. Dev Biol 1987;119(2):587–600.

    PubMed  CAS  Google Scholar 

  76. Klingensmith J, Noll E, Perrimon N. The segment polarity phenotype of Drosophila involves differential tendencies toward transformation and cell death. Dev Biol 1989;134(1):130–45.

    PubMed  CAS  Google Scholar 

  77. Parker J. Control of compartment size by an EGF ligand from neighboring cells. Curr Biol 2006;16(20):2058–65.

    PubMed  CAS  Google Scholar 

  78. Namba R, Pazdera TM, Cerrone RL, Minden JS. Drosophila embryonic pattern repair: How embryos respond to bicoid dosage alteration. Development 1997;124(7):1393–403.

    PubMed  CAS  Google Scholar 

  79. Sonnenfeld MJ, Jacobs JR. Apoptosis of the midline glia during Drosophila embryogenesis: A correlation with axon contact. Development 1995;121(2):569–78.

    PubMed  CAS  Google Scholar 

  80. Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR. Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci USA 1997;94(10):5131–6.

    PubMed  CAS  Google Scholar 

  81. Scholz H, Sadlowski E, Klaes A, Klambt C. Control of midline glia development in the embryonic Drosophila CNS. Mech Dev 1997;64(1–2):137–51.

    PubMed  Google Scholar 

  82. Stemerdink C, Jacobs JR. Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos. Development 1997;124(19):3787–96.

    PubMed  CAS  Google Scholar 

  83. Richter S, Hartmann B, Reichert H. The wingless gene is required for embryonic brain development in Drosophila. Dev Genes Evol 1998;208(1):37–45.

    PubMed  CAS  Google Scholar 

  84. Nassif C, Daniel A, Lengyel JA, Hartenstein V. The role of morphogenetic cell death during Drosophila embryonic head development. Dev Biol 1998;197(2):170–86.

    PubMed  CAS  Google Scholar 

  85. Baehrecke EH. How death shapes life during development. Nat Rev Mol Cell Biol 2002;3(10):779–87.

    PubMed  CAS  Google Scholar 

  86. Shearn A, Rice T, Garen A, Gehring W. Imaginal disc abnormalities in lethal mutants of Drosophila. Proc Natl Acad Sci USA 1971;68(10):2594–8.

    PubMed  CAS  Google Scholar 

  87. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2002;2(2):239–49.

    PubMed  CAS  Google Scholar 

  88. Britton JS, Edgar BA. Environmental control of the cell cycle in Drosophila: Nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 1998;125(11):2149–58.

    PubMed  CAS  Google Scholar 

  89. Yin VP, Thummel CS. Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol 2005;16(2):237–43.

    PubMed  CAS  Google Scholar 

  90. Baehrecke EH. Autophagic programmed cell death in Drosophila. Cell Death Differ 2003;10(9):940–5.

    PubMed  CAS  Google Scholar 

  91. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 2005;1(2):84–91.

    PubMed  CAS  Google Scholar 

  92. Ueno T, Kominami E. Mechanism and regulation of lysosomal sequestration and proteolysis. Biomed Biochim Acta 1991;50(4–6):365–71.

    PubMed  CAS  Google Scholar 

  93. Baehrecke EH, Thummel CS. The Drosophila E93 gene from the 93F early puff displays stage- and tissue-specific regulation by 20-hydroxyecdysone. Dev Biol 1995;171(1):85–97.

    PubMed  CAS  Google Scholar 

  94. Jiang C, Baehrecke EH, Thummel CS. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 1997;124(22):4673–83.

    PubMed  CAS  Google Scholar 

  95. Lee CY, Wendel DP, Reid P, Lam G, Thummel CS, Baehrecke EH. E93 directs steroid-triggered programmed cell death in Drosophila. Mol Cell 2000;6(2):433–43.

    PubMed  CAS  Google Scholar 

  96. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 2003;13(4):350–7.

    PubMed  CAS  Google Scholar 

  97. Gorski SM, Chittaranjan S, Pleasance ED, et al. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 2003;13(4):358–63.

    PubMed  CAS  Google Scholar 

  98. Juhasz G, Erdi B, Sass M, Neufeld TP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 2007;21(23):3061–6.

    PubMed  CAS  Google Scholar 

  99. Martin DN, Baehrecke EH. Caspases function in autophagic programmed cell death in Drosophila. Development 2004;131(2):275–84.

    PubMed  CAS  Google Scholar 

  100. Lee CY, Baehrecke EH. Steroid regulation of autophagic programmed cell death during development. Development 2001;128(8):1443–55.

    PubMed  CAS  Google Scholar 

  101. Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007;131(6):1137–48.

    PubMed  CAS  Google Scholar 

  102. Milan M, Campuzano S, Garcia-Bellido A. Developmental parameters of cell death in the wing disc of Drosophila. Proc Natl Acad Sci USA 1997;94(11):5691–6.

    PubMed  CAS  Google Scholar 

  103. Adachi-Yamada T, O'Connor MB. Morphogenetic apoptosis: A mechanism for correcting discontinuities in morphogen gradients. Dev Biol 2002;251(1):74–90.

    PubMed  CAS  Google Scholar 

  104. Milan M. Survival of the fittest. Cell competition in the Drosophila wing. EMBO Rep 2002;3(8):724–5.

    PubMed  CAS  Google Scholar 

  105. Milan M, Perez L, Cohen SM. Short-range cell interactions and cell survival in the Drosophila wing. Dev Cell 2002;2(6):797–805.

    PubMed  CAS  Google Scholar 

  106. Adachi-Yamada T, Harumoto T, Sakurai K, et al. Wing-to-leg homeosis by spineless causes apoptosis regulated by Fish-lips, a novel leucine-rich repeat transmembrane protein. Mol Cell Biol 2005;25(8):3140–50.

    PubMed  CAS  Google Scholar 

  107. Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 1999;400(6740):166–9.

    PubMed  CAS  Google Scholar 

  108. Usui K, Simpson P. Cellular basis of the dynamic behavior of the imaginal thoracic discs during Drosophila metamorphosis. Dev Biol 2000;225(1):13–25.

    PubMed  CAS  Google Scholar 

  109. Condic ML, Fristrom D, Fristrom JW. Apical cell shape changes during Drosophila imaginal leg disc elongation: A novel morphogenetic mechanism. Development 1991;111(1):23–33.

    PubMed  CAS  Google Scholar 

  110. Fristrom D, Wilcox M, Fristrom J. The distribution of PS integrins, laminin A and F-actin during key stages in Drosophila wing development. Development 1993;117(2):509–23.

    PubMed  CAS  Google Scholar 

  111. Poodry CA, Schneiderman HA. The ultrastructure of the developing leg of Drosophila melanogaster. Dev Genes Evol 1970;166(1):1–44.

    Google Scholar 

  112. Jan YN, Jan LY. Asymmetric cell division. Nature 1998;392(6678):775–8.

    PubMed  CAS  Google Scholar 

  113. Gho M, Bellaiche Y, Schweisguth F. Revisiting the Drosophila microchaete lineage: A novel intrinsically asymmetric cell division generates a glial cell. Development 1999;126(16):3573–84.

    PubMed  CAS  Google Scholar 

  114. Reddy GV, Rodrigues V. A glial cell arises from an additional division within the mechanosensory lineage during development of the microchaete on the Drosophila notum. Development 1999;126(20):4617–22.

    PubMed  CAS  Google Scholar 

  115. Fichelson P, Gho M. The glial cell undergoes apoptosis in the microchaete lineage of Drosophila. Development 2003;130(1):123–33.

    PubMed  CAS  Google Scholar 

  116. Bonini NM, Leiserson WM, Benzer S. The eyes absent gene: Genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 1993;72(3):379–95.

    PubMed  CAS  Google Scholar 

  117. Ready DF, Hanson TE, Benzer S. Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 1976;53(2):217–40.

    PubMed  CAS  Google Scholar 

  118. Wolff T, Ready DF. Cell death in normal and rough eye mutants of Drosophila. Development 1991;113(3):825–39.

    PubMed  CAS  Google Scholar 

  119. Zipursky SL, Rubin GM. Determination of neuronal cell fate: Lessons from the R7 neuron of Drosophila. Annu Rev Neurosci 1994;17:373–97.

    PubMed  CAS  Google Scholar 

  120. Rusconi JC, Hays R, Cagan RL. Programmed cell death and patterning in Drosophila. Cell Death Differ 2000;7(11):1063–70.

    PubMed  CAS  Google Scholar 

  121. Baker NE, Yu SY. The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 2001;104(5):699–708.

    PubMed  CAS  Google Scholar 

  122. Brachmann CB, Cagan RL. Patterning the fly eye: The role of apoptosis. Trends Genet 2003;19(2):91–6.

    PubMed  CAS  Google Scholar 

  123. Hay BA, Wolff T, Rubin GM. Expression of baculovirus P35 prevents cell death in Drosophila. Development 1994;120(8):2121–9.

    PubMed  CAS  Google Scholar 

  124. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 1995;9(14):1694–708.

    PubMed  CAS  Google Scholar 

  125. Hay BA, Wassarman DA, Rubin GM. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 1995;83(7):1253–62.

    PubMed  CAS  Google Scholar 

  126. Chen P, Nordstrom W, Gish B, Abrams JM. grim, a novel cell death gene in Drosophila. Genes Dev 1996;10(14):1773–82.

    PubMed  CAS  Google Scholar 

  127. White K, Tahaoglu E, Steller H. Cell killing by the Drosophila gene reaper. Science 1996;271(5250):805–7.

    PubMed  CAS  Google Scholar 

  128. Mendes CS, Arama E, Brown S, et al. Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep 2006;7(9):933–9.

    PubMed  CAS  Google Scholar 

  129. Reiter C, Schimansky T, Nie Z, Fischbach KF. Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: The role of the IrreC-rst protein. Development 1996;122(6):1931–40.

    PubMed  CAS  Google Scholar 

  130. Grzeschik NA, Knust E. IrreC/rst-mediated cell sorting during Drosophila pupal eye development depends on proper localisation of DE-cadherin. Development 2005;132(9):2035–45.

    PubMed  CAS  Google Scholar 

  131. Bao S, Cagan R. Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev Cell 2005;8(6):925–35.

    PubMed  CAS  Google Scholar 

  132. Cordero JB, Larson DE, Craig CR, Hays R, Cagan R. Dynamic decapentaplegic signaling regulates patterning and adhesion in the Drosophila pupal retina. Development 2007;134(10):1861–71.

    PubMed  CAS  Google Scholar 

  133. Tepass U, Harris KP. Adherens junctions in Drosophila retinal morphogenesis. Trends Cell Biol 2007;17(1):26–35.

    PubMed  CAS  Google Scholar 

  134. Cordero J, Jassim O, Bao S, Cagan R. A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mech Dev 2004;121(12):1523–30.

    PubMed  CAS  Google Scholar 

  135. Miller DT, Cagan RL. Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 1998;125(12):2327–35.

    PubMed  CAS  Google Scholar 

  136. Sawamoto K, Okano H, Kobayakawa Y, Hayashi S, Mikoshiba K, Tanimura T. The function of argos in regulating cell fate decisions during Drosophila eye and wing vein development. Dev Biol 1994;164(1):267–76.

    PubMed  CAS  Google Scholar 

  137. Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 1995;376(6542):699–702.

    PubMed  CAS  Google Scholar 

  138. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 1996;87(4):651–60.

    PubMed  CAS  Google Scholar 

  139. Monserrate JP, Brachmann CB. Identification of the death zone: A spatially restricted region for programmed cell death that sculpts the fly eye. Cell Death Differ 2007;14(2):209–17.

    PubMed  CAS  Google Scholar 

  140. Cagan RL, Ready DF. Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 1989;3(8):1099–112.

    PubMed  CAS  Google Scholar 

  141. Wildonger J, Sosinsky A, Honig B, Mann RS. Lozenge directly activates argos and klumpfuss to regulate programmed cell death. Genes Dev 2005;19(9):1034–9.

    PubMed  CAS  Google Scholar 

  142. Rusconi JC, Fink JL, Cagan R. klumpfuss regulates cell death in the Drosophila retina. Mech Dev 2004;121(6):537–46.

    PubMed  CAS  Google Scholar 

  143. Dos-Santos N, Rubin T, Chalvet F, et al. Drosophila retinal pigment cell death is regulated in a position-dependent manner by a cell memory gene. Int J Dev Biol 2008;52(1):21–31.

    PubMed  Google Scholar 

  144. Lin HV, Rogulja A, Cadigan KM. Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development 2004;131(10):2409–18.

    PubMed  CAS  Google Scholar 

  145. Kimura KI, Truman JW. Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. J Neurosci 1990;10(2):403–11.

    PubMed  CAS  Google Scholar 

  146. Kimura K, Tanimura T. Mutants with delayed cell death of the ptilinal head muscles in Drosophila. J Neurogenet 1992;8(2):57–69.

    PubMed  CAS  Google Scholar 

  147. Robinow S, Talbot WS, Hogness DS, Truman JW. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development 1993;119(4):1251–9.

    PubMed  CAS  Google Scholar 

  148. Robinow S, Draizen TA, Truman JW. Genes that induce apoptosis: Transcriptional regulation in identified, doomed neurons of the Drosophila CNS. Dev Biol 1997;190(2):206–13.

    PubMed  CAS  Google Scholar 

  149. Kimura K, Kodama A, Hayasaka Y, Ohta T. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 2004;131(7):1597–606.

    PubMed  CAS  Google Scholar 

  150. Yarosh W, Monserrate J, Tong JJ, et al. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet 2008;4(1):e6.

    PubMed  Google Scholar 

  151. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003;100(7):4078–83.

    PubMed  CAS  Google Scholar 

  152. Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441(7097):1157–61.

    PubMed  CAS  Google Scholar 

  153. Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006;441(7097):1162–6.

    PubMed  CAS  Google Scholar 

  154. Xiong WC, Montell C. Defective glia induce neuronal apoptosis in the repo visual system of Drosophila. Neuron 1995;14(3):581–90.

    PubMed  CAS  Google Scholar 

  155. Steller H, Fischbach KF, Rubin GM. Disconnected: A locus required for neuronal pathway formation in the visual system of Drosophila. Cell 1987;50(7):1139–53.

    PubMed  CAS  Google Scholar 

  156. Campos AR, Fischbach KF, Steller H. Survival of photoreceptor neurons in the compound eye of Drosophila depends on connections with the optic ganglia. Development 1992;114(2):355–66.

    PubMed  CAS  Google Scholar 

  157. Zuker CS. The biology of vision of Drosophila. Proc Natl Acad Sci USA 1996;93(2):571–6.

    PubMed  CAS  Google Scholar 

  158. Hays R, Craig CR, Cagan R. Programmed death in eye development. In: Moses K, ed. Drosophila Eye Development. Berlin: Springer-Verlag; 2002:169–89.

    Google Scholar 

  159. Hackam AS. The Wnt signaling pathway in retinal degenerations. IUBMB Life 2005;57(6):381–8.

    PubMed  CAS  Google Scholar 

  160. Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 2007;454(5):821–47.

    PubMed  CAS  Google Scholar 

  161. Nakamura RE, Hunter DD, Yi H, Brunken WJ, Hackam AS. Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC Cell Biol 2007;8:52.

    PubMed  Google Scholar 

  162. Yi H, Nakamura RE, Mohamed O, Dufort D, Hackam AS. Characterization of Wnt signaling during photoreceptor degeneration. Investigative Ophthal Vis Sci 2007;48(12):5733–41.

    Google Scholar 

  163. Davidson FF, Steller H. Blocking apoptosis prevents blindness in Drosophila retinal degeneration mutants. Nature 1998;391(6667):587–91.

    PubMed  CAS  Google Scholar 

  164. Alloway PG, Howard L, Dolph PJ. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 2000;28(1):129–38.

    PubMed  CAS  Google Scholar 

  165. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000;404(6776):394–8.

    PubMed  CAS  Google Scholar 

  166. Jackson GR, Salecker I, Dong X, et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 1998;21(3):633–42.

    PubMed  CAS  Google Scholar 

  167. Warrick JM, Paulson HL, Gray-Board GL, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 1998;93(6):939–49.

    PubMed  CAS  Google Scholar 

  168. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000;408(6808):101–6.

    PubMed  CAS  Google Scholar 

  169. Cauchi RJ, van den Heuvel M. The fly as a model for neurodegenerative diseases: Is it worth the jump? Neuro-degenerative Dis 2006;3(6):338–56.

    Google Scholar 

  170. Marsh JL, Thompson LM. Drosophila in the study of neurodegenerative disease. Neuron 2006;52(1):169–78.

    PubMed  CAS  Google Scholar 

  171. Nichols CD. Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacol Ther 2006;112(3):677–700.

    PubMed  CAS  Google Scholar 

  172. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992;69(1):119–28.

    PubMed  CAS  Google Scholar 

  173. Evan G, Harrington E, Fanidi A, Land H, Amati B, Bennett M. Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci 1994;345(1313):269–75.

    PubMed  CAS  Google Scholar 

  174. Haynie JL, Bryant PJ. Intercalary regeneration in imaginal wing disk of Drosophila melanogaster. Nature 1976;259(5545):659–62.

    PubMed  CAS  Google Scholar 

  175. Ryoo HD, Gorenc T, Steller H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 2004;7(4):491–501.

    PubMed  CAS  Google Scholar 

  176. Wells BS, Yoshida E, Johnston LA. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 2006;16(16):1606–15.

    PubMed  CAS  Google Scholar 

  177. Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M. DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 2006;26(19):7258–68.

    PubMed  CAS  Google Scholar 

  178. Perez-Garijo A, Martin FA, Morata G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 2004;131(22):5591–8.

    PubMed  CAS  Google Scholar 

  179. Huh JR, Guo M, Hay BA. Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 2004;14(14):1262–6.

    PubMed  CAS  Google Scholar 

  180. Fan Y, Bergmann A. Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 2008;14(3):399–410.

    PubMed  CAS  Google Scholar 

  181. Fabrizio JJ, Hime G, Lemmon SK, Bazinet C. Genetic dissection of sperm individualization in Drosophila melanogaster. Development 1998;125(10):1833–43.

    PubMed  CAS  Google Scholar 

  182. Tokuyasu KT, Peacock WJ, Hardy RW. Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z Zellforsch Mikrosk Anat 1972;124(4):479–506.

    PubMed  CAS  Google Scholar 

  183. Arama E, Agapite J, Steller H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 2003;4(5):687–97.

    PubMed  CAS  Google Scholar 

  184. Huh JR, Vernooy SY, Yu H, et al. Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2004;2(1):E15.

    PubMed  Google Scholar 

  185. Arama E, Bader M, Srivastava M, Bergmann A, Steller H. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J 2006;25(1):232–43.

    PubMed  CAS  Google Scholar 

  186. Geisbrecht ER, Montell DJ. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 2004;118(1):111–25.

    PubMed  CAS  Google Scholar 

  187. Williams DW, Truman JW. Cellular mechanisms of dendrite pruning in Drosophila: Insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 2005;132(16):3631–42.

    PubMed  CAS  Google Scholar 

  188. Kuo CT, Jan LY, Jan YN. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci USA 2005;102(42):15230–5.

    PubMed  CAS  Google Scholar 

  189. Awasaki T, Ito K. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 2004;14(8):668–77.

    PubMed  CAS  Google Scholar 

  190. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW. Local caspase activity directs engulfment of dendrites during pruning. Nature Neurosci 2006;9(10):1234–6.

    PubMed  CAS  Google Scholar 

  191. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 2006;51(3):283–90.

    PubMed  CAS  Google Scholar 

  192. Kuranaga E, Kanuka H, Tonoki A, et al. Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs. Cell 2006;126(3):583–96.

    PubMed  CAS  Google Scholar 

  193. Oshima K, Takeda M, Kuranaga E, et al. IKK epsilon regulates F actin assembly and interacts with Drosophila IAP1 in cellular morphogenesis. Curr Biol 2006;16(15):1531–7.

    PubMed  CAS  Google Scholar 

  194. Kanuka H, Kuranaga E, Takemoto K, Hiratou T, Okano H, Miura M. Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J 2005;24(21):3793–806.

    PubMed  CAS  Google Scholar 

  195. Baker NE. Patterning signals and proliferation in Drosophila imaginal discs. Curr Opin Genet Dev 2007;17(4):287–93.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Baker Brachmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Purves, D.C., Monserrate, J.P., Brachmann, C.B. (2009). Cell Death in Drosophila . In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_16

Download citation

Publish with us

Policies and ethics