Skip to main content

Influence of Overweight and Obesity on Medication

  • Chapter
  • First Online:
Handbook of Drug-Nutrient Interactions

Part of the book series: Nutrition and Health ((NH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289:76–79.

    Article  Google Scholar 

  2. Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA 2003;290:1884–1890.

    Article  CAS  Google Scholar 

  3. Engelgau MM, Geiss LS, Saaddine JB, et al. The evolving diabetes burden in the United States. Ann Intern Med 2004;140:945–950.

    Google Scholar 

  4. Mensah GA, Mokdad AH, Ford E, et al. Obesity, metabolic syndrome, and type 2 diabetes: emerging epidemics and their cardiovascular implications. Cardiol Clin 2004;22:485–504.

    Article  Google Scholar 

  5. Eckel RH, Krauss RM. American Heart Association call to action: obesity as a major risk factor for coronary heart disease. Circulation 1998;97:2099–2100.

    CAS  Google Scholar 

  6. Allison DB, Fontaine KR, Manson JE, Stevens J, Van ltallie TB. Annual deaths attributable to obesity in the United States. JAMA 1999;282:1530–1538.

    Article  CAS  Google Scholar 

  7. WHO (World Health Organization). Obesity: preventing and managing the global epidemic. Report of a WHO consultation (Technical Report Series #894). Geneva, Switzerland: WHO, 2000.

    Google Scholar 

  8. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Am J Clin Nutr 1998;68:899–917.

    Google Scholar 

  9. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med 2002;162:2074–2079.

    Article  Google Scholar 

  10. Zhu SK, Wang ZM, Heshka S, et al. Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr 2002;76:743–749.

    CAS  Google Scholar 

  11. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa heart Study. Pediatrics 2001;108:712–718.

    Article  CAS  Google Scholar 

  12. Field AE, Cook NR, Gillman MW. Weight status in childhood as a predictor of becoming overweight or hypertensive in early adulthood. Obes Res 2005;13:163–169.

    Article  Google Scholar 

  13. Bruce A, Andersson M, Arvidsson B, Isaksson B. Body composition: prediction of normal body potassium, body water and body fat in adults on the basis of body height, body weight and age. Scand J Clin Lab Invest 1980;40:461–473.

    Article  CAS  Google Scholar 

  14. Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB. Body mass index as a measure of adiposity among children and adolescents: a validation study. J Pediatr 1998;132:204–210.

    Article  CAS  Google Scholar 

  15. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000;320:1240–1245.

    Article  CAS  Google Scholar 

  16. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull WHO 2007;85:660–667.

    Google Scholar 

  17. Barlow SE and the Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics 2007;120(suppl 4):S164-S192.

    Google Scholar 

  18. Taylor RW, Jones IE, Williams SM, Goulding A. Body fat percentages measured by dual-energy X-ray absorptiometry corresponding to recently recommended body mass index cutoffs for overweight and obesity in children and adolescents aged 3–18 y. Am J Clin Nutr 2002;76:1416–1421.

    CAS  Google Scholar 

  19. Flegal KM, Carroll MD, Ogden CL, Johnson C. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 2002;288:1723–1727.

    Article  Google Scholar 

  20. Hedley AA, Ogden CL, Johnson CL, et al. Prevalence of overweight and obesity among U.S. children, adolescents, and adults, 1999–2002. JAMA 2004;291:2847–2850.

    Article  CAS  Google Scholar 

  21. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006;295:1549–1555.

    Article  CAS  Google Scholar 

  22. Freedman DS, Khan LK, Serdula MK, Galuska DA, Dietz WH. Trends and correlates of class 3 obesity in the United States from 1990 through 2000. JAMA 2002;288:1758–1761.

    Article  Google Scholar 

  23. Okosun IS, Chandra KM, Boev A, et al. Abdominal adiposity in U.S. adults: prevalence and trends, 1960–2000. Prev Med 2004;39:197–206.

    Article  Google Scholar 

  24. Rosner B, Prineas R, Loggie J, et al. Percentiles for body mass index in US children 5 to 17 years of age. J Pediatr 1998;132:211–222.

    Article  CAS  Google Scholar 

  25. Wang Y, Beydoun MA. The obesity epidemic in the United States – gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev 2007;29:6–28.

    Article  CAS  Google Scholar 

  26. Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 2002;288:1728–1732.

    Article  Google Scholar 

  27. Seidell JC. Time trends in obesity: an epidemiological perspective. Horm Metab Res 1997;29:155–158.

    Article  CAS  Google Scholar 

  28. Maillard G, Charles MA, Thibult N, et al. Trends in the prevalence of obesity in the French adult population between 1980 and 1991. Int J Obes 1999;23:389–394.

    Article  CAS  Google Scholar 

  29. Booth ML, Chey T, Wake M, et al. Change in the prevalence of overweight and obesity among young Australians, 1969–1997. Am J Clin Nutr 2003;77:29–36.

    CAS  Google Scholar 

  30. Caballer The global epidemic of obesity. Epidemiol Rev 2007;29:1–5.

    Google Scholar 

  31. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chronic Dis 1972;25:329–343.

    Article  CAS  Google Scholar 

  32. National Institutes of Health Consensus Development Panel on the Health Implications of Obesity. Health implications of obesity: National Institutes of Health consensus development conference statement. Ann Intern Med 1985;103(6 pt 2):1073–1077.

    Google Scholar 

  33. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol 2004;58:119–133.

    Article  Google Scholar 

  34. Robinson JD, Lupkiewicz SM, Palenik L, Lopez LM, Arlet M. Determination of ideal body weight for drug dosage calculations. Am J Hosp Pharm 1983;40:1016–1019.

    CAS  Google Scholar 

  35. Hamwi GJ. Therapy: changing dietary concepts. In: Danowski TS, ed. Diabetes mellitus: diagnosis and treatment. New York: American Diabetes Association Inc., 1964:73–78.

    Google Scholar 

  36. Devine BJ. Gentamicin therapy. Drug Intell Clin Pharm 1974;8:650–655.

    Google Scholar 

  37. Duffull SB, Dooley MJ, Green B, Poole SG, Kirkpatrick CMJ. A standard weight descriptor for dose adjustment in the obese patient. Clin Pharmacokinet 2004;43:1167–1178.

    Article  Google Scholar 

  38. Cunningham JJ. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am J Clin Nutr 1980;33:2372–2374.

    CAS  Google Scholar 

  39. James WP. Research on obesity. London, UK: Her Majesty’s Stationary Office, 1976.

    Google Scholar 

  40. Metropolitan Life Insurance Co. Ideal weight for women. Stat Bull Metropol Life Insur Co, 1943.

    Google Scholar 

  41. Metropolitan Life Insurance Co. Ideal weight for men. Stat Bull Metropol Life Insur Co, 1943.

    Google Scholar 

  42. Metropolitan Life Insurance Co. New weight standards for men and women. Stat Bull Metropol Life Insur Co 1959;40:1–4.

    Google Scholar 

  43. Metropolitan Life Insurance Co. Height and weight tables. Stat Bull Metropol Life Insur Co 1983;64:2–9.

    Google Scholar 

  44. Knapp TR. A methodological critique of the ‘ideal weight’ concept. JAMA 1983;250:506–510.

    Article  CAS  Google Scholar 

  45. Harriso GG. Height-weight tables. Ann Intern Med 1985;103(6 pt 2):989–994.

    Google Scholar 

  46. Abernathy DR, Greenblatt DJ. Drug disposition in obese humans: an update. Clin Pharmacokinet 1986;11:199–213.

    Article  Google Scholar 

  47. Green B, Duffull S. Caution when lean body weight is used as a size descriptor for obese subjects. Clin Pharmacol Ther 2002;72:743–744.

    Article  Google Scholar 

  48. Sjöström L. A CT-based multicompartmental body composition technique and anthropometric predictions of lean body mass, total and subcutaneous adipose tissue. Int J Obes 1996;15:19–30.

    Google Scholar 

  49. Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage: implications for drug therapy. Clin Pharmacokinet 1994;26:292–307.

    Article  CAS  Google Scholar 

  50. Cheymol G. Effects of obesity on pharmacokinetics: implications for drug therapy. Clin Pharmacokinet 2000;39:215–231.

    Article  CAS  Google Scholar 

  51. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: National Academy Press, 2002.

    Google Scholar 

  52. Forbes GB, Welle SL. Lean body mass in obesity. Int J Obes 1983;7:99–107.

    CAS  Google Scholar 

  53. Coin A, Sergi G, Minicuci N, et al. Fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20–80 year-old Italian population. Clin nutr 2008;27:87–94.

    Article  Google Scholar 

  54. Machann J, Thamer C, Schnoedt B, et al. Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. Magma 2005;18:128–137.

    Article  CAS  Google Scholar 

  55. Walling BE, Munasinghe J, Berrigan D, Bailey MQ, Simpson RM. Intra-abdominal fat burden discriminated in vivo using proton magnetic resonance spectroscopy. Obesity 2007;15:69–77.

    Article  Google Scholar 

  56. Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth 2005;17:134–145.

    Article  CAS  Google Scholar 

  57. Gallagher D, Visser M, Sepulveda D. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 1993;22:228–239.

    Google Scholar 

  58. Fernández JR, Heo M, Heymsfield SB, et al. Is percentage body fat differentially related to body mass index in Hispanic Americans, African Americans, and European Americans? Am J Clin Nutr 2003;77:71–75.

    Google Scholar 

  59. Wang J, Thornton JC, Burastero S, et al. Comparisons for body mass index and body fat percent among Puerto Ricans, blacks, whites and Asians living in the New York City area. Obes Res 1996;4:377–384.

    CAS  Google Scholar 

  60. Deurenberg P, Yap M, Van Staveren WA. Body mass index and percent body fat: a meta-analysis among different ethnic groups. Int J Obes 1998;22:1164–1171.

    Article  CAS  Google Scholar 

  61. Gallagher D, Heymsfield SB, Heo M, et al. Healthy percentage body fat ranges: an approach for developing guidelines on body mass index. Am J Clin Nutr 2000;72:694–701.

    CAS  Google Scholar 

  62. Sumner AE, Farmer NM, Tulloch-Reid MK, et al. Sex differences in visceral adipose tissue volume among African Americans. Am J Clin Nutr 2002;76:975–979.

    CAS  Google Scholar 

  63. Gallagher D, Kuznia P, Heshka S, et al. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr 2005;81:903–910.

    CAS  Google Scholar 

  64. Greenblatt DJ, Abernathy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984;61:27–35.

    CAS  Google Scholar 

  65. Bowman SL, Hudson SA, Simpson G, Munro JF, Clements JA. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br J Clin Pharmacol 1986;21:529–532.

    CAS  Google Scholar 

  66. Flechner SM, Kilbeinsson ME, Tam J, Lum B. The impact of body weight on cyclosporine pharmacokinetics in renal transplant recipients. Transplantation 1989;47:806–810.

    Article  CAS  Google Scholar 

  67. Cheymol G, Weissenburger J, Poirier JM, Gellee C. The pharmacokinetics of dexfenfluramine in obese and nonobese subjects. Br J Clin Pharmacol 1995;39:684–687.

    CAS  Google Scholar 

  68. Lafontan M. Fat cells: afferent and efferent messages define new approaches to treating obesity. Annu Rev Pharmacol Toxicol 2005;45:119–146.

    Article  CAS  Google Scholar 

  69. Ramírez-Ponce MP, Mateos JC, Bellido JA. Human adipose cells have voltage-dependent potassium currents. J Membrane Biol 2003;196:129–134.

    Article  CAS  Google Scholar 

  70. Gunderson K, Shen G. Total body water in obesity. Am J Clin Nutr 1966;19:77–83.

    Google Scholar 

  71. Wada DR, Bjorkman S, Ebling WF, et al. Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans. Anesthesiology 1997;87:884–899.

    Article  CAS  Google Scholar 

  72. Bischoff KB, Dedrick RL. Thiopental pharmacokinetics. J Pharm Sci 1968;57:1346–1351.

    Article  CAS  Google Scholar 

  73. Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications. 3rd ed. Baltimore, MD: Williams & Wilkins, 1995:137–155.

    Google Scholar 

  74. Summers LK, Samra JS, Humphreys SM, Morris RJ, Frayn KN. Subcutaneous adipose tissue blood flow: variation within and between subjects and relationship to obesity. Clin Sci 1996;91:679–683.

    CAS  Google Scholar 

  75. Lesser G, Deutsch S. Measurement of adipose tissue blood flow and perfusion in man by uptake of 85Kr. J Appl Physiol 1967;23:621–632.

    CAS  Google Scholar 

  76. Goossens GH, McQuaid SE, Dennis AL, et al. Angiotensin II: a major regulator of subcutaneous adipose tissue blood flow in humans. J Physiol 2006;571.2:451–460.

    Google Scholar 

  77. Benedeck IH, Blouin RA, McNamara PJ. Serum protein binding and the role of increased alpha1-acid glycoprotein in moderately obese male subjects. Br J Clin Pharmacol 1984;18:941–946.

    Google Scholar 

  78. Cheymol G. Comparative pharmacokinetics of intravenous propranolol in obese and normal volunteers. J Clin Pharmacol 1987;27:874–879.

    CAS  Google Scholar 

  79. Derry CL, Kroboth PD, Pittenger AL, et al. Pharmacokinetics and pharmacodynamics of triazolam after two intermittent doses in obese and normal-weight men. J Clin Psychopharmacol 1995;15:197–205.

    Article  CAS  Google Scholar 

  80. Blouin RA, Kolpeck JH, Mann HJ. Influence of obesity on drug disposition. Clin Pharm 1987;6:706–714.

    CAS  Google Scholar 

  81. Okuda T, Oh-i T. Cyclosporin A pharmacokinetics in a patient with psoriasis and obesity, presenting with high levels of low-density lipoprotein. Eur J Clin Pharmacol 2002;58:299–300.

    Article  Google Scholar 

  82. Ritschel WA, Kaul S. Prediction of apparent volume of distribution in obesity. Meth Find Exp Clin Pharmacol 1986;8:239–247.

    CAS  Google Scholar 

  83. Blouin RA, Warren GW. Pharmacokinetic considerations in obesity. J Pharm Sci 1999;88:1–7.

    Article  CAS  Google Scholar 

  84. Bickel MH. Factors affecting the storage of drugs and other xenobiotics in adipose tissue. Adv Drug Res 1994;25:55–86.

    CAS  Google Scholar 

  85. Jones AW. Body mass index and blood-alcohol calculations [letter]. J Anal Toxicol 2007:31:177–178.

    CAS  Google Scholar 

  86. Slikker W, Young JF, Corley RA, et al. Improving predictive modeling in pediatric drug development: pharmacokinetics, pharmacodynamics, and mechanistic modeling. Ann NY Acad Sci 2005;1053:505–518.

    Article  Google Scholar 

  87. Simonsen L, Enevoldsen LH, Bülow J. Determination of adipose tissue blood flow with local 133Xe clearance: evaluation of a new labeling technique. Clin Physiol Funct Imaging 2003;23:320–323.

    Article  Google Scholar 

  88. Todd EL, Abernathy DR. Pharmacokinetics and dynamics of (±)-verapamil in lean and obese Zucker rats. J Pharmacol Exp Ther 1986;238:642–647.

    CAS  Google Scholar 

  89. Belknap SM, Nelson JE, Ruo TI, et al. Theophylline distribution kinetics analyzed by reference to simultaneously injected urea and inulin. J Pharmacol Exp Ther 1987;243:963–969.

    CAS  Google Scholar 

  90. Buur JL, Baynes RE, Craigmill AL, Riviere JE. Development of a physiologic-based pharmacokinetic model for estimating sulfamethazine concentrations in swine and application to prediction of violative residues in edible tissues. Am J Vet Res 2005;66:1686–1693.

    Article  CAS  Google Scholar 

  91. DeDevitiis O, Fazio S, Petitto M, et al. Obesity and cardiac function. Circulation 1981;64:477–482.

    Google Scholar 

  92. Andersen T, Gluud C. Liver morphology in morbid obesity: a literature study. Int J Obes 1984;8:97–106.

    CAS  Google Scholar 

  93. Stockholm KH, Brochner-Motenson J, Hoilund-Carlsen PF. Glomerular filtration rate and adrenocortical function in obese women. Int J Obes 1980;4:57–63.

    Google Scholar 

  94. Marrades MP, Milagro FI, Martínez JA, Moreno-Aliaga MJ. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem Biophys Res Comm 2006;339:785–789.

    Article  CAS  Google Scholar 

  95. Khemawoot P, Yokogawa K, Shimada T, Miyamoto KI. Obesity-induced increase of CYP2E1 activity and its effect on disposition kinetics of chlorzoxazone in Zucker rats. Biochem Pharmacol 2007;73:155–162.

    Article  CAS  Google Scholar 

  96. Bélanger C, Hould FS, Lebel S, biron S, Brochu G, Tchernof A. Omental and subcutaneous adipose tissue steroid levels in obese men. Steroids 2006;71:674–682.

    Article  CAS  Google Scholar 

  97. Klöting N, Graham TE, Berndt J, et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 2007;6:79–87.

    Article  CAS  Google Scholar 

  98. Caraco Y, Zylber-Katz E, berry EM, Levy M. Antipyrine disposition in obesity: evidence for negligible effect of obesity on hepatic oxidative metabolism. Eur J Clin Pharmacol 1995;47:525–530.

    Article  CAS  Google Scholar 

  99. O’Shea D, Davis SN, Kim RB, Wilkinson GR. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994;56:359–367.

    Article  Google Scholar 

  100. Lucas D, Farez C, Bardou LG, Vaisse J, Attali JR, Valensi P. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fund Clin Pharmacol 1998;12:553–558.

    Article  CAS  Google Scholar 

  101. Hunt CM, Watkins PB, Saenger P, et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992;51:18–23.

    Article  CAS  Google Scholar 

  102. Kotlyar M, Carson SW. Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther 1999;37:8–19.

    CAS  Google Scholar 

  103. de la Maza MP, Hirsch S, Petermann M, et al. Changes in microsomal activity in alcoholism and obesity. Alcoholism Clin Exper Res 2000;24:605–610.

    Article  Google Scholar 

  104. Caraco Y, Zylber-Katz E, Berry EM, et al. Caffeine pharmacokinetics in obesity and following significant weight reduction. Int J Obes 1995;19:234–239.

    CAS  Google Scholar 

  105. Abernathy DR, Greenblatt DJ. Pharmacokinetics of drugs in obesity. Clin Pharmacokinet 1982;7:108–124.

    Article  Google Scholar 

  106. Abernathy DR, Greenblatt DJ, Divoll M, Shader RI. Enhanced glucuronide conjugation of drugs in obesity: studies of lorazepam, oxazepam, and acetaminophen. J Clin Lab Med 1983;101:873–880.

    Google Scholar 

  107. Greenblatt DJ, Abernathy DR, Boxenbaum HG, et al. Influence of age, gender, and obesity on salicylate kinetics following doses of aspirin. Arthritis Rheum 1986;29:971–980.

    Article  CAS  Google Scholar 

  108. Christoff PB, Conti DR, Naylor C, Jusko WJ. Procainamide disposition in obesity. Drug Intell Clin Pharm 1983;17:369–376.

    Google Scholar 

  109. Irizar A, Barnett CR, Flatt PR, Ionnides C. Defective expression of cytochrome P450 proteins in the liver of the genetically obese Zucker rat. Eur J Pharmacol Environ Toxicol 1995;293:385–393.

    Article  CAS  Google Scholar 

  110. Salazar DE, Sorge CL, Corcoran GB. Obesity as a risk factor for drug-induced organ injury VI: increased hepatic P450 concentration and microsomal ethanol oxidizing activity in the obese overfed rat. Biochem Biophys Res Commun 1988;157:315–320.

    Article  CAS  Google Scholar 

  111. Salazar DE, Corcoran GB. Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med 1988;84:1053–1060.

    Article  CAS  Google Scholar 

  112. Allard S, Kinzig M, Boivin G, Sorgel F, LeBel M. Intravenous ciprofloxacin disposition in obesity. Clin Pharmacol Ther 1993;54:368–373.

    Article  CAS  Google Scholar 

  113. Bauer LA, Waring-Tran C, Edwards WA, et al. Cimetidine clearance in the obese. Clin Pharmacol Ther 1985;37:425–430.

    Article  CAS  Google Scholar 

  114. Reiss AR, Hass CE, Karki SD, et al. Lithium pharmacokinetics in the obese. Clin Pharmacol Ther 1994;56:392–398.

    Article  Google Scholar 

  115. Dionne RE, Bauer LA, Gibson GA, Griffen WO, Blouin RA. Estimating creatinine clearance in morbidly obese patients. Am J Hosp Pharm 1981;38:841–844.

    CAS  Google Scholar 

  116. Bauer LA, Black DJ, Lill JS. Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 1998;54:621–625.

    Article  CAS  Google Scholar 

  117. Leader WG, Tsubaki T, Chandler MHH. Creatinine-clearance estimates for predicting gentamicin pharmacokinetic values in obese patients. Am J Hosp Pharm 1994;51:2155–2130.

    Google Scholar 

  118. Varin F, Ducharme J, Theoret Y, Besner JG, Bevan DR, Donati F. Influence of extreme obesity on the body disposition and neuromuscular blocking effect of atracurium. Clin Pharmacol Ther 1990;48:18–25.

    Article  CAS  Google Scholar 

  119. Georgiadis MS, Steinberg SM, Hankins DC, Johnson BE. Obesity and therapy related toxicity in patients treated for small-cell lung cancer. J Nat Cancer Inst 1995;87:361–366.

    Article  CAS  Google Scholar 

  120. Rankinen T, Pérusse L, Weisnagel SJ, et al. The human obesity gene map: the 2001 update. Obes Res 2002;10:196–243.

    Article  CAS  Google Scholar 

  121. Abernathy DR, Greenblatt DJ. Phenytoin disposition in obesity: determination of loading dose. Arch Neurol 1985;42:468–471.

    Google Scholar 

  122. Olsen KM, Marx MA, Monoghan MS, et al. Phenytoin and plasmapheresis: importance of sampling times and impact of obesity. Ther Drug Monitor 1994;16:624–628.

    Article  CAS  Google Scholar 

  123. Kuranari M, Chiba S, Ashikari Y, et al. Clearance of phenytoin and valproic acid is affected by a small body weight reduction in an epileptic obese patient: a case study. J Clin Pharm Ther 1996;21:83–87.

    Article  CAS  Google Scholar 

  124. Caraco Y, Zylber-Katz E, Berry EM, Levy M. Significant weight reduction in obese subjects enhances carbamazepine elimination. Clin Pharmacol Ther 1992;51:501–506.

    Article  CAS  Google Scholar 

  125. Caraco Y, Zylber-Katz E, Berry EM, Levy M. Carbamazepine pharmacokinetics in obese and lean subjects. Ann Pharmacother 1995;29:843–847.

    CAS  Google Scholar 

  126. Wilkes L, Danziger LH, Rodvold KA. Phenobarbital pharmacokinetics in obesity: a case report. Clin Pharmacokinet 1992;22:481–484.

    Article  CAS  Google Scholar 

  127. Wurtz R, Itokazu G, Rodvold K. Antimicrobial dosing in obese patients. Clin Infect Dis 1997;25:112–118.

    Article  CAS  Google Scholar 

  128. Pai MP, Mercier RC, Allen SE. Using vancomycin concentrations for dosing daptomycin in a morbidly obese patient with renal insufficiency. Ann Pharmacother 2006:40:553–558.

    Article  CAS  Google Scholar 

  129. Kampmann JP, Klein H, Lumholtz B, Molholm JE. Ampicillin and propylthiouracil pharmacokinetics in intestinal bypass patients followed up to one year after operation. Clin Pharmacokinet 1984;9:168–176.

    Article  CAS  Google Scholar 

  130. Yuk J, Nightengale CH, Sweeney K, Levitz RE, Quintiliani R. Pharmacokinetics of nafcillin in obesity, J Infect Dis 1988;157:1088–1089.

    CAS  Google Scholar 

  131. Newman D, Scheetz MH, Adeyemi OA, et al. Serum piperacillin/tazobactam pharmacokinetics in a morbidly obese individual. Ann Pharmacother 2007;41:1734–1739.

    Article  Google Scholar 

  132. Forse RA, Karam B, MacLean LD, Christ NV. Antibiotic prophylaxis for surgery in morbidly obese patients. Surgery 1989;106:750–757.

    CAS  Google Scholar 

  133. Mann HJ, Buchwald H. Cefamandole distribution in serum, adipose tissue, and wound drainage in morbidly obese patients. Drug Intell Clin Pharm 1986;20:869–873.

    CAS  Google Scholar 

  134. Grando J, Tristan A, Vanhems P, et al. Weight as a risk factor of mediastinitis after cardiac surgery in context of insufficient dosage of prophylactic antibiotic [letter & reply]. Ann Thorac Surg 2005;80:381–386.

    Article  Google Scholar 

  135. Chen M, Nafziger AN, Drusano GL, Ma L, Bertino JS. Comparative pharmacokinetics and pharmacodynamic target attainment of ertapenem in normal-weight, obese, and extremely obese adults. Antimicrob Agents Chemother 2006;50:1222–1227.

    Article  CAS  Google Scholar 

  136. Burkhardt O, Brunner M, Schmidt S, Grant M, Tang Y, Derendorf H. Penetration of ertapenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers measured by in vivo microdialysis. Antimicrob Agents Chemother 2006;58:632–636.

    Article  CAS  Google Scholar 

  137. Traynor AM, Nafziger AN, Bertino JS. Aminoglycoside dosing weight correction factors for patients of various body sizes. Antimicrob Agents Chemother 1995;39:545–548.

    CAS  Google Scholar 

  138. Korsager S. Administration of gentamicin to obese patients. Int J Clin Pharmacol Ther Toxicol 1980;18:549–553.

    CAS  Google Scholar 

  139. Sketris L, Lesar T, Zaske DE, Cipolle RJ. Effect of obesity on gentamicin pharmacokinetics. J Clin Pharmacol 1982;21:288–293.

    Google Scholar 

  140. Bauer LA, Edwards WAD, Dellinger EP, Simonowitz DA. Influence of weight on aminoglycoside pharmacokinetics in normal weight and morbidly obese patients. Eur J Clin Pharmacol 1983;24:643–647.

    Article  CAS  Google Scholar 

  141. Cachin N, Lecointre K, Pisante L, Coulaud JM, Fauvelle F. Effect of obesity on isepamicin pharmacokinetics in intensive care unit patients. J Pharm Clin 2001;20:124–128.

    Google Scholar 

  142. Blouin RA, Bauer LA, Miller DD, Record KE, Griffin WO. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother 1982;21:575–580.

    CAS  Google Scholar 

  143. Vance-Bryan K, Guay DR, Gilliland SS, Rodvold KA, Rotschafer JC. Effect of obesity on vancomycin pharmacokinetic parameters as determined by using a Bayesian forecasting technique. Antimicrob Agents Chemother 1993;37:436–440.

    CAS  Google Scholar 

  144. Penzak SR, Gubbins PO, Rodvold KA, et al. Therapeutic drug monitoring of vancomycin in a morbidly obese patient. Ther Drug Monitor 1998;20:261–265.

    Article  CAS  Google Scholar 

  145. Gales BJ, Gales MA, Bublin JG, Wambach VR, Ireland JE. Atypical vancomycin pharmacokinetics in a morbidly obese patient. ASHP Midyear Clinical Meeting 2000;35:P-490D.

    Google Scholar 

  146. Dvorchik BH, Damphousse D. The pharmacokinetics of daptomycin in moderately obese, morbidly obese, and matched nonobese subjects. J Clin Pharmacol 2005;45:48–56.

    Article  CAS  Google Scholar 

  147. Caldwell JB, Nilsen AK. Intravenous ciprofloxacin dosing in a morbidly obese patient. Ann Pharmacother 1994;28:806.

    CAS  Google Scholar 

  148. Edmiston CE, Krepel CJ, Seabrook GR, et al. Tissue and fluid penetration of garenoxacin in surgical patients. Surg Infect 2007;8:179–187.

    Article  Google Scholar 

  149. Islinger F, Bouw R, Stahl M, et al. Concentrations of gemifloxacin at the target site in healthy volunteers after a single oral dose. Antimicrob Agents Chemother 2004;48:4246–4249.

    Article  CAS  Google Scholar 

  150. Pai MP, Bordley J, Amsden GW. Plasma pharmacokinetics and tissue penetration of alatrofloxacin in morbidly obese individuals. Clin Drug Invest 2001;21:219–224.

    Article  CAS  Google Scholar 

  151. Bellmann R, Kuchling G, Dehghanyar P, et al. Tissue pharmacokinetics of levofloxacin in human soft tissue infections. Br J Clin Pharmacol 2004;57:563–568.

    Article  CAS  Google Scholar 

  152. Zeitlinger MA, Traunmüller F, Abrahim A, et al. A pilot study testing whether concentrations of levofloxacin in interstitial space fluid of soft tissues may serve as a surrogate for predicting its pharmacokinetics in lung. Int J Antimicrob Agents 2007;29:44–50.

    Article  CAS  Google Scholar 

  153. Gillum JG, Johnson M, Lavoie S, Venitz J. Flucytosine dosing in an obese patient with extrameningeal cryptococcal infection. Pharmacotherapy 1995;15:251–253.

    CAS  Google Scholar 

  154. Pittrow L, Penk A. Special pharmacokinetics of fluconazole in septic, obese and burn patients. Mycoses 1999;42(Suppl 2):87–90.

    CAS  Google Scholar 

  155. Cohen LG, DiBiasio A, Lisco SJ, et al. Fluconazole serum concentrations and pharmacokinetics in an obese patient. Pharmacotherapy 1997;17:1023–1026.

    CAS  Google Scholar 

  156. Walsh MJ, Jonsson JR, Richardson MM, et al. Non-response to antiviral therapy is associated with obesity and increased hepatic expression of suppressor of cytokine signalling 3 (SOCS-3) in patients with chronic hepatitis C, viral genotype 1. Gut 2006;55:529–535.

    Article  CAS  Google Scholar 

  157. Stein GE, Schooley SL, Peloquin CA, et al. Pharmacokinetics and pharmacodynamics of linezolid in obese patients with cellulitis. Ann Pharmacother 2005;39:427–432.

    Article  CAS  Google Scholar 

  158. Mersfelder TL, Smith CL. Linezolid pharmacokinetics in an obese patient [letter]. Am J Health-Syst Pharm 2005;62:464, 467.

    Google Scholar 

  159. Small DS, Levy H. Comment: obese man treated with drotrecogin alfa activated. Ann Pharmacother 2004;38:722–723.

    Article  Google Scholar 

  160. Geiseler PJ, Manis RD, Maddux MS. Dosage of antituberculous drugs in obese patients. Am Rev Respir Dis 1985;131:944–946.

    CAS  Google Scholar 

  161. de Jonge ME, Mathôt RAA, Van Dam SM, Beijnen JH, Rodenhuis S. Extremely high exposures in an obese patient receiving high-dose cyclophosphamide, thiotepa and carboplatin. Cancer Chemother Pharmacol 2002;50:251–255.

    Article  Google Scholar 

  162. Abdah-Bortnyak R, Tsalic M, Haim N. Actual body weight for determining doses of chemotherapy in obese cancer patients. Med Oncol 2003;20:363–367.

    Article  CAS  Google Scholar 

  163. Portugal RD. Obesity and dose individualization in cancer chemotherapy: the role of body surface area and body mass index. Med Hypotheses 2005;65:748–751.

    Article  Google Scholar 

  164. Gurney H. Defining the starting dose. In: Figg WD, McLeod HL, eds. Handbook of anticancer pharmacokinetics and pharmacodynamics. Totowa, NJ: Humana Press, 2004:57–73.

    Google Scholar 

  165. Parsad SD, Ratain MJ. Oral chemotherapy: standardized dosing can improve safety of prescribing [editorial]. BMJ 2007;334:376.

    Article  Google Scholar 

  166. Colleoni M, Li S, Gelber RD, et al. Relation between chemotherapy dose, oestrogen receptor expression, and body-mass index. Lancet 2005;366:1108–1110.

    Article  CAS  Google Scholar 

  167. Hunz M, Jetter A, Warm M, et al. Plasma and tissue pharmacokinetics of epirubicin and paclitaxel in patients receiving neoadjuvant chemotherapy for locally advanced primary breast cancer. Clin Pharmacol Ther 2007;81:659–668.

    Article  CAS  Google Scholar 

  168. Jenkins P, Elyan S, Freeman S. Obesity is not associated with increased myelosuppression in patients receiving chemotherapy for breast cancer. Eur J Cancer 2007;43:544–548.

    Article  CAS  Google Scholar 

  169. Lind MJ, Margison JM, Cerny T, et al. Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 1989;25:139–142.

    Article  CAS  Google Scholar 

  170. Sweiss KI, Beri R, Shord SS. Encephalopathy after high-dose ifosfamide: a retrospective cohort study and review of the literature. Drug Safety 2008;31:989–996.

    Google Scholar 

  171. Bachur NR. Anthracycline antibiotic pharmacology and metabolism. Cancer Treat Rep 1979;63:817–820.

    CAS  Google Scholar 

  172. Rodvold KA, Rushing DA, Tewksbury DA. Doxorubicin clearance in the obese. J Clin Oncol 1988;6:1321–1327.

    CAS  Google Scholar 

  173. Powis G, Reece P, Ahmann DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987;20:219–222.

    Article  CAS  Google Scholar 

  174. Gibbs JP, Gooley T, Corneau B, et al.The impact of obesity and disease on busulfan oral clearance in adults. Blood 1999;93:4436–4440.

    CAS  Google Scholar 

  175. Nguyen L, Leger F, Lennon S, Puozzo C. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: a population pharmacokinetic study. Cancer Chemother Pharmacol 2006;57:191–198.

    Article  CAS  Google Scholar 

  176. Bénézet S, Guimbaud R, Chatelut E, et al. How to predict carboplatin clearance from standard morphological and biological characteristics in obese patients. Ann Oncol 1997;8:607–609.

    Article  Google Scholar 

  177. Milsap RL, Plaisance KI, Jusko WJ. Prednisolone disposition in obese men. Clin Pharmacol Ther 1984;36:824–831.

    Article  CAS  Google Scholar 

  178. Dunn TE, Ludwig EA, Slaughter RI, Carara DJ, Jusko WJ. Pharmacokinetics and pharmacodynamics of methylprednisolone in obesity. Clin Pharmacol Ther 1991;49:536–549.

    Article  CAS  Google Scholar 

  179. Lottenberg SA, Giannella-Neto D, Derendorf H, et al. Effect of fat distribution on the pharmacokinetics of cortisol in obesity. Int J Clin Pharmacol Ther 1998;36:501–505.

    CAS  Google Scholar 

  180. Yee GC, McGuire TR, Gmur DJ, Lennon TP, Deeg HJ. Blood cyclosporin pharmacokinetics in patients undergoing marrow transplantation: influence of age, obesity and hematocrit. Transplant 1988;43:399–402.

    Article  Google Scholar 

  181. Waters MR, Albano JDM, Scharman VL, Venkat RG. Pharmacokinetics of cyclosporin in man following a single oral dose: relationship to body fat content. Nephrol Dial Transplant 1989;4:71–74.

    CAS  Google Scholar 

  182. Rodrigo E, de Cos MA, Sánchez B, et al. High initial blood levels of tacrolimus in overweight renal transplant recipients. Transplant Proceed 2005;37:1453–1454.

    Google Scholar 

  183. Lemmens HJM, Brodsky JB. The dose of succinylcholine in morbid obesity. Anesth Analg 2006;102:438–442.

    Article  CAS  Google Scholar 

  184. Bentley JB, Borel JD, Vaughan RW, Gandolfi A. Weight, pseudocholinesterase activity, and succinylcholine requirement. Anesthesiology 1982;57:48–49.

    Article  CAS  Google Scholar 

  185. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics and pharmacodynamics of vecuronium in the obese surgical patient. Anesth Analg 1992;74:515–518.

    CAS  Google Scholar 

  186. Mann R, Blibner M, Probst R, et al. Pharmacokinetics of rocuronium in obese and asthenic patients: reduced clearance in the obese. Anesthesiology 1997;87:A85.

    Article  Google Scholar 

  187. Pühringer FK, Khuenl-Brady KS, Mitterschiffhaler G. Rocuronium bromide: time-course of action in underweight, normal weight, overweight and obese patients. Eur J Anaesthesiol 1995;11(Suppl 12):107–110.

    Google Scholar 

  188. Pühringer FK, Keller C, Kleinsasser A, Giesinger S, Benzer A. Pharmacokinetics of rocuronium bromide in obese female patients. Eur J Anaesthesiol 1999;16:507–510.

    Google Scholar 

  189. Leykin Y, Pellis T, Lucca M, Lomangino G, Marzano B, Gullo A. The pharmacodynamic effects of rocuronium when dosed according to real body weight or ideal body weight in morbidly obese patients. Anesth Analg 2004;99:1086–1089.

    Article  Google Scholar 

  190. Alvarez AO, Cascardo A, Menendez SA, Capria JJ, Cordero RA. Total intravenous anesthesia with midazolam, remifentanil, propofol and cisatracurium in morbid obesity. Obes Surg 2000;10:353–360.

    Article  CAS  Google Scholar 

  191. Leykin Y, Pellis T, Lucca M, Lomangino G, Marzano B, Gullo A. The effects of cisatracurium on morbidly obese women. Anesth Analg 2004;99:1090–1094.

    Article  CAS  Google Scholar 

  192. Panni MK, Columb MO. Obese parturients have lower epidural local anaesthetic requirements for analgesia in labour. Br J Anaesth 2006;96:106–110.

    Article  CAS  Google Scholar 

  193. Servin F, Farinoti R, Haberer JP, et al. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide: a clinical and pharmacokinetic study. Anesthesiology 1993;78:657–665.

    Article  CAS  Google Scholar 

  194. O’Halloran PL, Hosseini-Yeganeh M, McBride LJ, Ramzan I. Onset and offset pharmacodynamics of propofol. Pharmazie 2004;59:76–77.

    Google Scholar 

  195. Edginton AN, Schmitt W, Willmann S. Application of physiology-based pharmacokinetic and pharmacodynamic modeling to individualized target-controlled propofol infusions. Adv Ther 2006;23:143–158.

    Article  CAS  Google Scholar 

  196. Dundee JW. Influence of body weight, sex and age on the dosage of thiopentone. Br J Anaesthesia 1954;26:164–173.

    Article  CAS  Google Scholar 

  197. Jung D, Mayersohn M, Perrier D, Calkins J, Saunders R. Thiopental disposition in lean and obese patients undergoing surgery. Anesthesiology 1982;56:265–274.

    Google Scholar 

  198. Dundee JW, Hassard TH, McGowan WA, Henshaw J. The ‘induction’ dose of thiopentone: a method of study and preliminary illustrative results. Anaesthesia 1982;37:1176–1184.

    Article  CAS  Google Scholar 

  199. Bentley JB, Vaughan RW, Gandolfi AJ, Cork RC. Altered halothane metabolism: obese vs nonobese subjects. Anesthesiology 1981;55:A179.

    Google Scholar 

  200. Miller MS, Gandolfi AJ, Vaughan RW, Bentley JB. Disposition of enflurane in obese patients. J Pharmacol Exp Ther 1980;215:292–296.

    CAS  Google Scholar 

  201. Arain SR, barth CD, Shankar H, Ebert TJ. Choice of volatile anesthetic for the morbidly obese patient: sevoflurane or desflurane. J Clin Anesth 2005;17:413–419.

    Article  CAS  Google Scholar 

  202. Shibutani K, Inchiosa MA, Sawada K, Bairamian M. Accuracy of pharmacokinetic models for predicting plasma fentanyl concentrations in lean and obese surgical patients. Anesthesiology 2004;101:603–613.

    Article  CAS  Google Scholar 

  203. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991;73:790–793.

    CAS  Google Scholar 

  204. Slepchenko G, Simon N, Goubaux B, et al. Performance of target-controlled sufentanil infusion in obese patients. Anesthesiology 2003;98:65–73.

    Article  CAS  Google Scholar 

  205. Egan TD, Gupta SK, Sperry RJ, et al. The pharmacokinetics of remifentanil in obese versus lean elective surgery patients. Anesth Analg 1996;82(Suppl):S100.

    Google Scholar 

  206. Egan TD, Huizinga B, Gupta SK, et al. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology 1998;89:562–573.

    Article  CAS  Google Scholar 

  207. Abernathy DR, Divoll M, Greenblatt DJ, Ameer B. Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 1982;31:783–790.

    Article  Google Scholar 

  208. Abernathy DR, Greenblatt DJ.Ibuprofen disposition in obesity. Arthritis Rheum 1985;28:1117–1121.

    Article  Google Scholar 

  209. Abernathy DR, Schwartz JB, Todd EL, Mitchell JR. Verapamil dynamics and disposition in obese hypertensives. Fed Proceed 1985;44:1128.

    Google Scholar 

  210. Abernathy DR, Schwartz JB. Verapamil pharmacodynamics and disposition in obese hypertensive patients. JCardiovasc Pharmacol 1988;11:209–215.

    Google Scholar 

  211. Ewy GA, Groves BM, Ball MF, et al. Digoxin metabolism in obesity. Circulation 1971;44:810–814.

    CAS  Google Scholar 

  212. Abernathy DR, Greenblatt DJ, Smith TW. Digoxin disposition in obesity: clinical pharmacokinetic investigation. Am Heart J 1981;102:740–744.

    Article  Google Scholar 

  213. Abernathy DR, Greenblatt DJ. Lidocaine disposition in obesity. Am J Cardiol 1984;53:1183–1186.

    Article  Google Scholar 

  214. Harrington L. What is the current evidence related to basing vasoactive drips on body weight for bariatric patients? Crit Care Nurse 2006:26:68–71.

    Google Scholar 

  215. Erstad BL. Dosing medications in morbidly obese patients in the intensive care setting. Intensive care Med 2004;30:18–32.

    Article  Google Scholar 

  216. Melinek J, Livingston E, Cortina G, et al. Autopsy findings following gastric bypass surgery. Arch Pathol Lab Med 2002;126:1091–1095.

    Google Scholar 

  217. Hamad GG, Choban PS. Enoxaparin for thromboprophylaxis in morbidly obese patients undergoing bariatric surgery: findings of the prophylaxis against VTE outcomes in bariatric surgery patients receiving enoxaparin (PROBE) study. Obes Surg 2005;15:1368–1374.

    Article  Google Scholar 

  218. White RH, Zhou H, Woo L, et al. Effect of weight, sex, age, clinical diagnosis, and thromboplastin reagent on steady-state intravenous heparin requirements. Arch Intern Med 1997;157:2468–2472.

    Article  CAS  Google Scholar 

  219. Baker MS, Skoyles JR, Shajar M, Skinner H, Richens D, Mitchell IM. Can lean body mass be used to reduce the dose of heparin and protamine for obese patients undergoing cardiopulmonary bypass? JECT 2005;37:153–156.

    Google Scholar 

  220. Bazinet A, Almanric K, Brunet C, et al. Dosage of enoxaparin among obese and renal impairment patients. Thromb Res 2005;116:41–50.

    Article  CAS  Google Scholar 

  221. Sanderink GJ, Liboux AL, Jariwala N, et al. The pharmacokinetics and pharmacodynamics of enoxaparin in obese volunteers. Clin Pharmacol Ther 2002;72:308–318.

    Article  CAS  Google Scholar 

  222. Yee JYV, Duffull SB. The effect of body weight on dalteparin pharmacokinetics: a preliminary study. Eur J Clin Pharmacol 2000;56:293–297.

    Article  CAS  Google Scholar 

  223. Hainer JW, Barrett JS, Assaid CA, et al. Dosing in heavy-weight/obese patients with the LMWH, tinzaparin: a pharmacodynamic study. Thrombosis Hæmostasis 2002;87:817–823.

    CAS  Google Scholar 

  224. Angiolillo DJ, Fernández-ortiz A, Bernardo E, et al. Platelet aggregation according to body mass index in patients undergoing coronary stenting: should clopidogrel loading-dose be weight adjusted? J Invas Cardiol 2004;16:169–174.

    Google Scholar 

  225. Zahorska-Markiewicz B, Waluga M, Zielinski M, et al. Pharmacokinetics of theophylline in obesity. Int J Clin Pharmacol Ther 1996;34:393–395.

    CAS  Google Scholar 

  226. Charland SL, Plezia PM, Bloom JW, Kramer K. The use of bioelectrical impedance to predict theophylline pharmacokinetics in obese subjects. Clin Pharmacol Ther 1987;45:131.

    Google Scholar 

  227. Davis RL, Quenzer RW. Ranitidine pharmacokinetics in morbid obesity. Clin Pharmacol Ther 1990;47:154.

    Google Scholar 

  228. Greenblatt DJ, Friedman H, Burstein ES, et al. Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 1987;42:193–200.

    Article  CAS  Google Scholar 

  229. Garratt CJ, Hind ID, Haddock RE. Single/repeat dose kinetics of sibutramine metabolites in obese subjects [abstract]. J Clin Pharmacol 1995;35:928.

    Google Scholar 

  230. McDuffie JR, Calis KA, Booth SL, Uwaifo GI, Yanovski JA. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy 2002;22:814–822.

    Article  CAS  Google Scholar 

  231. McDuffie JR, Calis KA, Uwaifo GI, et al. Efficacy of orlistat as an adjunct to behavioral treatment in overweight African American and Caucasian adolescents with obesity-related co-morbid conditions. J Pediatr Endocrinol 2004;17:307–319.

    CAS  Google Scholar 

  232. Henness S, Perry CM. Orlistat: a review of its use in the management of obesity. Drugs 2006;66:1625–1656.

    Article  CAS  Google Scholar 

  233. Zhi J, Moore R, Kanitra L. The effect of short-term (21-day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J Am Coll Nutr 2003;22:357–362.

    CAS  Google Scholar 

  234. Zhi J, moore R, Kanitra L, Mulligan TE. Pharmacokinetic evaluation of possible interaction between selected concomitant medications and orlistat at steady state in healthy subjects. J Clin pharmacol 2002;42:1011–1019.

    CAS  Google Scholar 

  235. Zhi J, Moore R, Kanitra L, Mulligan TE. Effects of orlistat, a lipase inhibitor, on the pharmacokinetics of three highly lipophilic drugs (amiodarone, fluoxetine, and simvastatin) in healthy volunteers. J Clin Pharmacol 2003;43:428–435.

    Article  CAS  Google Scholar 

  236. Santini F, Pinchera A, Marsili A, et al. Lean body mass is a major determinant of levothyroxine dosage in the treatment of thyroid diseases. J Clin Endocrinol Metab 2005;90:124–127.

    Article  CAS  Google Scholar 

  237. Jaber LA, Antal EJ, Slaughter RL, et al. The pharmacokinetics and pharmacodynamics of 12 weeks of glyburide therapy in obese diabetics. Eur J Clin Pharmacol 1993;45:459–463.

    Article  CAS  Google Scholar 

  238. Jaber LA, Ducharme MP, Halapy H. The effects of obesity on the pharmacokinetics and pharmacodynamics of glipizide in patients with non-insulin-dependent diabetes mellitus. Ther Drug Monitor 1996;18:6–13.

    Article  CAS  Google Scholar 

  239. Holmes G, Galitz L, Hu P, Lyness W. Pharmacokinetics of insulin aspart in obesity, renal impairment, or hepatic impairment. Br J Clin Pharmacol 2005;60:469–476.

    Article  CAS  Google Scholar 

  240. Becker RHA, Frick AD, Burger F, Potgieter JH, Scholtz H. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp Clin Endocrinol Diabetes 2005;113:435–443.

    Article  CAS  Google Scholar 

  241. Cheymol G, Poirier JM, Carrupt PA, et al. Pharmacokinetics of β-adrenoceptor blockers in obese and normal volunteers. Br J Clin Pharmacol 1997;43:563–570.

    Article  CAS  Google Scholar 

  242. Le Jeunne CL, Poirier JM, Cheymol G, Ertzbischoff O, Engel F, Hugues FC. Pharmacokinetics of intravenous bisoprolol in obese and nonobese volunteers. Eur J Clin Pharmacol 1991;41:171–174.

    Article  Google Scholar 

  243. Poirier JM, Lejeune C, Cheymol G, et al. Comparison of propranolol and sotalol pharmacokinetics in obese subjects. J Pharm Pharmacol 1990;42:344–348.

    CAS  Google Scholar 

  244. Santry HP, Gillen DL, Lauderdale DS. Trends in bariatric surgical procedures. JAMA 2005;294:1909–1917.

    Article  CAS  Google Scholar 

  245. Brolin RE. Bariatric surgery and long-term control of morbid obesity. JAMA 2002;288:2793–2796.

    Article  Google Scholar 

  246. Nguyen NT, Root J, Zainabadi K, et al. Accelerated growth of bariatric surgery with introduction of minimally invasive surgery. Arch Surg 2005;140:1198–1202.

    Article  Google Scholar 

  247. Gubbins PO, Bertch KE. Drug absorption in gastrointestinal diseases and surgery: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet 1991;21:431–447.

    Article  CAS  Google Scholar 

  248. Seaman JS, Bowers SP, Dixon P, Schindler L. Dissolution of common psychiatric medications in a Roux-en-Y gastric bypass model. Psychosomatics 2005;46:250–253.

    Article  Google Scholar 

  249. Malone M, Alger-Mayer SA. Medication use patterns after gastric bypass surgery for weight management. Ann Pharmacother 2005;39:637–642.

    Article  Google Scholar 

  250. Miskowiak J, Andersen B, Nielsen VG. Absorption of oral penicillin before and after gastroplasty for morbid obesity. Pharmacology 1985;31:115–120.

    Article  CAS  Google Scholar 

  251. Wilting I, van den Bent PML, Brenninkmeijer SJ, et al. [Effect of gastric banding on pharmacotherapy: not much known (English abstract)]. Ned Tijdschr Geneeskd 2007;151:1112–1115.

    CAS  Google Scholar 

  252. Kuga R, Safatle-Ribeiro AV, Faintuch J, et al. Endoscopic findings in the excluded stomach after Roux-en-Y gastric bypass surgery. Arch Surg 2007;142:942–946.

    Article  Google Scholar 

  253. Rogers CC, Alloway RR, Alexander JW, Cardi W, Trofe J, Vinks AA. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: a pilot study. Clin Transplant 2008;22:281–291.

    Google Scholar 

  254. Chenhsu RY, Wu Y, Katz D, Rayhill S. Dose-adjusted cyclosporine C2 in a patient with jejunoileal bypass as compared to seven other liver transplant recipients. Ther Drug Monit 2003;25:665–670.

    Article  CAS  Google Scholar 

  255. Brown SA, Lipschitz AH, Kenkel JM, et al. Pharmacokinetics and safety of epinephrine use in liposuction. Plast Reconstr Surg 2004;114:756–763.

    Article  Google Scholar 

  256. Kenkel JM, Lipschitz AH, Shepherd G, et al. Pharmacokinetics and safety of lidocaine and monoethylglycinexylidide in liposuction: a microdialysis study. Plast Reconstr Surg 2004;114:516–524.

    Article  Google Scholar 

  257. Bray GA, DeLany JP, Volaufova J, Harsha DW, Champagne C. Prediction of body fat in 12-y-old African American and white children: evaluation of methods. Am J Clin Nutr 2002;76:980–990.

    CAS  Google Scholar 

  258. Lemmens HJM, Brodsky JB. Anesthetic drugs and bariatric surgery. Expert Rev Neurother 2006;6:1107–1113.

    Article  CAS  Google Scholar 

  259. Sharma AM. Managing weighty issues on lean evidence: the challenges of bariatric medicine. CMAJ 2005;172:30–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boullata, J.I. (2009). Influence of Overweight and Obesity on Medication. In: Boullata, J., Armenti, V. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-362-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-362-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-363-3

  • Online ISBN: 978-1-60327-362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics