Skip to main content

Energy Metabolism in the Normal and Diseased Heart

  • Chapter
  • First Online:
  • 5189 Accesses

Abstract

This chapter reviews the metabolic pathways involved in transferring the chemical energy stored in dietary carbon substrates (primarily glucose and fatty acids) into adenosine triphosphate (ATP) and the regulatory systems that integrate the functions of these pathways and make them responsive to changes in energy demand. Normal cardiac function depends upon both the adequate delivery of carbon substrates and oxygen to the heart by the coronary circulation and the ability of the heart to extract and metabolize these substrates at rates sufficient to support a wide range of ATP demands. The effects of several physiological states and disease processes on cardiac metabolism are also discussed and the concept that the diseased heart may be energy limited is presented. Lastly, an example of a new therapeutic approach, based on a detailed understanding of an inherited metabolic pathway abnormality, emphasizes the importance of detailed knowledge of energetic pathways.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    This work was supported by NIH grants HL33600, HL58840, HL20598, and HL21872 and Veterans Administration medical research funds.

General References and Suggested Reading

References for Regulation of Myocardial Blood Flow

  • Ishibashi Y, Duncker DJ, Zhang J, Bache RJ. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 1998;82:346–59.

    PubMed  CAS  Google Scholar 

  • Gorman MW, Tune JD, Richmond KN, Feigl EO. Feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol 2000;89:1892–902.

    PubMed  CAS  Google Scholar 

  • Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 2000;86:87–110.

    Article  PubMed  CAS  Google Scholar 

Standard Biochemistry Texts

  • Murray RK, Granner DK, Mayes PA, Rodwell VW, eds. Harper’s illustrated biochemistry. 27th ed. New York, NY: Lange Medical Books/McGraw-Hill, 2006.

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L, eds. Biochemistry. 6th ed. New York, NY: W.H. Freeman & Co., 2006.

    Google Scholar 

References for Glucose and Fatty Acid Metabolism and Regulation of Glycolysis and Fatty Acid Metabolism

  • Coven DL, Hu X, Cong L, et al. Physiological role of AMP-activated protein kinase in the heart: Graded activation during exercise. Am J Physiol Endocrinol Metab 2003;285:E629–36.

    PubMed  CAS  Google Scholar 

  • Nickerson JG, Momken I, Benton CR, et al. Protein-mediated fatty acid uptake: Regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl Physiol Nutr Metab 2007;32:865–73.

    Article  PubMed  CAS  Google Scholar 

  • Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 2004;19:92–6.

    Article  PubMed  CAS  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

References for Myocardial Substrate Selection

  • Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 2002;29:339–45.

    Article  PubMed  CAS  Google Scholar 

  • Drake AJ, Haines JR, Noble MI. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 1980;14:65–72.

    Article  PubMed  CAS  Google Scholar 

  • Drake-Holland AJ, Van der Vusse GJ, Roemen TH, et al. Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovasc Drugs Ther 2001;15:111–7.

    Article  PubMed  CAS  Google Scholar 

References for the TCA Cycle, Electron Transport Chain, and Oxidative Phosphorylation and Their Regulation

  • From AH, Zimmer SD, Michurski SP, et al. Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 1990;29:3731–43.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig B, Bender E, Arnold S, Huttemann M, Lee I, Kadenbach B. Cytochrome C oxidase and the regulation of oxidative phosphorylation. Chembiochem 2001;2:392–403.

    Article  PubMed  CAS  Google Scholar 

  • Brand MD, Curtis RK. Simplifying metabolic complexity. Biochem Soc Trans 2002;30:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick MJ, Conley KE. Energetics of muscle contraction: The whole is less than the sum of its parts. Biochem Soc Trans 2002;30:227–31.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Murakami Y, Zhang Y, et al. Oxygen delivery does not limit cardiac performance during high work states. Am J Physiol 1999;277:H50–7.

    PubMed  CAS  Google Scholar 

  • Territo PR, Mootha VK, French SA, Balaban RS. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 2000;278:C423–35.

    PubMed  CAS  Google Scholar 

  • Hochachka PW. Intracellular convection, homeostasis and metabolic regulation. J Exp Biol 2003;206:2001–9.

    Article  PubMed  CAS  Google Scholar 

  • Das AM. Regulation of the mitochondrial ATP-synthase in health and disease. Mol Genet Metab 2003;79:71–82.

    Article  PubMed  CAS  Google Scholar 

  • Levy C, Ter Keurs HE, Yaniv Y, Landesberg A. The sarcomeric control of energy conversion. Ann N Y Acad Sci 2005;1047:219–31.

    Article  PubMed  CAS  Google Scholar 

  • Maack C, O’Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 2007;102:369–92.

    Article  PubMed  CAS  Google Scholar 

References for Modeling of Energetic Function

  • Cortassa S, Aon MA, O’Rourke B., et al. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 2006;91:1564–89.

    Article  PubMed  CAS  Google Scholar 

  • Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK. Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 2004;256–257:185–99.

    Article  PubMed  Google Scholar 

  • Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: Metabolic basis of the Frank-Starling law. J Physiol 2006;571:253–73.

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski B. Parallel activation in the ATP supply-demand system lessens the impact of inborn enzyme deficiencies, inhibitors, poisons or substrate shortage on oxidative phosphorylation in vivo. Biophys Chem 2002;96:21–31.

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski B. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochem Biophys Acta 2001;1504:31–45.

    Article  PubMed  CAS  Google Scholar 

  • Aimar-Beurton M, Korzeniewski B, Letellier T, Ludinard S, Mazat JP, Nazaret C. Virtual mitochondria: Metabolic modelling and control. Mol Biol Rep 2002;29:227–32.

    Article  PubMed  CAS  Google Scholar 

Reference for High-Energy Phosphate Shuttles

References for Metabolism During Ischemia

  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  • Sambandam N, Lopaschuk GD. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 2003;42:238–56.

    Article  PubMed  CAS  Google Scholar 

References for Metabolism in Hypertrophied and Failing Myocardium

  • Ning XH, Zhang J, Liu J, et al. Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J Am Coll Cardiol 2000;36:282–7.

    Article  PubMed  CAS  Google Scholar 

  • Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 2002;29:339–45.

    Article  PubMed  CAS  Google Scholar 

  • Young ME, Laws FA, Goodwin GW, Taegtmeyer H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 2001;276:44390–5.

    Article  PubMed  CAS  Google Scholar 

  • Liao R, Jain M, Cui L, et al. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 2002;106:2125–31.

    Article  PubMed  CAS  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  • Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation 2007;116:434–48.

    Article  PubMed  CAS  Google Scholar 

References for Inherited Defects in Myocardial Metabolism

  • Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 2002;110:259–69.

    PubMed  CAS  Google Scholar 

  • DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348:2656–68.

    Article  PubMed  CAS  Google Scholar 

  • Mochel F, DeLonlay P, Touati G, et al. Pyruvate carboxylase deficiency: Clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 2005;84:305–12.

    Article  PubMed  CAS  Google Scholar 

  • Roe CR, Mochel F. Anaplerotic diet therapy in inherited metabolic disease: Therapeutic potential. J Inherit Metab Dis 2006;29:332–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur H. L. From .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

From, A.H.L., Bache, R.J. (2009). Energy Metabolism in the Normal and Diseased Heart. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics