Skip to main content

Drug-Metabolizing Enzymes

  • Chapter
  • First Online:
  • 2944 Accesses

Part of the book series: Nutrition and Health ((NH))

Objectives

•Define the various superfamilies, subfamilies, and individual drug-metabolizing enzymes and their tissue expression in humans.

•Identify the role of the major drug-metabolizing enzymes in the disposition of medication and other xenobiotics.

•Discuss the potential for interactions that can occur by induction or inhibition of major drug-metabolizing enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sorensen JM. Herb-drug, food-drug, nutrient-drug, and drug-drug interactions: mechanisms involved and their medical implications. J Comp Altern Med 2002;8:293–308.

    Google Scholar 

  2. Harris RZ, Jang GR, Tsunoda S. Dietary effects on drug metabolism and transport. Clin Pharmacokinet 2003;42:1071–1088.

    CAS  Google Scholar 

  3. Scheen AJ. Drug-drug and food-drug pharmacokinetic interactions with new insulinotropic agents repaglinide and nateglinide. Clin Pharmacokinet 2007;46:93–108.

    CAS  Google Scholar 

  4. Skalli S, Zaid A, Soulaymani R. Drug interactions with herbal medicines. Ther Drug Monit 2007;29:679–686.

    CAS  Google Scholar 

  5. Lin JH, Lu AYH. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol 2001;41:535–567.

    CAS  Google Scholar 

  6. Lin JH. CYP-induction mediated drug interactions: in vitro assessment and clinical implications. Pharm Res 2006;23:1089–1116.

    Google Scholar 

  7. Youle M. Overview of boosted protease inhibitors in treatment-experienced HIV-infected patients. J Antimicrob Chemother 2007;60:1195–1205.

    CAS  Google Scholar 

  8. Ernst E. St. John's wort supplements endanger the success of organ transplantation. Arch Surg 2002;137:316–319.

    CAS  Google Scholar 

  9. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994;55:481–485.

    CAS  Google Scholar 

  10. Kudo K, Imamura T, Jitsufuchi N, Zhang XX, Tokunaga H, Nagata T. Death attributed to the toxic interaction of triazolam, amitriptyline and other psychotropic drugs. Forensic Sci Int 1997;86:35–41.

    Google Scholar 

  11. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients. A meta-analysis of prospective studies. JAMA 1998;279:1200–1205.

    Google Scholar 

  12. Guengerich FP, MacDonald JS. Applying mechanisms of chemical toxicity to predict drug safety. Chem Res Toxicol 2007;20:344–369.

    CAS  Google Scholar 

  13. Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70–83.

    Google Scholar 

  14. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996;6:1–42.

    CAS  Google Scholar 

  15. Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004;14:1–18.

    CAS  Google Scholar 

  16. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 2005;4:825–833.

    CAS  Google Scholar 

  17. Ingelman-Sundberg M. The human genome project and novel aspects of cytochrome P450 research. Toxicol Appl Pharmacol 2005;207:S52–S56

    CAS  Google Scholar 

  18. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 2003;307:573–582.

    CAS  Google Scholar 

  19. Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001;59:386–392.

    CAS  Google Scholar 

  20. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994;270:414–423.

    CAS  Google Scholar 

  21. Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O, Nuessler A, Neuhaus P, Eichelbaum M, Zanger U, Wojnowski L. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002;30:1108–1114.

    CAS  Google Scholar 

  22. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 2003;43:149–173.

    CAS  Google Scholar 

  23. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 2006;34:880–886.

    CAS  Google Scholar 

  24. Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006;2:171–182.

    CAS  Google Scholar 

  25. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002;54:1271–1294.

    CAS  Google Scholar 

  26. Ball SE, Scatina J, Kao J, Ferron GM, Fruncillo R, Mayer P, Weinryb I, Guida M, Hopkins PJ, Warner N, Hall J. Population distribution and effects on drug metabolism of a genetic variant in the 5′-promoter region of CYP3A4. Clin Pharmacol Ther 1999;66:288–294.

