Skip to main content

Cell Transplantation for Ischemic Heart Disease

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices
  • 5124 Accesses

Abstract

Cardiomyocyte regeneration may occur during physiological and pathological states in the adult heart; these data highlight the possibility that myocardial regeneration may occur via cardiomyocyte proliferation and/or differentiation of putative cardiac stem cells. To date, various cell types have been used for cardiac repair, including skeletal myoblasts, bone marrow-derived cells, mesenchymal stem cells, endothelial progenitor cells, umbilical cord blood stem cells, cardiac stem cells, and embryonic stem cells. This chapter will review each of these different stem cell populations in regard to the potential treatment of heart disease. It begins by examining the in vitro and in vivo animal studies, and then briefly discusses the cell therapy clinical trials that are currently underway for treating ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weir RA, McMurray JJ. Epidemiology of heart failure and left ventricular dysfunction after acute MI. Curr Heart Fail Rep 2006;3:175–80.

    PubMed  Google Scholar 

  2. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002;415:240–43.

    PubMed  CAS  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–47.

    PubMed  CAS  Google Scholar 

  4. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. Faseb J 2007;21:1345–57.

    PubMed  CAS  Google Scholar 

  5. Doetschman TC, Eistetter H, Katz M, et al. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985;87:27–45.

    PubMed  CAS  Google Scholar 

  6. Wobus AM, Guan K, Yang HT, et al. Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 2002;185:127–56.

    PubMed  CAS  Google Scholar 

  7. Kolossov E, Bostani T, Roell W, et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 2006;203:2315–27.

    PubMed  CAS  Google Scholar 

  8. Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 2002;92:288–96.

    PubMed  Google Scholar 

  9. Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells into the infarcted mouse heart: Formation of multiple cell types. J Mol Cell Cardiol 2006;40:195–200.

    PubMed  CAS  Google Scholar 

  10. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 2006;11:723–32.

    PubMed  CAS  Google Scholar 

  11. Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006;127:1151–65.

    PubMed  CAS  Google Scholar 

  12. Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 2006;127:1137–50.

    PubMed  CAS  Google Scholar 

  13. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407–14.

    PubMed  CAS  Google Scholar 

  14. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282–89.

    PubMed  CAS  Google Scholar 

  15. Laflamme MA, Gold J, Xu C, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 2005;167:663–71.

    PubMed  CAS  Google Scholar 

  16. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: Insights into the development of cell-based pacemakers. Circulation 2005;111:11–20.

    PubMed  Google Scholar 

  17. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015–24.

    PubMed  CAS  Google Scholar 

  18. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–33.

    PubMed  CAS  Google Scholar 

  19. Koh GY, Klug MG, Soonpaa MH, et al. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 1993;92:1548–54.

    PubMed  CAS  Google Scholar 

  20. Dowell JD, Rubart M, Pasumarthi KB, et al. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 2003;58:336–50.

    PubMed  CAS  Google Scholar 

  21. Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996;98:2512–23.

    PubMed  CAS  Google Scholar 

  22. Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proceedings of the National Academy of Sciences of the United States of America 2003;100:7808–11.

    PubMed  CAS  Google Scholar 

  23. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–30.

    PubMed  CAS  Google Scholar 

  24. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001;105:369–77.

    PubMed  CAS  Google Scholar 

  25. Mezey E, Chandross KJ, Harta G, et al. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290:1779–82.

    PubMed  CAS  Google Scholar 

  26. Bittner RE, Schofer C, Weipoltshammer K, et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 1999;199:391–96.

    PubMed  CAS  Google Scholar 

  27. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395–402.

    PubMed  CAS  Google Scholar 

  28. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–05.

    PubMed  CAS  Google Scholar 

  29. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664–68.

    PubMed  CAS  Google Scholar 

  30. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668–73.

    PubMed  CAS  Google Scholar 

  31. Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America 2007;104:17783–88.

    PubMed  CAS  Google Scholar 

  32. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641–50.

    PubMed  CAS  Google Scholar 

  33. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71–74.

    PubMed  CAS  Google Scholar 

  34. Phinney DG, Kopen G, Righter W, et al. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 1999;75:424–36.

    PubMed  CAS  Google Scholar 

  35. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–47.

    PubMed  CAS  Google Scholar 

  36. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9–20.

    PubMed  CAS  Google Scholar 

  37. Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 2003;10:228–41.

    PubMed  CAS  Google Scholar 

  38. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992;13:69–80.

    PubMed  CAS  Google Scholar 

  39. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 2004;13:436–48.

    PubMed  CAS  Google Scholar 

  40. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med 2001;226:507–20.

    CAS  Google Scholar 

  41. Fukuda K. Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells. Congenit Anom 2002;42:1–9.

    CAS  Google Scholar 

  42. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697–705.

    PubMed  CAS  Google Scholar 

  43. Fukuda K. Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant 2003;32(Suppl 1):S25–27.

    PubMed  CAS  Google Scholar 

  44. Tomita S, Nakatani T, Fukuhara S, et al. Bone marrow stromal cells contract synchronously with cardiomyocytes in a coculture system. Jpn J Thorac Cardiovasc Surg 2002;50:321–24.

    PubMed  Google Scholar 

  45. Hakuno D, Fukuda K, Makino S, et al. Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation 2002;105:380–86.

    PubMed  CAS  Google Scholar 

  46. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42–48.

    PubMed  Google Scholar 

  47. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57:11–20.

    PubMed  Google Scholar 

  48. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 2003;75:389–97.

    PubMed  CAS  Google Scholar 

  49. Zimmet JM, Hare JM. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol 2005;100:471–81.

    PubMed  CAS  Google Scholar 

  50. Ryan JM, Barry FP, Murphy JM, et al. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2005;2:8.

    Google Scholar 

  51. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890–96.

    PubMed  CAS  Google Scholar 

  52. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838–43.

    PubMed  Google Scholar 

  53. Wang JS, Shum-Tim D, Chedrawy E, et al. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 2001;122:699–705.

    PubMed  CAS  Google Scholar 

  54. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II247–56.

    PubMed  CAS  Google Scholar 

  55. Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation 2003;108:863–68.

    PubMed  Google Scholar 

  56. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150–56.

    PubMed  CAS  Google Scholar 

  57. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005;112:214–23.

    PubMed  Google Scholar 

  58. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123:1132–40.

    PubMed  Google Scholar 

  59. Zeng L, Hu Q, Wang X, et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 2007;115:1866–75.

    PubMed  Google Scholar 

  60. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after MI. Proceedings of the National Academy of Sciences of the United States of America 2005;102:11474–79.

    PubMed  CAS  Google Scholar 

  61. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–67.

    PubMed  CAS  Google Scholar 

  62. Masuda H, Asahara T. Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 2003;58:390–98.

    PubMed  CAS  Google Scholar 

  63. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71–77.

    PubMed  CAS  Google Scholar 

  64. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430–36.

    PubMed  CAS  Google Scholar 

  65. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003;107:461–68.

    PubMed  Google Scholar 

  66. Lewis ID, Verfaillie CM. Multi-lineage expansion potential of primitive hematopoietic progenitors: Superiority of umbilical cord blood compared to mobilized peripheral blood. Exp Hematol 2000;28:1087–95.

    PubMed  CAS  Google Scholar 

  67. Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000;105:1527–36.

    PubMed  CAS  Google Scholar 

  68. Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998;16:153–65.

    PubMed  CAS  Google Scholar 

  69. Kogler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004;200:123–35.

    PubMed  Google Scholar 

  70. Kim BO, Tian H, Prasongsukarn K, et al. Cell transplantation improves ventricular function after a MI: A preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 2005;112:I96–104.

    PubMed  Google Scholar 

  71. Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following MI in NOD/scid-mice. Cardiovasc Res 2005;66:45–54.

    PubMed  CAS  Google Scholar 

  72. Hirata Y, Sata M, Motomura N, et al. Human umbilical cord blood cells improve cardiac function after MI. Biochem Biophys Res Commun 2005;327:609–14.

    PubMed  CAS  Google Scholar 

  73. MacLellan WR, Schneider MD. Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 2000;62:289–319.

    PubMed  CAS  Google Scholar 

  74. Rubart M, Field LJ. Cardiac regeneration: Repopulating the heart. Annu Rev Physiol 2006;68:29–49.

    PubMed  CAS  Google Scholar 

  75. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998;83:15–26.

    PubMed  CAS  Google Scholar 

  76. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after MI. N Engl J Med 2001;344:1750–57.

    PubMed  CAS  Google Scholar 

  77. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5–15.

    PubMed  Google Scholar 

  78. Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 1998;83:1–14.

    PubMed  CAS  Google Scholar 

  79. Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003;92:139–50.

    PubMed  CAS  Google Scholar 

  80. Anversa P, Sussman MA, Bolli R. Molecular genetic advances in cardiovascular medicine: focus on the myocyte. Circulation 2004;109:2832–38.

    PubMed  Google Scholar 

  81. Sussman MA, Anversa P. Myocardial aging and senescence: Where have the stem cells gone? Annu Rev Physiol 2004;66:29–48.

    PubMed  CAS  Google Scholar 

  82. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–76.

    PubMed  CAS  Google Scholar 

  83. Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America 2007;104:14068–73.

    PubMed  CAS  Google Scholar 

  84. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America 2003;100:12313–18.

    PubMed  CAS  Google Scholar 

  85. Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004;279:11384–91.

    PubMed  CAS  Google Scholar 

  86. Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 2004;265:262–75.

    PubMed  CAS  Google Scholar 

  87. Pfister O, Mouquet F, Jain M, et al. CD31– but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 2005;97:52–61.

    PubMed  CAS  Google Scholar 

  88. Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433:647–53.

    PubMed  CAS  Google Scholar 

  89. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95:911–21.

    PubMed  CAS  Google Scholar 

  90. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007;115:896–908.

    PubMed  Google Scholar 

  91. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 2005;85:1373–416.

    PubMed  CAS  Google Scholar 

  92. Mouquet F, Pfister O, Jain M, et al. Restoration of cardiac progenitor cells after MI by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 2005;97:1090–92.

    PubMed  CAS  Google Scholar 

  93. Kucia M, Dawn B, Hunt G, et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after MI. Circ Res 2004;95:1191–99.

    PubMed  CAS  Google Scholar 

  94. Cerisoli F, Chimenti I, Gaetani R, et al. Kit-Positive Cardiac Stem Cells (CSCs) can be generated in damaged heart from bone marrow-derived cells. Circulation 2006;114:II-164.

    Google Scholar 

  95. Dawn B, Stein AB, Urbanek K, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America 2005;102:3766–71.

    PubMed  CAS  Google Scholar 

  96. Wang X, Hu Q, Nakamura Y, et al. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 2006;24:1779–88.

    PubMed  Google Scholar 

  97. Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 2005;97:663–73.

    PubMed  CAS  Google Scholar 

  98. Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences of the United States of America 2005;102:8966–71.

    PubMed  CAS  Google Scholar 

  99. Bearzi C, Muller P, Amano K, et al. Identification and characterization of Cardiac Stem Cells in the Pig heart. Circulation 2006;114:II-125.

    Google Scholar 

  100. Johnston P, Sasano T, Mills K, et al. Isolation, expansion and delivery of cardiac derived stem cells in a porcine model of MI. Circulation 2006;114:II-125.

    Google Scholar 

  101. Hosoda T, Bearzi C, Amano S, et al. Human cardiac progenitor cells regenerate cardiomyocytes and coronary vessels repairing the infarcted myocardium. Circulation 2006;114:II-51.

    Google Scholar 

  102. Torella D, Elliso GM, Karakikes I, et al. Biological properties and regenerative potential, in vitro and in vivo, of human cardiac stem cells isolated from each of the four chambers of the adult human heart. Circulation 2006;114:II-87.

    Google Scholar 

  103. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–83.

    PubMed  Google Scholar 

  104. Herreros J, Prosper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute MI. Eur Heart J 2003;24:2012–20.

    PubMed  Google Scholar 

  105. Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 2003;41:879–88.

    PubMed  Google Scholar 

  106. Siminiak T, Kalawski R, Fiszer D, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am Heart J 2004;148:531–37.

    PubMed  Google Scholar 

  107. Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: Clinical experience with six-month follow-up. J Am Coll Cardiol 2003;42:2063–69.

    PubMed  Google Scholar 

  108. Siminiak T, Fiszer D, Jerzykowska O, et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: The POZNAN trial. Eur Heart J 2005;26:1188–95.

    PubMed  Google Scholar 

  109. Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003;361:491–92.

    PubMed  Google Scholar 

  110. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002;106:3009–17.

    PubMed  Google Scholar 

  111. Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute MI: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004;44:1690–99.

    PubMed  Google Scholar 

  112. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after MI: The BOOST randomised controlled clinical trial. Lancet 2004;364:141–48.

    PubMed  Google Scholar 

  113. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute MI. N Engl J Med 2006;355:1210–21.

    PubMed  CAS  Google Scholar 

  114. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute MI. N Engl J Med 2006;355:1199–209.

    PubMed  CAS  Google Scholar 

  115. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation MI: Double-blind, randomised controlled trial. Lancet 2006;367:113–21.

    PubMed  Google Scholar 

  116. Seeger F, Tonn T, Krzossok N, et al. Cell isolation procedures matter: A comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute MI. Circulation 2006;114:II-51.

    Google Scholar 

  117. Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after MI. N Engl J Med 2006;355:1222–32.

    PubMed  CAS  Google Scholar 

  118. Chen SL, Fang WW, Qian J, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute MI. Chin Med J 2004;117:1443–48.

    PubMed  Google Scholar 

  119. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute MI. Am J Cardiol 2004;94:92–95.

    PubMed  Google Scholar 

  120. Zambrano J, Traverse JH, Henry T, et al. Abstract 1014: The impact of intravenous allogeneic human mesenchymal stem cells (ProvacelTM) on ejection fraction in patients with myocardial infarction. Circ Suppl 2007;116:II-202.

    Google Scholar 

  121. Erbs S, Linke A, Adams V, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: First randomized and placebo-controlled study. Circ Res 2005;97:756–62.

    PubMed  CAS  Google Scholar 

  122. Pfeffer MA, Braunwald E. Ventricular remodeling after MI. Experimental observations and clinical implications. Circulation 1990;81:1161–72.

    PubMed  CAS  Google Scholar 

  123. Reffelmann T, Dow JS, Dai W, et al. Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J Mol Cell Cardiol 2003;35:607–13.

    PubMed  CAS  Google Scholar 

  124. Ziegelhoeffer T, Fernandez B, Kostin S, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004;94:230–38.

    PubMed  CAS  Google Scholar 

  125. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005;11:367–68.

    PubMed  CAS  Google Scholar 

  126. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. Faseb J 2006;20:661–69.

    PubMed  CAS  Google Scholar 

  127. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94:678–85.

    PubMed  CAS  Google Scholar 

  128. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004;109:1543–49.

    PubMed  CAS  Google Scholar 

  129. Xu X, Xu Z, Xu Y, et al. Effects of mesenchymal stem cell transplantation on extracellular matrix after MI in rats. Coronary artery disease 2005;16:245–55.

    PubMed  Google Scholar 

  130. Xu X, Xu Z, Xu Y, et al. Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ J 2005;69:1275–83

    PubMed  CAS  Google Scholar 

  131. Kang HJ, Lee HY, Na SH, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute MI versus old MI: the MAGIC Cell-3-DES randomized, controlled trial. Circulation 2006;114:I145–51.

    PubMed  Google Scholar 

  132. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858–64.

    PubMed  CAS  Google Scholar 

  133. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362:697–703.

    PubMed  CAS  Google Scholar 

  134. Limana F, Germani A, Zacheo A, et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 2005;97:e73–83.

    PubMed  CAS  Google Scholar 

  135. Lu L, Zhang JQ, Ramires FJ, et al. Molecular and cellular events at the site of MI: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun 2004;320:907–13.

    PubMed  CAS  Google Scholar 

  136. Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907–21.

    PubMed  CAS  Google Scholar 

  137. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003;9:1195–201.

    PubMed  CAS  Google Scholar 

  138. Lim SY, Kim YS, Ahn Y, et al. The effects of mesenchymal stem cells transduced with Akt in a porcine MI model. Cardiovasc Res 2006;70:530–42.

    PubMed  CAS  Google Scholar 

  139. Cheng JQ, Lindsley CW, Cheng GZ, et al. The Akt/PKB pathway: Molecular target for cancer drug discovery. Oncogene 2005;24:7482–92.

    PubMed  CAS  Google Scholar 

  140. Yau TM, Kim C, Li G, et al. Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 2005;112:I123–28.

    PubMed  Google Scholar 

  141. Askari A, Unzek S, Goldman CK, et al. Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol 2004;43:1908–14.

    PubMed  CAS  Google Scholar 

  142. Schuh A, Breuer S, Al Dashti R, et al. Administration of vascular endothelial growth factor adjunctive to fetal cardiomyocyte transplantation and improvement of cardiac function in the rat model. J Cardiovasc Pharmacol Ther 2005;10:55–66.

    PubMed  CAS  Google Scholar 

  143. Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 2005;46:1339–50.

    PubMed  CAS  Google Scholar 

  144. Suzuki K, Murtuza B, Beauchamp JR, et al. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. Faseb J 2004;18:1153–55.

    PubMed  CAS  Google Scholar 

  145. Jo JI, Nagaya N, Miyahara Y, et al. Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with MI: Benefit of a novel nonviral vector, Cationized Dextran. Tissue Eng 2007;13:313–22.

    PubMed  CAS  Google Scholar 

  146. Davis ME, Hsieh PC, Grodzinsky AJ, et al. Custom design of the cardiac microenvironment with biomaterials. Circ Res 2005;97:8–15.

    PubMed  CAS  Google Scholar 

  147. Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after MI. Nat Med 2006;12:459–65.

    PubMed  CAS  Google Scholar 

  148. Zhang G, Wang X, Wang Z, et al. A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng 2006;12:9–19.

    PubMed  CAS  Google Scholar 

  149. Davis ME, Hsieh PC, Takahashi T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for MI. Proceedings of the National Academy of Sciences of the United States of America 2006;103:8155–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad N. Jameel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jameel, M.N., Lee, J., Garry, D.J., Zhang, J. (2009). Cell Transplantation for Ischemic Heart Disease. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_37

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics