Skip to main content

Harnessing Cardiopulmonary Interactions to Improve Circulation and Outcomes After Cardiac Arrest and Other States of Low Blood Pressure

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices
  • 5131 Accesses

Abstract

Novel noninvasive technologies that harness the inherent physiological interactions between the heart, lungs, and brain have recently been shown to improve circulation and outcomes after cardiac arrest and other states of low blood pressure including hypovolemic shock. The impedance threshold devices (ResQPOD® and ResQGard®) and the intrathoracic pressure regulator (CirQlator™) are three new devices that create a negative intrathoracic pressure. The decrease in intrathoracic pressure creates a vacuum within the thorax relative to the rest of the body thereby enhancing venous blood return to the heart, increasing cardiac output and systemic arterial blood pressure, lowering right atrial and pulmonary artery pressures, lowering intracranial pressure, and increasing cerebral perfusion pressure. The animal and clinical data supporting the use of technologies that harness the intrathoraic pump are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Conflict of Interest: Keith Lurie is the founder and Chief Medical Officer of Advanced Circulatory Systems, the company that manufactures the impedance threshold device. He is also a Professor of Emergency Medicine at the University of Minnesota (lurie002@umn.edu). Anja Metzger is employed by Advanced Circulatory Systems and is the Vice President of Research and Development.

Abbreviations

ACD:

active compression decompression

AHA:

American Heart Association

CePP:

cerebral perfusion pressure

CPP:

coronary perfusion pressure

CPR:

cardiopulmonary resuscitation

EMS:

emergency medical services

ICP:

intracranial pressure

ITD:

impedance threshold device

ITPR:

intrathoracic pressure regulator

MAP:

mean arterial pressure

PEA:

pulseless electrical activity

VF:

ventricular fibrillation

References

  1. Eisenberg MS, Horwood BT, Cummins RO, et al. Cardiac arrest and resuscitation: A tale of 29 cities. Ann Emerg Med 1990;19:179–86.

    Article  PubMed  CAS  Google Scholar 

  2. Niemann JT. Cardiopulmonary resuscitation. N Engl J Med 1992;327:1075–80.

    Article  PubMed  CAS  Google Scholar 

  3. Lurie KG, Voelckel WG, Zielinski T, et al. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg 2001;93:649–55.

    Article  PubMed  CAS  Google Scholar 

  4. Voelckel WG, Lurie KG, Sweeney M, et al. Effects of active compression-decompression cardiopulmonary resuscitation with the inspiratory threshold valve in a young porcine model of cardiac arrest. Pediatr Res 2002;51:523–27.

    Article  PubMed  Google Scholar 

  5. Lurie K, Voelckel W, Plaisance P, et al. Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: A progress report. Resuscitation 2000;44:219–30.

    Google Scholar 

  6. Lurie KG, Lindner KH. Recent advances in cardiopulmonary resuscitation. J Cardiovasc Electrophysiol 1997;8:584–600.

    Article  PubMed  CAS  Google Scholar 

  7. Lurie KG, Mulligan KA, McKnite S, et al. Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest 1998;113:1084–90.

    Article  PubMed  CAS  Google Scholar 

  8. Lurie KG, Zielinski T, McKnite S, et al. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 2002;105:124–29.

    Article  PubMed  Google Scholar 

  9. Lurie KG, Zielinski T, Voelckel W, et al. Augmentation of ventricular preload during treatment of cardiovascular collapse and cardiac arrest. Crit Care Med 2002;30:S162–65.

    Article  PubMed  Google Scholar 

  10. Lurie KG, Coffeen P, Shultz J, et al. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 1995;91:1629–32.

    PubMed  CAS  Google Scholar 

  11. Aufderheide T. A tale of seven EMS systems: An impedance threshold device and improved CPR techniques double survival rates after out-of-hospital cardiac arrest. Circulation 2007;116:II-936.

    Google Scholar 

  12. Holzer M, Behringer W, Schorkhuber W, et al. Mild hypothermia and outcome after CPR. Hypothermia for Cardiac Arrest (HACA) Study Group. Acta Anaesthesiol Scand Suppl 1997;111:55–58.

    PubMed  CAS  Google Scholar 

  13. Holzer M, Bernard SA, Hachimi-Idrissi S, et al. Hypothermia for neuroprotection after cardiac arrest: systematic review and individual patient data meta-analysis. Crit Care Med 2005;33:414–18.

    Article  PubMed  Google Scholar 

  14. Holzer M, Sterz F. Therapeutic hypothermia after cardiopulmonary resuscitation. Expert Rev Cardiovasc Ther 2003;1:317–25.

    Article  PubMed  Google Scholar 

  15. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 2: Ethical aspects of CPR and ECC. Circulation 2000;102:I12–21.

    Google Scholar 

  16. Yannopoulos D, McKnite S, Aufderheide TP, et al. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation 2005;64:363–72.

    Article  PubMed  Google Scholar 

  17. Aufderheide TP, Pirrallo RG, Yannopoulos D, et al. Incomplete chest wall decompression: A clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation 2005;64:353–62.

    Article  PubMed  Google Scholar 

  18. Thigpen KS, Simmons L, Hatten, K. Implementation of the 2005 cardiopulmonary resuscitation guidelines and use of an impedance threshold device improve survival from inhospital cardiac arrest. Ann Emerg Med 2008;51:475.

    Article  Google Scholar 

  19. Cohen TJ, Tucker KJ, Lurie KG, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary Resuscitation Working Group. JAMA 1992;267:2916–23.

    Article  PubMed  CAS  Google Scholar 

  20. Lindner KH, Pfenninger EG, Lurie KG, et al. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation 1993;88:1254–63.

    PubMed  CAS  Google Scholar 

  21. Plaisance P, Adnet F, Vicaut E, et al. Benefit of active compression-decompression cardiopulmonary resuscitation as a prehospital advanced cardiac life support. A randomized multicenter study. Circulation 1997;95:955–61.

    PubMed  CAS  Google Scholar 

  22. Plaisance P, Lurie KG, Vicaut E, et al. A comparison of standard cardiopulmonary resuscitation and active compression-decompression resuscitation for out-of-hospital cardiac arrest. French Active Compression-Decompression Cardiopulmonary Resuscitation Study Group. N Engl J Med 1999;341:569–75.

    Article  PubMed  CAS  Google Scholar 

  23. Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: A randomized evaluation in patients in cardiac arrest. Circulation 2000;101:989–94.

    PubMed  CAS  Google Scholar 

  24. Lurie KG. Recent advances in mechanical methods of cardiopulmonary resuscitation. Acta Anaesthesiol Scand Suppl 1997;111:49–52.

    PubMed  CAS  Google Scholar 

  25. Goetting MG, Paradis NA, Appleton TJ, et al. Aortic-carotid artery pressure differences and cephalic perfusion pressure during cardiopulmonary resuscitation in humans. Crit Care Med 1991;19:1012–17.

    Article  PubMed  CAS  Google Scholar 

  26. Paradis NA, Martin GB, Rosenberg J, et al. The effect of standard- and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. JAMA 1991;265:1139–44.

    Article  PubMed  CAS  Google Scholar 

  27. Bahlmann L, Klaus S, Baumeier W, et al. Brain metabolism during cardiopulmonary resuscitation assessed with microdialysis. Resuscitation 2003;59:255–60.

    Article  PubMed  CAS  Google Scholar 

  28. Raedler C, Voelckel WG, Wenzel V, et al. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve. Anesth Analg 2002;95:1496–502.

    Article  PubMed  Google Scholar 

  29. Plaisance P, Lurie KG, Vicaut E, et al. Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest. Resuscitation 2004;61:265–71.

    Article  PubMed  Google Scholar 

  30. Wolcke BB, Mauer DK, Schoefmann MF, et al. Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Circulation 2003;108:2201–05.

    Article  PubMed  Google Scholar 

  31. Plaisance P, Soleil C, Lurie KG, et al. Use of an inspiratory impedance threshold device on a facemask and endotracheal tube to reduce intrathoracic pressures during the decompression phase of active compression-decompression cardiopulmonary resuscitation. Crit Care Med 2005;33:990–94.

    Article  PubMed  Google Scholar 

  32. Aufderheide TP, Sigurdsson G, Pirrallo RG, et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 2004;109:1960–65.

    Article  PubMed  Google Scholar 

  33. Fritsch-Yelle JM, Convertino VA, Schlegel TT. Acute manipulations of plasma volume alter arterial pressure responses during Valsalva maneuvers. J Appl Physiol 1999;86:1852–57.

    PubMed  CAS  Google Scholar 

  34. Shekerdemian LS, Bush A, Shore DF, et al. Cardiopulmonary interactions after Fontan operations: Augmentation of cardiac output using negative pressure ventilation. Circulation 1997;96:3934–42.

    PubMed  CAS  Google Scholar 

  35. Lurie KG, Zielinski TM, McKnite SH, et al. Treatment of hypotension in pigs with an inspiratory impedance threshold device: A feasibility study. Crit Care Med 2004;32:1555–62.

    Article  PubMed  Google Scholar 

  36. Marino BS, Yannopoulos D, Sigurdsson G, et al. Spontaneous breathing through an inspiratory impedance threshold device augments cardiac index and stroke volume index in a pediatric porcine model of hemorrhagic hypovolemia. Crit Care Med 2004;32:S398–405.

    Article  PubMed  Google Scholar 

  37. Sigurdsson G, Yannopoulos D, McKnite SH, et al. Effects of an inspiratory impedance threshold device on blood pressure and short term survival in spontaneously breathing hypovolemic pigs. Resuscitation 2006;68:399–404.

    Article  PubMed  Google Scholar 

  38. Convertino VA, Ratliff DA, Crissey J, et al. Effects of inspiratory impedance on hemodynamic responses to a squat-stand test in human volunteers: Implications for treatment of orthostatic hypotension. Eur J Appl Physiol 2005;94:392–99.

    Article  PubMed  Google Scholar 

  39. Convertino VA, Ratliff DA, Ryan KL, et al. Hemodynamics associated with breathing through an inspiratory impedance threshold device in human volunteers. Crit Care Med 2004;32:S381–86.

    Article  PubMed  Google Scholar 

  40. Idris A, Convertino, VA, Ratliff, MS et al. Imposed power of breathing associated with use of an impedance threshold device. Respir Care 2007;52:177–83.

    PubMed  Google Scholar 

  41. Milic-Emili J, ed. The lung: Scientific foundations. New York, NY: Raven Press, 1991.

    Google Scholar 

  42. Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol 2004;96:1249–61.

    Article  PubMed  Google Scholar 

  43. Convertino VA, Cooke WH, Lurie KG. Inspiratory resistance as a potential treatment for orthostatic intolerance and hemorrhagic shock. Aviat Space Environ Med 2005;76:319–25.

    PubMed  Google Scholar 

  44. Yannopoulos D, Nadkarni VM, McKnite SH, et al. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Circulation 2005;112:803–11.

    Article  PubMed  Google Scholar 

  45. Yannopoulos D, Metzger A, McKnite S, et al. Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs. Resuscitation 2006;70:445–53.

    Article  PubMed  Google Scholar 

  46. Sigurdsson G, McKnite SH, Sondeen JL, et al. Extending the golden hour of hemorrhagic shock in pigs with an inspiratory impedance threshold valve. Paper presented at Critical Care in Medicine, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Metzger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Metzger, A., Lurie, K. (2009). Harnessing Cardiopulmonary Interactions to Improve Circulation and Outcomes After Cardiac Arrest and Other States of Low Blood Pressure. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_35

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics