Skip to main content

Animal Models for Cardiac Research

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

The modern era of cardiac surgery is largely considered to have begun in the animal research laboratories. Today, animal models continue to be used for the study of cardiovascular diseases and are required for the preclinical assessment of pharmaceuticals, mechanical devices, therapeutic procedures, and/or continuation therapies. This chapter was designed to provide readers and potential investigators with important background information necessary for the process of matching an experimental hypothesis to an animal species that will serve as an appropriate model for studying a specific cardiovascular disease or for testing a given medical device. A review of the current animal models used in cardiac research is provided and arranged by disease state. Critical factors to consider when choosing an appropriate animal model including cost, reproducibility, and degree of similarity of the model to human disease are discussed. Thus, this chapter can be utilized as a practical guide for planning of research protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. tNRC Institute of Laboratory Animal Resources, and the National Academy of Sciences: Guide for the Care and Use of Laboratory Animals. National Academy Press. 3/96.

    Google Scholar 

  2. Gross DR, ed. Animal models in cardiovascular research. 2nd ed. Dordrecht, The Netherlands: Kluwer Academic Press, 1994:494.

    Google Scholar 

  3. Ettinger SJ. Congenital heart diseases. In: Ettinger SJ, Feldman EC, eds. Textbook of veterinary internal medicine: Diseases of the dog and cat. Philadelphia, PA: WB Saunders, 2000:737–87.

    Google Scholar 

  4. Haworth RA, Hunter DR, Berkoff HA, Moss RL. Metabolic cost of the stimulated beating of isolated adult rat heart cells in suspension. Circ Res 1983;52:342–51.

    PubMed  CAS  Google Scholar 

  5. Spieckermann PG, Piper HM. Oxygen demand of calcium-tolerant adult cardiac myocytes. Basic Res Cardiol 1985;80:71–4.

    PubMed  Google Scholar 

  6. Claycomb WC, Lanson NA Jr, Stallworth BS, et al. HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 1998;95:2979–84.

    Article  PubMed  CAS  Google Scholar 

  7. Niggli E. A laser diffraction system with improved sensitivity for long-time measurements of sarcomere dynamics in isolated cardiac myocytes. Pflugers Arch 1988;411:462–8.

    Article  PubMed  CAS  Google Scholar 

  8. Roos KP, Brady AJ, Tan ST. Direct measurement of sarcomere length from isolated cardiac cells. Am J Physiol 1982;242:H68–78.

    PubMed  CAS  Google Scholar 

  9. Roos KP, Brady AJ. Individual sarcomere length determination from isolated cardiac cells using high-resolution optical microscopy and digital image processing. Biophys J 1982;40:233–44.

    Article  PubMed  CAS  Google Scholar 

  10. Murphy MP, Hohl C, Brierley GP, Altschuld RA. Release of enzymes from adult rat heart myocytes. Circ Res 1982;51:560–8.

    PubMed  CAS  Google Scholar 

  11. Tung L. An ultrasensitive transducer for measurement of isometric contractile force from single heart cells. Pflugers Arch 1986;407:109–15.

    Article  PubMed  CAS  Google Scholar 

  12. Chinchoy E, Soule CL, Houlton AJ, et al. Isolated four-chamber working swine heart model. Ann Thorac Surg 2000;70:1607–14.

    Article  PubMed  CAS  Google Scholar 

  13. Hill AJ, Coles JA, Sigg DC, Laske TG, Iaizzo PA. Images of the human coronary sinus ostium obtained from isolated working hearts. Ann Thorac Surg 2003;76:2108.

    Article  PubMed  Google Scholar 

  14. Neely JR, Liebermeister H, Morgan HE. Effect of pressure development on membrane transport of glucose in isolated rat heart. Am J Physiol 1967;212:815–22.

    PubMed  CAS  Google Scholar 

  15. Wicomb WN, Cooper DK, Barnard CN. Twenty-four-hour preservation of the pig heart by a portable hypothermic perfusion system. Transplantation 1982;34:246–50.

    Article  PubMed  CAS  Google Scholar 

  16. Dunphy G, Richter HW, Azodi M, et al. The effects of mannitol, albumin, and cardioplegia enhancers on 24-h rat heart preservation. Am J Physiol 1999;276:H1591–8.

    PubMed  CAS  Google Scholar 

  17. Menasche P, Hricak B, Pradier F, et al. Efficacy of lactobionate-enriched cardioplegic solution in preserving compliance of cold-stored heart transplants. J Heart Lung Transplant 1993;12:1053–61.

    PubMed  CAS  Google Scholar 

  18. Gallegos RP, Nockel PJ, Rivard AL, Bianco RW. The current state of in-vivo pre-clinical animal models for heart valve evaluation. J Heart Valve Dis 2005;14:423–32.

    PubMed  Google Scholar 

  19. Taylor DE, Whamond JS. A method of producing graded stenosis of the aortic and mitral valves in sheep for fluid dynamic studies. J Physiol 1975;244:16–7P.

    Google Scholar 

  20. Su-Fan Q, Brum JM, Kaye MP, Bove AA. A new technique for producing pure aortic stenosis in animals. Am J Physiol 1984;246:H296–301.

    PubMed  CAS  Google Scholar 

  21. Rogers WA, Bishop SP, Hamlin RL. Experimental production of supravalvular aortic stenosis in the dog. J Appl Physiol 1971;30:917–20.

    PubMed  CAS  Google Scholar 

  22. Spratt JA, Olsen CO, Tyson GS Jr, Glower DD Jr, Davis JW, Rankin JS. Experimental mitral regurgitation. Physiological effects of correction on left ventricular dynamics. J Thorac Cardiovasc Surg 1983;86:479–89.

    PubMed  CAS  Google Scholar 

  23. Swindle MM, Adams RJ, eds. Experimental surgery and physiology: Induced animals models of human disease. Philadelphia, PA: Williams & Wilkins, 1988.

    Google Scholar 

  24. Bianco RW, St Cyr JA, Schneider JR, et al. Canine model for long-term evaluation of prosthetic mitral valves. J Surg Res 1986;41:134–40.

    Article  PubMed  CAS  Google Scholar 

  25. Grehan JF, Hilbert SL, Ferrans VJ, Droel JS, Salerno CT, Bianco RW. Development and evaluation of a swine model to assess the preclinical safety of mechanical heart valves. J Heart Valve Dis 2000;9:710–9; discussion 719–20.

    PubMed  CAS  Google Scholar 

  26. Barnhart GR, Jones M, Ishihara T, Chavez AM, Rose DM, Ferrans VJ. Bioprosthetic valvular failure. Clinical and pathological observations in an experimental animal model. J Thorac Cardiovasc Surg 1982;83:618–31.

    PubMed  CAS  Google Scholar 

  27. Sands MP, Rittenhouse EA, Mohri H, Merendino KA. An anatomical comparison of human pig, calf, and sheep aortic valves. Ann Thorac Surg 1969;8:407–14.

    Article  PubMed  CAS  Google Scholar 

  28. Salerno CT, Droel J, Bianco RW. Current state of in vivo preclinical heart valve evaluation. J Heart Valve Dis 1998;7:158–62.

    PubMed  CAS  Google Scholar 

  29. Yu WC, Chen SA, Lee SH, et al. Tachycardia-induced change of atrial refractory period in humans: Rate dependency and effects of antiarrhythmic drugs. Circulation 1998;97: 2331–7.

    PubMed  CAS  Google Scholar 

  30. Au-Yeung K, Johnson CR, Wolf PD. A novel implantable cardiac telemetry system for studying atrial fibrillation. Physiol Meas 2004;25:1223–38.

    Article  PubMed  Google Scholar 

  31. Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol 2004;43:483–90.

    Article  PubMed  CAS  Google Scholar 

  32. Brugada R, Roberts R. Molecular biology and atrial fibrillation. Curr Opin Cardiol 1999;14:269–73.

    Article  PubMed  CAS  Google Scholar 

  33. Rivard AL, Suwan PT, Imaninaini K, Gallegos RP, Bianco RW. Development of a sheep model of atrial fibrillation for preclinical prosthetic valve testing. J Heart Valve Dis 2007;16:314–23.

    PubMed  Google Scholar 

  34. Gallegos RP, Wang X, Clarkson C, Jerosch-Herold M, Bolman RM. Serum troponin level predicts infarct size. In: American Heart Association. San Antonio, TX: American Heart Association, 2003.

    Google Scholar 

  35. Verdouw PD, van den Doel MA, de Zeeuw S, Duncker DJ. Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc Res 1998;39:121–35.

    Article  PubMed  CAS  Google Scholar 

  36. McFalls EO, Baldwin D, Palmer B, Marx D, Jaimes D, Ward HB. Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. Am J Physiol 1997;272:H343–9.

    PubMed  CAS  Google Scholar 

  37. Headrick JP, Emerson CS, Berr SS, Berne RM, Matherne GP. Interstitial adenosine and cellular metabolism during beta-adrenergic stimulation of the in situ rabbit heart. Cardiovasc Res 1996;31:699–710.

    PubMed  CAS  Google Scholar 

  38. Massie BM, Schwartz GG, Garcia J, Wisneski JA, Weiner MW, Owens T. Myocardial metabolism during increased work states in the porcine left ventricle in vivo. Circ Res 1994;74:64–73.

    PubMed  CAS  Google Scholar 

  39. Lie JT, Holley KE, Kampa WR, Titus JL. New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clin Proc 1971;46:319–27.

    PubMed  CAS  Google Scholar 

  40. Winkler B, Binz K, Schaper W. Myocardial blood flow and infarction in rats, guinea pigs, and rabbits. J Mol Cell Cardiology 1984;16:48.

    Google Scholar 

  41. Kirklin JK, Young JB, McGiffin D, eds. Heart transplantation. New York: Churchill Livingstone, 2002:883.

    Google Scholar 

  42. Wicomb W, Cooper DK, Hassoulas J, Rose AG, Barnard CN. Orthotopic transplantation of the baboon heart after 20 to 24 hours' preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J Thorac Cardiovasc Surg 1982; 83:133–40.

    PubMed  CAS  Google Scholar 

  43. Tsutsumi H, Oshima K, Mohara J, et al. Cardiac transplantation following a 24-h preservation using a perfusion apparatus. J Surg Res 2001;96:260–7.

    Article  PubMed  CAS  Google Scholar 

  44. Fischel RJ, Matas AJ, Platt JL, et al. Cardiac xenografting in the pig-to-rhesus monkey model: Manipulation of antiendothelial antibody prolongs survival. J Heart Lung Transplant 1992;11:965–73; discussion 973–4.

    PubMed  CAS  Google Scholar 

  45. Langman LJ, Nakakura H, Thliveris JA, LeGatt DF, Yatscoff RW. Pharmacodynamic monitoring of mycophenolic acid in rabbit heterotopic heart transplant model. Ther Drug Monit 1997;19:146–52.

    Article  PubMed  CAS  Google Scholar 

  46. Beschorner WE, Sudan DL, Radio SJ, et al. Heart xenograft survival with chimeric pig donors and modest immune suppression. Ann Surg 2003;237:265–72.

    PubMed  Google Scholar 

  47. Perrault LP, Bidouard JP, Desjardins N, Villeneuve N, Vilaine JP, Vanhoutte PM. Comparison of coronary endothelial dysfunction in the working and nonworking graft in porcine heterotopic heart transplantation. Transplantation 2002;74:764–72.

    Article  PubMed  CAS  Google Scholar 

  48. Ono K, Lindsey ES. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 1969;57:225–9.

    PubMed  CAS  Google Scholar 

  49. Swindle MM, Horneffer PJ, Gardner TJ, et al. Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine. Lab Anim Sci 1986;36:357–61.

    PubMed  CAS  Google Scholar 

  50. Kozlowski T, Shimizu A, Lambrigts D, et al. Porcine kidney and heart transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption. Transplantation 1999;67:18–30.

    Article  PubMed  CAS  Google Scholar 

  51. Goddard MJ, Dunning J, Horsley J, Atkinson C, Pino-Chavez G, Wallwork J. Histopathology of cardiac xenograft rejection in the pig-to-baboon model. J Heart Lung Transplant 2002;21:474–84.

    Article  PubMed  Google Scholar 

  52. DeBault L, Ye Y, Rolf LL, et al. Ultrastructural features in hyperacutely rejected baboon cardiac allografts and pig cardiac xenografts. Transplant Proc 1992;24:612–3.

    PubMed  CAS  Google Scholar 

  53. Brenner P, Schmoeckel M, Reichenspurner H, et al. Technique of immunoapheresis in heterotopic and orthotopic xenotransplantation of pig hearts into cynomolgus and rhesus monkeys. Transplant Proc 2000;32:1087–8.

    Article  PubMed  CAS  Google Scholar 

  54. Kurlansky PA, Sadeghi AM, Michler RE, et al. Comparable survival of intra-species and cross-species primate cardiac transplants. Transplant Proc 1987;19:1067–71.

    PubMed  CAS  Google Scholar 

  55. Lambrigts D, Sachs DH, Cooper DK. Discordant organ xenotransplantation in primates: world experience and current status. Transplantation 1998;66:547–61.

    Article  PubMed  CAS  Google Scholar 

  56. Wiener AS, Socha WW, Moor-Jankowski J. Homologous of the human A-B-O blood groups in apes and monkeys. Haematologia (Budap) 1974;8:195–216.

    CAS  Google Scholar 

  57. Kroshus TJ, Rollins SA, Dalmasso AP, et al. Complement inhibition with an anti-C5 monoclonal antibody prevents acute cardiac tissue injury in an ex vivo model of pig-to-human xenotransplantation. Transplantation 1995;60:1194–202.

    PubMed  CAS  Google Scholar 

  58. Salerno CT, Kulick DM, Yeh CG, et al. A soluble chimeric inhibitor of C3 and C5 convertases, complement activation blocker-2, prolongs graft survival in pig-to-rhesus monkey heart transplantation. Xenotransplantation 2002;9:125–34.

    Article  PubMed  Google Scholar 

  59. Cramer DV, Podesta L, Makowka L, eds. Handbook of animal models in transplantation research. Boca Raton, FL: CRC Press, 1994:352.

    Google Scholar 

  60. Li X, Bai J, He P. Simulation study of the Hemopump as a cardiac assist device. Med Biol Eng Comput 2002;40:344–53.

    Article  PubMed  CAS  Google Scholar 

  61. Snyder TA, Watach MJ, Litwak KN, Wagner WR. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg 2002;73:1933–8.

    Article  PubMed  Google Scholar 

  62. Mussivand T, Fujimoto L, Butler K, et al. In vitro and in vivo performance evaluation of a totally implantable electrohydraulic left ventricular assist system. ASAIO Trans 1989; 35:433–5.

    Article  PubMed  CAS  Google Scholar 

  63. Reffelmann T, Leor J, Muller-Ehmsen J, Kedes L, Kloner RA. Cardiomyocyte transplantation into the failing heart-new therapeutic approach for heart failure? Heart Fail Rev 2003;8:201–11.

    Article  PubMed  Google Scholar 

  64. Reffelmann T, Kloner RA. Cellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res 2003;58:358–68.

    Article  PubMed  CAS  Google Scholar 

  65. Reffelmann T, Dow JS, Dai W, Hale SL, Simkhovich BZ, Kloner RA. Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J Mol Cell Cardiol 2003;35:607–13.

    Article  PubMed  CAS  Google Scholar 

  66. Sakai T, Ling Y, Payne TR, Huard J. The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 2002;12:115–20.

    Article  PubMed  CAS  Google Scholar 

  67. Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 2003;108:1009–14.

    Article  PubMed  Google Scholar 

  68. Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003;107:2290–3.

    Article  PubMed  Google Scholar 

  69. Kraitchman DL, Sampath S, Castillo E, et al. Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 2003; 107:2025–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Bianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bianco, R.W., Gallegos, R.P., Rivard, A.L., Voight, J., Dalmasso, A.P. (2009). Animal Models for Cardiac Research. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics