Skip to main content

Mechanical Aspects of Cardiac Performance

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Monitoring of hemodynamic and mechanical parameters of the heart are reviewed. Clinical methodologies are discussed along with tools used in a research setting. Specifically, these include: arterial blood pressure, central venous pressure, pulmonary artery pressure, mixed venous oxygen saturation, cardiac output, pressure–volume loops, flow monitoring, and Frank–Starling curves. These parameters are monitored using technology such as pressure transducers, Swan–Ganz catheters, thermodilution, sonomicrometry crystals, conductance catheters, ultrasound transducers, and loop recorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sengupta PP, Khandheria BK, Korinek J, et al. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol 2006;47:163–72.

    Article  PubMed  Google Scholar 

  2. Ratcliffe M, et al. Use of sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of multiple cardiac locations: Feasibility and initial implementation. IEEE Trans Biomed Eng 1995;42:587–97.

    Article  PubMed  CAS  Google Scholar 

  3. Gorman JH III, Gupta KB, Streicher JT, et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovas Surg 1996;112:712–25.

    Article  Google Scholar 

  4. Meyer S, et al. Application of sonomicrometry and multidimensional scaling to cardiac catheter tracking. IEEE Trans Biomed Eng 1997;44:1061–7.

    Article  PubMed  CAS  Google Scholar 

  5. Geddes LA, Baker LE. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 1967;5:271–93.

    Article  PubMed  CAS  Google Scholar 

  6. Baan J, van der Velde ET, de Bruin HG, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984;70:812–23.

    Article  PubMed  CAS  Google Scholar 

  7. van der Velde ET, van Dijk AD, Steendijk P, et al. Left ventricular segmental volume by conductance catheter and cine-CT. Eur Heart J 1992;13 Suppl E:15–21.

    PubMed  Google Scholar 

  8. White PA, Redington AN. Right ventricular volume measurement: Can conductance do it better? Physiol Meas 2000;21:R23–41.

    Article  Google Scholar 

  9. Hettrick DA, Battocletti J, Ackmann J, Linehan J, Warltier DC. In vivo measurement of real-time aortic segmental volume using the conductance catheter. Ann Biomed Eng 1998;26:431–40.

    Article  PubMed  CAS  Google Scholar 

  10. Gardner RM. Accuracy and reliability of disposable pressure transducers coupled with modern monitors. Crit Care Med 1996;24:879–82.

    Article  PubMed  CAS  Google Scholar 

  11. Skeehan TM, Thys DM. Monitoring of the cardiac surgical patient.In: Hensley FA, Martin DE, eds. A practical approach to cardiac anesthesia. 2nd ed. Boston, MA: Little, Brown and Company, 1995:102.

    Google Scholar 

  12. Gorback MS. Considerations in the interpretation of systemic pressure monitoring. In: Lumb PD, Bryan-Brown CW, eds. Complications in critical care medicine. Chicago, IL: Year Book, 1988:296.

    Google Scholar 

  13. Shasby DM, Dauber IM, Pfister S, et al. Swan-Ganz catheter location and left atrial pressure determine the accuracy of wedge pressure when positive end expiratory pressure is used. Chest 1980;80:666–70.

    Article  Google Scholar 

  14. Snyder JV, Carroll GC. Tissue oxygenation: A physiologic approach to a clinical problem. Curr Probl Surg 1982;19:650.

    Article  PubMed  CAS  Google Scholar 

  15. Stanley TE, Reves JG. Cardiovascular monitoring. In: Miller RD, ed. Anesthesia. 4th ed. Boston, MA: Churchill Livingstone, 1994:1167.

    Google Scholar 

  16. Swan HJC, Ganz W, Forrester J, Marcus H, Diamon G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 1970;283:447–51.

    Article  PubMed  CAS  Google Scholar 

  17. Practice guidelines for pulmonary artery catheterization. Anesthesiology 2003;99:989–1014.

    Google Scholar 

  18. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 1964;19:713–24.

    PubMed  CAS  Google Scholar 

  19. Wesseling KH. Finger arterial pressure measurement with Finapres. Z Kardiol 1996;3:38–44.

    Google Scholar 

  20. Brandstetter RD, Grant GR, Estilo M, Rahim R, Sing K, Gitler B. Swan-Ganz catheter: Misconceptions, pitfalls, and incomplete user knowledge-an identified trilogy in need of correction. Heart Lung 1998;27:218–22.

    Article  PubMed  CAS  Google Scholar 

  21. Wittnich C, Trudel J, Zidulka A, Chiu RC. Misleading “pulmonary wedge pressure” after pneumonectomy: Its importance in postoperative fluid therapy. Ann Thorac Surg 1986;42:192–6.

    Article  PubMed  CAS  Google Scholar 

  22. Van Aken H, Vandermeersch E. Reliability of PCWP as an index for left ventricular preload. Br J Anesth 1988;60:85–9S.

    Google Scholar 

  23. Stanley TE, Reves JG. Cardiovascular monitoring. In: Miller RD, ed. Anesthesia. 4th ed. Boston, MA: Churchill Livingstone, 1994:1184–5.

    Google Scholar 

  24. Fegler G. Measurement of cardiac output in anesthetized animals by thermodilution method. Q J Exp Physiol 1954;39:153.

    CAS  Google Scholar 

  25. Pearl RGB, Rosenthal MH, Mielson L, et al. Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 1986;64:798.

    Article  PubMed  CAS  Google Scholar 

  26. Reich DL, Moskowitz DM, Kaplan JA. Hemodynamic monitoring. In: Kaplan JA, Reich DL, Konstaelt SN, eds. Cardiac anesthesia. 4th ed. Philadelphia, PA: WB Saunders Co, 1999.

    Google Scholar 

  27. Burchell SA, Yu M, Takiguchi SA, Ohta RM, Myers SA. Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 1997;25:388–91.

    Article  PubMed  CAS  Google Scholar 

  28. Poli d Figueiredo LF, Malbouisson LMS, Varicoda EY, et al. Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 1999;47:288–93.

    Article  Google Scholar 

  29. Mihaljevi T, vonSegesser LK, Tonz M, et al. Continuous versus bolus thermodilution cardiac output measurements: A comparative study. Crit Care Med 1995;23:944–9.

    Article  Google Scholar 

  30. Mihm FG, Gettinger A, Hanson CW, et al. A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 1998;26:1346–50.

    Article  PubMed  CAS  Google Scholar 

  31. Della RG, Costa MG, Pompei L, et al. Continuous and intermittent cardiac output measurement: Pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 2002;88:350–6.

    Article  Google Scholar 

  32. Pamley CL, Pousman RM. Noninvasive cardiac output monitoring. Curr Opin Anaesthesiol 2002;15:675–80.

    Article  Google Scholar 

  33. Christensen P, Clemensen P, Andersen PK, et al. Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow. Crit Care Med 2000;28:51–6.

    Article  PubMed  CAS  Google Scholar 

  34. Imhoff M, Lehner JH, Lohlein D. Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med 2000;28:2812–8.

    Article  PubMed  CAS  Google Scholar 

  35. Shoemaker WC, Wo CC, Bishop MH, et al. Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 1994;22:1907–12.

    PubMed  CAS  Google Scholar 

  36. Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in main using lithium dilution. Br J Anaesth 1994;71:262–6.

    Article  Google Scholar 

  37. Linton R, Band D, O’Brian T, et al. Lithium dilution cardiac output measurement: A comparison with thermodilution. Crit Care Med 1997;25:1767–8.

    Article  Google Scholar 

  38. Kurita T, Morita K, Kato S, et al. Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 1997;79:770–5.

    PubMed  CAS  Google Scholar 

  39. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77.

    Article  PubMed  CAS  Google Scholar 

  40. Band DM, Linton RA, Jonas MM, et al. The shape of indicator dilution curves used for cardiac output measurement in man. J Physiol 1997;498:225–9.

    PubMed  CAS  Google Scholar 

  41. Shoemaker WC. New approaches to trauma management using severity of illness and outcome prediction based on noninvasive hemodynamic monitoring. Surg Clin North Am 2002;82:245–55.

    Article  PubMed  Google Scholar 

  42. Shoemaker WC, Wo CC, Chan L, et al. Outcome prediction of emergency patients by noninvasive hemodynamic monitoring. Chest 2001;120:528–37.

    Article  PubMed  CAS  Google Scholar 

  43. Drazner MH, Thompson B, Rosenberg PB, et al. Comparisons of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy. Am J Cardiol 2002;89:993–5.

    Article  PubMed  Google Scholar 

  44. Binder JC, Parkin WG. Non-invasive cardiac output determination: Comparison of a new partial-rebreathing technique with thermodilution. Anaesth Intensive Care 2001;28:427–30.

    Google Scholar 

  45. Maxwell RA, Gibson JB, Slade JB, et al. Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma 2001;51:849–53.

    Article  PubMed  CAS  Google Scholar 

  46. Tachibana K, Imanaka H, Miyano H, et al. Effect of ventilatory settings on accuracy of cardiac output measurement using partial CO2 rebreathing. Anesthesiology 2002;96:96–102.

    Article  PubMed  Google Scholar 

  47. Botero M, Lobato EB. Advances in noninvasive cardiac output monitoring: An update. J Cardiothorac Vasc Anesth 2001;15:631–40.

    Article  PubMed  CAS  Google Scholar 

  48. Kotake Y, Moriyama K, Innami Y, et al. Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology 2003;99:283–8.

    Article  PubMed  Google Scholar 

  49. Keech J, Reed RL II. Reliability of mixed venous oxygen saturation as an indicator of the oxygen extraction ratio demonstrated by a large patient data set. J Trauma 2003;54:236–41.

    Article  PubMed  Google Scholar 

  50. Snyder JV, Carroll GC. Tissue oxygenation: A physiologic approach to a clinical problem. Curr Probl Surg 1982;19:650.

    Article  PubMed  CAS  Google Scholar 

  51. Jain A, Shroff SG, Jnicki JS, et al. Relation between venous oxygen saturation and cardiac index. Nonlinearity and normalization for oxygen uptake and hemoglobin. Chest 1991;99:1403–9.

    CAS  Google Scholar 

  52. Inomata S, Nishikawa T, Taguchi M. Continuous monitoring of mixed venous oxygen saturation for detecting alterations in cardiac output after discontinuation of cardiopulmonary bypass. Br J Anaesth 1994;72:11–6.

    Article  PubMed  CAS  Google Scholar 

  53. Rivers E, Nguyen B, Vastad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77.

    Article  PubMed  CAS  Google Scholar 

  54. Kraft P, Steltzer H, Hiesmayr M, et al. Mixed venous oxygen saturation in critically ill septic shock patients: The role of defined events. Chest 1993;103:900–6.

    Article  Google Scholar 

  55. Waller JL, Kaplan JA, Bauman LI, et al. Clinical evaluation of a new fiberoptic catheter oximeter during cardiac surgery. Anesth Analg 1982;61:676–9.

    Article  PubMed  CAS  Google Scholar 

  56. Vedrinne C, Bastien O, De Varax R, et al. Predictive factors for usefulness of fiberoptic pulmonary artery catheter for continuous oxygen saturation in mixed venous blood monitoring in cardiac surgery. Anesth Analg 1997;85:2–10.

    PubMed  CAS  Google Scholar 

  57. Goldman RH, Klughaupt M, Metcalf T, et al. Measured central venous oxygen saturation in patients with myocardial infarction. Circulation 1968;38:941–6.

    PubMed  CAS  Google Scholar 

  58. Berridye JC. Influence of cardiac output on correlation between mixed venous and central venous oxygen saturation. Br J Anaesth 1992;89:409–10.

    Article  Google Scholar 

  59. Davies GG, Mendehall J, Symrey T. Measurement of right atrial oxygen saturation by fiberoptic oximetry accurately reflects mixed venous oxygen saturation in swine. J Clin Monit 1988;4:99–102.

    Article  PubMed  CAS  Google Scholar 

  60. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 2001;7:204–11.

    Article  PubMed  CAS  Google Scholar 

  61. Lee J, Wright F, Barber R, et al. Central venous oxygen saturation in shock: A study in man. Anesthesiology 1972;36:472–8.

    Article  PubMed  CAS  Google Scholar 

  62. Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation 1969;40:165–72.

    PubMed  CAS  Google Scholar 

  63. Edwards JD, Mayall RM. Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med 1998;26:1356–60.

    Article  PubMed  CAS  Google Scholar 

  64. Bonow RO, Carabello B, de Leon AC, et al. ACC/AHA guidelines for the management of patients with valvular heart disease. Executive summary. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on management of patients with valvular heart disease). J Heart Valve Dis 1998;7:672–707.

    PubMed  CAS  Google Scholar 

  65. Yoganathan AP, Chandran KB, Sotiropoulos F. Flow in prosthetic heart valves: State-of-the-art and future directions. Ann Biomed Eng 2005;33:1689–94.

    Article  PubMed  Google Scholar 

  66. Brignole M, Sutton R, Menozzi C, et al. Lack of correlation between the responses to tilt testing and adenosine triphosphate test and the mechanism of spontaneous neurally mediated syncope. Eur Heart J 2006;27:2232–9.

    Article  PubMed  Google Scholar 

  67. Deharo JC, Jego C, Lanteaume A, Djiane P. An implantable loop recorder study of highly symptomatic vasovagal patients: The heart rhythm observed during a spontaneous syncope is identical to the recurrent syncope but not correlated with the head-up tilt test or adenosine triphosphate test. J Am Coll Cardiol 2006;47:587–93.

    Article  PubMed  Google Scholar 

  68. Moya A, Brignole M, Menozzi C, et al. Mechanism of syncope in patients with isolated syncope and in patients with tilt-positive syncope. Circulation 2001;104:1261–7.

    Article  PubMed  CAS  Google Scholar 

  69. Strickberger SA, Benson DW, Biaggioni I, et al. AHA/ACCF scientific statement on the evaluation of syncope: From the American Heart Association councils on clinical cardiology, cardiovascular nursing, cardiovascular disease in the young, and stroke, and the quality of care and outcomes research interdisciplinary working group; and the American College of Cardiology foundation: In collaboration with the heart rhythm society: Endorsed by the American Autonomic Society. Circulation 2006;113:316–27.

    Article  PubMed  Google Scholar 

  70. Brignole M, Alboni P, Benditt DG, et al. Guidelines on management (diagnosis and treatment) of syncope-update 2004. Executive summary. Eur Heart J 2004;25:2054–72.

    Google Scholar 

  71. Adamson PB, Magalski A, Braunschweig F, et al. Ongoing right ventricular hemodynamics in heart failure: Clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol 2003;41:565–71.

    Article  PubMed  Google Scholar 

  72. Reynolds DW, Bartelt N, Taepke R, Bennett TD. Measurement of pulmonary artery diastolic pressure from the right ventricle. J Am Coll Cardiol 1995;25:1176–82.

    Article  PubMed  CAS  Google Scholar 

  73. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 1989;261:884–8.

    Article  PubMed  CAS  Google Scholar 

  74. Wilson JR, Hanamanthu S, Chomsky DB, Davis SF. Relationship between exertional symptoms and functional capacity in patients with heart failure. J Am Coll Cardiol 1999;33:1943–7.

    Article  PubMed  CAS  Google Scholar 

  75. Bennett T, Kjellstrom B, Taepke R, Ryden L. Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients. Pacing Clin Electrophysiol 2005;28:573–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Loushin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loushin, M.K., Quill, J.L., Iaizzo, P.A. (2009). Mechanical Aspects of Cardiac Performance. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics