Skip to main content

Programmed Cell Death in C. elegans

  • Chapter
  • First Online:
  • 1457 Accesses

Abstract

Studies in the nematode Caenorhabditis elegans have established that programmed cell death is a genetically determined part of development and is controlled by a specific set of genes. These genes have been ordered into a pathway through genetic analyses. This cell death pathway is evolutionarily conserved and provides a basis for understanding programmed cell death in more complex organisms, including humans. This chapter discusses the activation, cell killing, and engulfment processes in the model organism C. elegans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77:71–94.

    PubMed  CAS  Google Scholar 

  2. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977;56:110–56.

    Article  PubMed  CAS  Google Scholar 

  3. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983;100:64–119.

    Article  PubMed  CAS  Google Scholar 

  4. Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 1979;70:396–417.

    Article  PubMed  CAS  Google Scholar 

  5. Robertson AG, Thomson JN. Morphology of programmed cell death in the ventral nerve cord of Caenorhabiditis elegans larvae. J Embryol Exp Morphol 1982;67:89–100.

    Google Scholar 

  6. Hedgecock EM, Sulston JE, Thomson JN. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 1983;220:1277–9.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991;7:663–98.

    Article  PubMed  CAS  Google Scholar 

  8. Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986;44:817–29.

    Article  PubMed  CAS  Google Scholar 

  9. Conradt B, Horvitz HR. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 1998;93:519–29.

    Article  PubMed  CAS  Google Scholar 

  10. Yuan JY, Horvitz HR. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 1990;138:33–41.

    Article  PubMed  CAS  Google Scholar 

  11. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 1992;356:494–9.

    Article  PubMed  CAS  Google Scholar 

  12. Shaham S, Horvitz HR. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 1996;10:578–91.

    Article  PubMed  CAS  Google Scholar 

  13. Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994;76:665–76.

    Article  PubMed  CAS  Google Scholar 

  14. Tsujimoto Y, Croce CM. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 1986;83:5214–8.

    Article  PubMed  CAS  Google Scholar 

  15. Seto M, Jaeger U, Hockett RD, et al. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J 1988;7:123–31.

    PubMed  CAS  Google Scholar 

  16. Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986;47:19–28.

    Article  PubMed  CAS  Google Scholar 

  17. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988;335:440–2.

    Article  PubMed  CAS  Google Scholar 

  18. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hematopoietic cell lines. J Immunol 1990;144:3602–10.

    PubMed  CAS  Google Scholar 

  19. Reed JC. Bcl-2 family proteins. Oncogene 1998;17:3225–36.

    Article  PubMed  Google Scholar 

  20. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001;26:61–6.

    Article  PubMed  CAS  Google Scholar 

  21. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    Article  PubMed  CAS  Google Scholar 

  22. Xue D, Shaham S, Horvitz HR. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 1996;10:1073–83.

    Article  PubMed  CAS  Google Scholar 

  23. Yuan J, Horvitz HR. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 1992;116:309–20.

    PubMed  CAS  Google Scholar 

  24. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–13.

    Article  PubMed  CAS  Google Scholar 

  25. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 1998;94:727–37.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshida H, Kong YY, Yoshida R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94:739–50.

    Article  PubMed  CAS  Google Scholar 

  27. Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 1997;385:653–6.

    Article  PubMed  CAS  Google Scholar 

  28. Chen F, Hersh BM, Conradt B, et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 2000;287:1485–9.

    Article  PubMed  CAS  Google Scholar 

  29. del Peso L, Gonzalez VM, Nunez G. Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. J Biol Chem 1998;273:33495–500.

    Article  PubMed  CAS  Google Scholar 

  30. Parrish J, Metters H, Chen L, Xue D. Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors. Proc Natl Acad Sci USA 2000;97:11916–21.

    Article  PubMed  CAS  Google Scholar 

  31. Yang X, Chang HY, Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 1998;281:1355–7.

    Article  PubMed  CAS  Google Scholar 

  32. Chinnaiyan AM, O'Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death. Science 1997;275:1122–6.

    Article  PubMed  CAS  Google Scholar 

  33. Xue D, Horvitz HR. Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 1997;390:305–8.

    Article  PubMed  CAS  Google Scholar 

  34. Yan N, Gu L, Kokel D, et al. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 2004;15:999–1006.

    Article  PubMed  CAS  Google Scholar 

  35. Yan N, Chai JJ, Lee ES, et al. Structure of the CED-4/CED-9 complex reveals insights into programmed cell death in Caenorhabditis elegans. Nature 2005;437:831–7.

    Article  PubMed  CAS  Google Scholar 

  36. Ellis RE, Horvitz HR. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 1991;112:591–603.

    PubMed  CAS  Google Scholar 

  37. Conradt B, Horvitz HR. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 1999;98:317–27.

    Article  PubMed  CAS  Google Scholar 

  38. Metzstein MM, Horvitz HR. The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 1999;4:309–19.

    Article  PubMed  CAS  Google Scholar 

  39. Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 1996;382:545–7.

    Article  PubMed  CAS  Google Scholar 

  40. Thellmann M, Hatzold J, Conradt B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 2003;130:4057–71.

    Article  PubMed  CAS  Google Scholar 

  41. Peden E, Kimberly E, Gengyo-Ando K, Mitani S, Xue D. Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes Dev 2007;21:3195–207.

    Article  PubMed  CAS  Google Scholar 

  42. Schwartz HT, Horvitz HR. The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes Dev 2007;21:3181–94.

    Article  PubMed  CAS  Google Scholar 

  43. Ellis RE, Jacobson DM, Horvitz HR. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 1991;129:79–94.

    PubMed  CAS  Google Scholar 

  44. Wu YC, Tsai MC, Cheng LC, Chou CJ, Weng NY. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell 2001;1:491–502.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou Z, Caron E, Hartwieg E, Hall A, Horvitz HR. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell 2001;1:477–89.

    Article  PubMed  CAS  Google Scholar 

  46. Gumienny TL, Brugnera E, Tosello-Trampont AC, et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 2001;107:27–41.

    Article  PubMed  CAS  Google Scholar 

  47. Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 2001;104:43–56.

    Article  PubMed  CAS  Google Scholar 

  48. Wu YC, Horvitz HR. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 1998;93:951–60.

    Article  PubMed  CAS  Google Scholar 

  49. Liu QA, Hengartner MO. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 1998;93:961–72.

    Article  PubMed  CAS  Google Scholar 

  50. Reddien PW, Horvitz HR. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2000;2:131–6.

    Article  PubMed  CAS  Google Scholar 

  51. Wu YC, Horvitz HR. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 1998;392:501–4.

    Article  PubMed  CAS  Google Scholar 

  52. Hall A. Ras-related GTPases and the cytoskeleton. Mol Biol Cell 1992;3:475–9.

    PubMed  CAS  Google Scholar 

  53. Kinchen JM, Cabello J, Klingele D, et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 2005;434:93–9.

    Article  PubMed  CAS  Google Scholar 

  54. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000;405:85–90.

    Article  PubMed  CAS  Google Scholar 

  55. Wang X, Wu YC, Fadok VA, et al. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 2003;302:1563–6.

    Article  PubMed  CAS  Google Scholar 

  56. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992;148:2207–16.

    PubMed  CAS  Google Scholar 

  57. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998;5:551–62.

    Article  PubMed  CAS  Google Scholar 

  58. Daleke DL. Phospholipid flippases. J Biol Chem 2007;282:821–5.

    Article  PubMed  CAS  Google Scholar 

  59. Pomorski T, Menon AK. Lipid flippases and their biological functions. Cell Mol Life Sci 2006;63:2908–21.

    Article  PubMed  CAS  Google Scholar 

  60. Wang X, Wang J, Gengyo-Ando K, et al. C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 2007;9:541–9.

    Article  PubMed  CAS  Google Scholar 

  61. Wang X, Yang C, Chai J, Shi Y, Xue D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 2002;298:1587–92.

    Article  PubMed  CAS  Google Scholar 

  62. Venegas V, Zhou Z. Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol Biol Cell 2007;18:3180–92.

    Article  PubMed  CAS  Google Scholar 

  63. Darland-Ransom M, Wang X, Sun CL, et al. Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 2008;320:528–31.

    Article  PubMed  CAS  Google Scholar 

  64. Yu X, Odera S, Chuang CH, Lu N, Zhou Z. C. elegans dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev Cell 2006;10:743–57.

    Article  PubMed  CAS  Google Scholar 

  65. Lu Q, Zhang Y, Hu T, Guo P, Li W, Wang X. C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 2008;135:1069–80.

    Article  PubMed  CAS  Google Scholar 

  66. Mangahas PM, Yu X, Miller KG, Zhou Z. The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J Cell Biol 2008;180:357–73.

    Article  PubMed  CAS  Google Scholar 

  67. Yu X, Lu N, Zhou Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol 2008;6:e61.

    Article  PubMed  Google Scholar 

  68. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992;119:493–501.

    Article  PubMed  CAS  Google Scholar 

  69. Wu YC, Stanfield GM, Horvitz HR. NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev 2000;14:536–48.

    PubMed  CAS  Google Scholar 

  70. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 2001;412:90–4.

    Article  PubMed  CAS  Google Scholar 

  71. Parrish JZ, Xue D. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 2003;11:987–96.

    Article  PubMed  CAS  Google Scholar 

  72. Parrish JZ, Yang C, Shen B, Xue D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 2003;22:3451–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Darland-Ransom, M., Wu, YC., Xue, D. (2009). Programmed Cell Death in C. elegans . In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_15

Download citation

Publish with us

Policies and ethics