    CAS  Google Scholar 

  27. Wandel C, Witee JS, Hall JM, Stein CM, Wood AJJ, Wilkinson GR. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B 5′-promoter region polymorphism. Clin Pharmacol Ther 2000;68:82–91.

    CAS  Google Scholar 

  28. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, Zhang J, Schuetz EG. Common allelic variants of cytochrome P450 3A4 and their prevalence in different populations. Pharmacogenetics 2002;12:121–132.

    CAS  Google Scholar 

  29. Rivory LP, Qin H, Clarke SJ, Eris J, Duggin G, Ray E, Trent RJ, Bishop JF. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J Clin Pharmacol 2000;56:395–398.

    CAS  Google Scholar 

  30. von Ahsen N, Richter M, Grupp C, Ringe B, Oellerich M, Armstrong VW. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 2001;47:1048–1052.

    Google Scholar 

  31. Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996;59:7–13.

    CAS  Google Scholar 

  32. Ohnhaus E, Park B. Measurement of urinary 6-beta-hydroxycortisol excretion as an in vivo parameter in clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbitone and rifampicin. Eur J Clin Pharmacol 1979;15:139–145.

    CAS  Google Scholar 

  33. Backman JT, Olkkola KT, Ojala M, Laaksovirta H, Neuvonen PJ. Concentrations and effects of oral midazolam are greatly reduced in patients treated carbamazepine or phenytoin. Epilepsia 1996;37:253–257.

    CAS  Google Scholar 

  34. Mouly S, Lown KS, Kornhauser D, Joseph JL, Fiske WD, Benedek IH, Watkins PB. Hepatic but not intestinal CYP3A displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 2002;72:1–9.

    CAS  Google Scholar 

  35. Roby CA, Anderson GD, Kantor E, Dryer DA, Burstein AH. St. John's wort: Effect on CYP3A4 activity. Clin Pharmacol Ther 2000;67:451–457.

    CAS  Google Scholar 

  36. Durr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K. St. John's wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000;68:598–604.

    CAS  Google Scholar 

  37. Wang Z, Gorski C, Hamman MA, Huang SM, Lesko LJ, Hall SD. The effects of St. John's wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001;70:317–326.

    CAS  Google Scholar 

  38. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, Ang CYW. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in human. Clin Pharmacol Ther 2002;72:276–287.

    CAS  Google Scholar 

  39. Whitten DL, Myers SP, Hawrelak JA, Wohlmuth H. The effect of St. John's wort extracts on CYP3A: a systematic review of prospective clinical trials. Br J Clin Pharmacol 2006;62:512–526.

    CAS  Google Scholar 

  40. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterstrom RH, Perlmann T, Lehmann JM. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998;92:73–82.

    CAS  Google Scholar 

  41. Blumberg B, Sabbagh Jr. W, Juguilon H, Bolado Jr. J, van Meter CM, Ong ES, Evans RM. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 1998;12:3195–3205.

    CAS  Google Scholar 

  42. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Backman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 1998;95:12208–12213.

    CAS  Google Scholar 

  43. Chang TKH, Waxman DJ. Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev 2006;38:51–73.

    CAS  Google Scholar 

  44. Wentworth JM, Agostini M, Love J, Schwabe JW, Chatterjee VKK. St. John's wort, a herbal antidepressant, activates the steroid X receptor. J Endocrinol 2000;166:R11–R16.

    CAS  Google Scholar 

  45. Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P, Brown MB, Guo W, Rossi SJ, Benet LZ, Watkins PB. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997;62:248–260.

    CAS  Google Scholar 

  46. Edwards DJ, Fitzsimmons ME, Schuetz EG, Yasuda K, Ducharme MP, Warbasse LH, Woster PM, Schuetz JD, Watkins PB. 6′,7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, amd P-glycoprotein. Clin Pharmacol Ther 1999;65:237–244.

    CAS  Google Scholar 

  47. Hugen PW, Burger DM, Brinkman K, ter Hofstede HJ, Schuurman R, Koopmans PP, Hekster YA. Carbamazepine-indinavir interaction causes antiretroviral therapy failure. Ann Pharmacother 2000;34:465–470.

    CAS  Google Scholar 

  48. Varhe A, Olkkola KT, Neuvonen PJ. Oral trizolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994;56:601–607.

    CAS  Google Scholar 

  49. Prueksaritanont T, Dwyer LM, Cribb AE. (+)-Bufuralol 1′-hydroxylation activity in human and rhesus monkey intestine and liver. Biochem Pharmacol 1995;50:1521–1525.

    CAS  Google Scholar 

  50. Gilham DE, Cairns W, Paine MJ, Modi S, Poulsom R, Roberts GC, Wolf CR. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 1997;27:111–125.

    CAS  Google Scholar 

  51. Chinta SJ, Pai HV, Upadhya SC, Boyd MR, Ravindranath V. Constitutive expression and localization of the major drug metabolizing enzymes, cytochrome P450 2D in human brain. Brain Res Mol Brain Res 2002;103:49–61.

    CAS  Google Scholar 

  52. Guidice JM, Marez D, Sabbagh N, Legrand-Andreoletti M, Spire C, Alcaide E, Lafitte JJ, Broly F. Evidence for CYP2D6 expression in human lung. Biochem Biophys Res Commun 1997;241:79–85.

    CAS  Google Scholar 

  53. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007;116:496–526.

    CAS  Google Scholar 

  54. Jorge LF, Eichelbaum M, Griese EU, Inaba T, Arias TD. Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 1999;9:217–228.

    CAS  Google Scholar 

  55. Sachse C, Brockmoller J, Bauer S, Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997;60:284–295.

    CAS  Google Scholar 

  56. Chida M, Yokoi T, Nemoto N, Inaba M, Kinoshita M, Kamataki T. A new variant CYP2D6 allele (CYP2D6*21) with a single base insertion in exon 5 in a Japanese population associated with a poor metabolizer phenotype. Pharmacogenetics 1999;9:287–293.

    CAS  Google Scholar 

  57. Brockmoller J, Kirchheiner J, Meisel C, Roots I. Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment. Pharmacogenomics J 2000;1:1–26.

    Google Scholar 

  58. Hogstedt S, Lindberg B, Rane A. Increased oral clearance of metoprolol in pregnancy. Eur J Clin Pharmacol 1983;24:217–220.

    CAS  Google Scholar 

  59. Hogstedt S, Lindberg B, Peng DR, Regardh CG, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther 1985;37:688–692.

    CAS  Google Scholar 

  60. Wadelius M, Darj E, Frenne G, Rane A. Induction of CYP2D6 in pregnancy. Clin Pharmacol Ther 1997;62:400–407.

    CAS  Google Scholar 

  61. Lessard E, Yessine MA, Hamelin BA, Gauvin C, Labbe L, O'Hara G, LeBlanc J, Turgeon J. Diphenhydramine alters the disposition of venlafaxine through inhibition of CYP2D6 activity in humans. J Clin Psychopharmacol 2001;21:175–184.

    CAS  Google Scholar 

  62. Lasker JM, Wester MR, Aramsombatdee E, Raucy JL. Characterization of CYP2C19 and CYP2C9 from human liver:respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys 1998;353:16–28.

    CAS  Google Scholar 

  63. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, Hines RN. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 2004;308:965–974.

    CAS  Google Scholar 

  64. Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 1999;13:289–295.

    CAS  Google Scholar 

  65. Miners JO, Birkett DJ. Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. Methods Enzymol 1996;272:139–145.

    CAS  Google Scholar 

  66. Takahashi H, Kashima T, Nomoto S, Iwade K, Tainaka H, Shimizu T, Nomizo Y, Muramoto N, Kimura S, Echizen H. Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 1998;8:365–373.

    CAS  Google Scholar 

  67. Odani A, Hashimoto Y, Otsuki Y, Uwai Y, Hattori H, Furusho K, Inui K. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997;62:287–292.

    CAS  Google Scholar 

  68. Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Lerena A, Sjoqvist F, Eliasson E, Dahl ML. Pharmacokinetics of losartan and its metabolite E-3174 in relation to theCYP2C9 genotype. Clin Pharmacol Ther 2002;71:89–98.

    CAS  Google Scholar 

  69. Tang C, Shou M, Rushmore TH, Mei Q, Sandhu P, Woolf EJ, Rose MJ, Gelmann A, Greenberg HE, De Lepeleire I, Van Hecken A, De Schepper PJ, Ebel DL, Schwartz JI, Rodrigues AD. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics 2001;11:223–235.

    CAS  Google Scholar 

  70. Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002;72:326–332.

    CAS  Google Scholar 

  71. Steward DJ, Haining RL, Henne KR, Davis G, Rushmore TH, Trager WF, Rettie AE. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997;7:361–367.

    CAS  Google Scholar 

  72. Freeman BD, Zehnbauer BA, McGrath S, Borecki I, Buchman TG. Cytochrome P450 polymorphisms are associated with reduced warfarin dose. Surgery 2000;128:281–285.

    CAS  Google Scholar 

  73. Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 2000;96:1816–1819.

    CAS  Google Scholar 

  74. Yasar U, Eliasson E, Forslund-Bergengren C, Tybring G, Gadd M, Sjoqvist F, Dahl ML. The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur J Clin Pharmacol 2001;57:729–735.

    CAS  Google Scholar 

  75. Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002;54:1257–1270.

    CAS  Google Scholar 

  76. Zilly W, Breimer DD, Richter E. Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur J Clin Pharmacol 1975;9:219–227.

    CAS  Google Scholar 

  77. Kay L, Kampmann JP, Svendsen TL, Vergman B, Hansen JEM, Skovsted L, Kristensen M. Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 1985;20:323–326.

    CAS  Google Scholar 

  78. Heimark LD, Gibaldi M, Trager WF, O'Reilly RA, Goulart DA. The mechanism of the warfarin-rifampin drug interaction in humans. Clin Pharmacol Ther 1987;42:388–394.

    CAS  Google Scholar 

  79. Chen Y, Ferguson SS, Negishi M, Goldstein JA. Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther 2004;308:495–501.

    CAS  Google Scholar 

  80. Gerbal-Chaloin S, Daujat M, Pascussi JM, Pichard-Garcia L, Vilarem MJ, Maurel P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J Biol Chem 2002;277:209–217.

    CAS  Google Scholar 

  81. Kunze KL, Trager WF. Warfarin-fluconazole. III. A rational approach to management of a metabolically based drug interaction. Drug Metab Dispos 1996;24:429–435.

    CAS  Google Scholar 

  82. O'Reilly RA, Goulart DA, Kunze KL, Neal J, Gibaldi M, Eddy AC, Trager WF. Mechanisms of the stereoselective interaction between miconazole and racemic warfarin in human subjects. Clin Pharmacol Ther 1992;51:656–667.

    Google Scholar 

  83. Transon C, Leemann T, Vogt N, Dayer P. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995;58:412–417.

    CAS  Google Scholar 

  84. Heimark LD, Wienkers L, Kunze K, Gibaldi M, Eddy AC, Trager WF, O'Reilly RA, Goulart DA. The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther 1992;51:398–407.

    CAS  Google Scholar 

  85. Wing LMH, Miners JO. Cotrimoxazole as an inhibitor of oxidative drug metabolism: effects of trimethoprim and sulphamethoxazole separately and combined on tolbutamide disposition. Br J Clin Pharmacol 1985;20:482–485.

    CAS  Google Scholar 

  86. Black DJ, Kunze KL, Wienkers LC, Gidal BE, Seaton TL, McDonnell ND, Evans JS, Bauwens JE, Trager WF. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos 1996;24:422–428.

    CAS  Google Scholar 

  87. Desta Z, Zhao X, Shin J, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002;41:913–958.

    CAS  Google Scholar 

  88. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006;79:103–113.

    CAS  Google Scholar 

  89. Flockhart DA. Drug interactions and the cytochrome P450 system. The role of cytochrome P450 2C19. Clin Pharmacokinet 1995;29(Suppl 1):45–52.

    CAS  Google Scholar 

  90. Sohn DR, Kobayashi K, Chiba K, Lee KH, Shin SG, Ishizaki T. Disposition kinetics and metabolism of omeprazole in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation recruited from an Oriental population. J Pharmacol Exp Ther 1992;262:1195–1202.

    CAS  Google Scholar 

  91. Sohn DR, Kwon JT, Kim HK, Ishizaki T. Metabolic disposition of lansoprazole in relation to the S-mephenytoin 4′-hydroxylation phenotype status. Clin Pharmacol Ther 1997;61:574–582.

    CAS  Google Scholar 

  92. Tanaka M, Ohkubo T, Otani K, Suzuki A, Kaneko S, Sugawara K, Ryokawa Y, Hakusui H, Yamamori S, Ishizaki T. Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to S-mephenytoin 4′-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997;62:619–628.

    CAS  Google Scholar 

  93. Zhou HH, Anthony LB, Wood AJJ, Wilkinson GR. Induction of polymorphic 4′-hydroxylation of S-mephenytoin by rifampicin. Br J Clin Pharmacol 1990;30:471–475.

    CAS  Google Scholar 

  94. Feng HJ, Huang SL, Wang W, Zhou HH. The induction effect of rifampicin on activity of mephenytoin 4′-hydroxylase related to M1 mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998;45:27–29.

    CAS  Google Scholar 

  95. Svensson US, Ashton M, Trinh NH, Bertilsson L, Dinh XH, Nguyen VH, Nguyen TN, Nguyen DS, Lykkesfeldt J, Le DC. Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 1998;64:160–167.

    CAS  Google Scholar 

  96. Caraco Y, Wilkinson GR, Wood AJJ. Differences between white subjects and Chinese subjects in the in vivo inhibition of cytochrome P450s 2C19, 2D6, and 3A by omeprazole. Clin Pharmacol Ther 1996;60:396–404.

    CAS  Google Scholar 

  97. Tateishi T, Kumai T, Watanabe M, Nakura H, Tanaka M, Kobayashi S. Ticlopidine decreases the in vivo activity of CYP2C19 as measured by omeprazole metabolism. Br J Clin Pharmacol 1999;47:454–457.

    CAS  Google Scholar 

  98. Atiba JO, Blaschke TF, Wilkinson GR. Effects of ketoconazole on the polymorphic 4-hydroxylations of S-mephenytoin and debrisoquine. Br J Clin Pharmacol 1989;28:161–165.

    CAS  Google Scholar 

  99. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996;51:73–78.

    CAS  Google Scholar 

  100. Desta Z, Soukhova NV, Flockhart DA. Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother 2001;45:382–392.

    CAS  Google Scholar 

  101. Gram LF, Guentert TW, Grange S, Vistisen K, Brosen K. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6 and CYP1A2: a panel study. Clin Pharmacol Ther 1995;57:670–677.

    CAS  Google Scholar 

  102. Laine K, Tybring G, Bertilsson L. No sex-related differences but significant inhibition by oral contraceptives of CYP2C19 activity as measured by the probe drugs mephenytoin and omeprazole in healthy Swedish white subjects. Clin Pharmacol Ther 2000;68:151–159.

    CAS  Google Scholar 

  103. Levy RH. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia 1995;36(Suppl 5):S8–S13

    Google Scholar 

  104. Turpeinen M, Raunio H, Pelkonen O. The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr Drug Metab 2006;7:705–714.

    CAS  Google Scholar 

  105. Chang TKH, Bandiera SM, Chen J. Constitutive androstane receptor and pregnane X receptor gene expression in human liver: interindividual variability and correlation with CYP2B6 mRNA levels. Drug Metab Dispos 2003;31:7–10.

    CAS  Google Scholar 

  106. Code EL, Crespi CL, Penman BW, Gonzalez FJ, Chang TKH, Waxman DJ. Human cytochrome P450 2B6: interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab Dispos 1997;25:985–993.

    CAS  Google Scholar 

  107. Chang TKH, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993;53:5629–5637.

    CAS  Google Scholar 

  108. Roy P, Waxman DJ. Activation of oxazaphosphorines by cytochrome P450: application to gene-directed enzyme prodrug therapy for cancer. Toxicol In Vitro 2006;20:176–186.

    CAS  Google Scholar 

  109. Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Decosterd L, Blievernicht J, Saussele T, Gunthard HF, Schwab M, Eichelbaum M, Telenti A, Zanger UM. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther 2007;81:557–566.

    CAS  Google Scholar 

  110. Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 1999;274:6043–6046.

    CAS  Google Scholar 

  111. Goodwin B, Moore LB, Stoltz CM, McKee DD, Kliewer SA. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol 2001;60:427–431.

    CAS  Google Scholar 

  112. Faucette SR, Wang H, Hamilton GA, Jolley SL, Gilbert D, Lindley C, Yan B, Negishi M, LeCluyse EL. Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos 2004;32:348–358.

    CAS  Google Scholar 

  113. Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, Zanger UM, McLachlan AJ. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther 2006;80:75–84.

    CAS  Google Scholar 

  114. Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 2005;77:553–559.

    CAS  Google Scholar 

  115. Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat. Biochem Pharmacol 1996;51:1041–1050.

    CAS  Google Scholar 

  116. Carpenter SP, Lasker JM, Raucy JL. Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes. Mol Pharmacol 1996;49:260–268.

    CAS  Google Scholar 

  117. Johnsrud EK, Koukouritaki SB, Divakaran K, Brunengraber LL, Hines RN, McCarver DG. Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther 2003;307:402–407.

    CAS  Google Scholar 

  118. Botto F, Seree E, Khyari SE, Desousa G, Massacrier A, Placidi M, Cau P, Pellet W, Rahmani R, Barra Y. Tissue-specific expression and methylation of the human CYP2E1 gene. Biochem Pharmacol 1994;48:1095–1103.

    CAS  Google Scholar 

  119. Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys 2000;373:23–34.

    CAS  Google Scholar 

  120. Caro AA, Cederbaum AI. Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 2004;44:27–42.

    CAS  Google Scholar 

  121. Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther 2000;67:275–282.

    CAS  Google Scholar 

  122. Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 2006;89:31–41.

    CAS  Google Scholar 

  123. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006;25:1679–1691.

    CAS  Google Scholar 

  124. Perrot N, Nalpas B, Yang CS, Beaune PH. Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur J Clin Invest 1989;19:549–555.

    CAS  Google Scholar 

  125. Oneta CM, Lieber CS, Li J, Ruttimann S, Schmid B, Lattmann J, Rosman AS, Seitz HK. Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawl phase. J Hepatol 2002;36:47–52.

    CAS  Google Scholar 

  126. Takahashi T, Lasker JM, Rosman AS, Lieber CS. Induction of cytochrome P-450 2E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 1993;17:236–245.

    CAS  Google Scholar 

  127. O'Shea D, Davis SN, Kim RB, Wilkinson GR. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994;56:359–367.

    Google Scholar 

  128. de la Maza MP, Hirsch S, Petermann M, Suazo M, Ugarte G, Bunout D. Changes in microsomal activity in alcoholism and obesity. Alcohol Clin Exp Res 2000;24:605–610.

    Google Scholar 

  129. Lucas D, Farez C, Bardou LG, Vaisse J, Attali JR, Valensi P. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam Clin Pharmacol 1998;12:553–558.

    CAS  Google Scholar 

  130. Wang Z, Hall SD, Maya J, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol 2003;55:77–85.

    CAS  Google Scholar 

  131. Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M, Liddlce C. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 1998;27:128–133.

    CAS  Google Scholar 

  132. Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM. Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993;54:142–149.

    CAS  Google Scholar 

  133. Adedoyin A, Stiff DD, Smith DC, Romkes M, Bahnson RC, Day R, Hofacker J, Branch RA, Trump DL. All-trans-retinoic acid modulation of drug-metabolizing enzyme activities: investigation with selective metabolic drug probes. Cancer Chemother Pharmacol 1998;41:133–139.

    CAS  Google Scholar 

  134. Loizou GD, Cocker J. The effects of alcohol and diallyl sulphide on CYP2E1 activity in humans: a phenotyping study using chlorzoxazone. Hum Exp Toxicol 2001;20:321–327.

    CAS  Google Scholar 

  135. Kharasch ED, Thummel KE, Mhyre J, Lillibridge JH. Single-dose disulfiram inhibition of chlorzoxazone metabolism: A clinical probe for P450 2E1. Clin Pharmacol Ther 1993;53:643–650.

    CAS  Google Scholar 

  136. Eap CB, Schnyder C, Besson J, Savary L, Buclin T. Inhibition of CYP2E1 by chlormethiazole as measured by chlorzoxazone pharmacokinetics in patients with alcoholism and in healthy volunteers. Clin Pharmacol Ther 1998;64:52–57.

    CAS  Google Scholar 

  137. Leclercq I, Desager JP, Horsmans Y. Inhibition of chlorzoxazone metabolism, a clinical probe for CYP2E1, by a single ingestion of watercress. Clin Pharmacol Ther 1998;64:144–149.

    CAS  Google Scholar 

  138. Le Marchand L, Wilkinson GR, Wilkens LR. Genetic and dietary predictors of CYP2E1 activity: a phenotyping study in Hawaii Japanese using chlorzoxazone. Cancer Epidemiol Biomarkers Prev 1999;8:495–500.

    CAS  Google Scholar 

  139. Prescott LF. Paracetamol, alcohol and the liver. Br J Clin Pharmacol 2000;49:291–301.

    CAS  Google Scholar 

  140. Thummel KE, Slattery JT, Ho R, Chien JY, Nelson SD, Lown KE, Watkins PB. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther 2000;67:591–599.

    CAS  Google Scholar 

  141. Omiecinski CJ, Remmel RP, Hosagrahara VP. Concise review of the cytochrome P450s and their roles in toxicology. Toxicol Sci 1999;48:151–156.

    CAS  Google Scholar 

  142. Kohle C, Bock KW. Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochem Pharmacol 2009;77:689–699.

    Google Scholar 

  143. Landi MT, Sinha R, Lang NP, Kadlubar FF. Human cytochrome P450 1A2. IARC Publications 1999;148:173–195.

    CAS  Google Scholar 

  144. Ozdemir V, Kalow W, Posner P, Collins EJ, Kennedy JL, Tang BK, Albers LJ, Reist C, Roy R, Walkes W, Afra P. CYP1A2 activity as measured by a caffeine test predicts clozapine and active metabolite steady-state concentration in patients with schizophrenia. J Clin Psychopharmacol 2001;21:398–407.

    CAS  Google Scholar 

  145. Dailly E, Urien S, Chanut E, Claudel B, Guerra N, Femandez C, Jolliet P, Bourin M. Evidence from a population pharmacokinetics analysis for a major effect of CYP1A2 activity on inter- and intraindividual variations of clozapine clearance. Prog Neuropsychopharmol Biol Psychiatry 2002;26:699–703.

    CAS  Google Scholar 

  146. Kusumoto M, Ueno K, Oda A, Takeda K, Mashimo K, Takaya K, Fujimura Y, Nishihori T, Tanaka K. Effect of fluvoxamine on the pharmacokinetics of mexiletine in healthy Japanese men. Clin Pharmacol Ther 2001;69:104–107.

    CAS  Google Scholar 

  147. Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, Bertilsson L, Gusfafsson LL. Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: an interaction study with fluvoxamine and ketoconazole as in vivo inhibitors. Clin Pharmacol Ther 1998;64:484–491.

    CAS  Google Scholar 

  148. Fontana RJ, deVries TM, Woolf TF, Knapp MJ, Brown AS, Kaminsky LS, Tang BK, Foster NL, Brown RR, Watkins PB. Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer's disease. Br J Clin Pharmacol 1998;46:221–228.

    CAS  Google Scholar 

  149. Rasmussen BB, Brosen K. Theophylline has no advantage over caffeine as a putative model drug for assessing CYP1A2 activity in humans. Br J Clin Pharmacol 1997;43:253–258.

    CAS  Google Scholar 

  150. Fuhr U, Muller-Peltzer H, Kern R, Lopez-Rojas P, Junemann M, Harder S, Staib AH. Effects of grapefruit juice and smoking on verapamil concentrations in steady-state. Eur J Clin Pharmacol 2002;58:45–53.

    CAS  Google Scholar 

  151. Wrighton SA, Thomas PE, Molowa DT, Haniu M, Shively JE, Maines SL, Watkins PB, Parker G, Mendezpicon G, Levin W, Guzelian PS. Characterization of ethanol-inducible human liver N-nitrosodimethylamine demethylase. Biochemistry 1986;25:6731–6735.

    CAS  Google Scholar 

  152. Schweikl H, Taylor JA, Kitareewan S, Linko P, Nagorney D, Goldstein JA. Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics 1993;3:239–249.

    CAS  Google Scholar 

  153. Chang TKH, Chen J, Pillay V, Ho JY, Bandiera SM. Real-time polymerase chain reaction analysis of CYP1B1 gene expression in human liver. Toxicol Sci 2003;71:11–19.

    CAS  Google Scholar 

  154. Sachse C, Brockmoller J, Bauer S, Roots I. Functional significance of a C-A polymorphism in intron 1 of the cytochrome P450 1A2 gene tested with caffeine. Br J Clin Pharmacol 1999;47:445–449.

    CAS  Google Scholar 

  155. Han XM, Ou-Yang DS, Lu PX, Jiang CH, Shu Y, Chen XP, Tan ZR, Zhou HH. Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics 2001;11:429–435.

    CAS  Google Scholar 

  156. Sachse C, Bhambra U, Smith G, Lightfoot TJ, Barrett JH, Scollay J, Garner RC, Boobis AR, Wolf CR, Gooderham NJ, The Colorectal Cancer Study Group. Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 2003;55:68–76.

    CAS  Google Scholar 

  157. Abraham K, Geusau A, Tosun Y, Helge H, Bauer S, Brockmoller J. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clin Pharmacol Ther 2002;72:163–174.

    CAS  Google Scholar 

  158. Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet 1999;36:425–438.

    CAS  Google Scholar 

  159. Fontana RJ, Lown KS, Paine MF, Fortlage L, Santella RM, Felton JS, Knize MG, Greenberg A, Watkins PB. Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 1999;117:89–98.

    CAS  Google Scholar 

  160. Pantuck EJ, Pantuck CB, Garland WA, Min BH, Wattenberg LW, Anderson KE, Kappas A, Conney AH. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 1979;25:88–95.

    CAS  Google Scholar 

  161. Kall MA, Vang O, Clausen J. Effects of dietary broccoli on human in vivo drug metabolizing enzymes: evaluation of caffeine, oestrone and chlorzoxazone metabolism. Carcinogenesis 1996;17:793–799.

    CAS  Google Scholar 

  162. Parker AC, Pritchard P, Preston T, Choonara I. Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br J Clin Pharmacol 1998;45:176–178.

    CAS  Google Scholar 

  163. Batty KT, Davis TM, Ilett KF, Dusci LJ, Langton SR. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol 1995;39:305–311.

    CAS  Google Scholar 

  164. Fuhr U, Doehmer J, Battula N, Wolfel C, Kudla C, Keita Y, Staib AH. Biotransformation of caffeine and theophylline in mammalian cell lines genetically engineered for expression of single cytochrome P450 isoforms. Biochem Pharmacol 1992;43:225–235.

    CAS  Google Scholar 

  165. Sofowora GG, Choo EF, Mayo G, Shyr Y, Wilkinson GR. In vivo inhibition of human CYP1A2 activity by oltipraz. Cancer Chemother Pharmacol 2001;47:505–510.

    CAS  Google Scholar 

  166. Tran A, Rey E, Pons G, Rousseau M, d'Athis P, Olive G, Mather GG, Bishop FE, Wurden CJ, Labroo R, Trager WF, Kunze KL, Thummel KE, Vincent JC, Gillardin JM, Lepage F, Levy RH. Influence of stiripentol on cytochrome P450-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther 1997;62:490–504.

    CAS  Google Scholar 

  167. MacKenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 2005;15:677–685.

    CAS  Google Scholar 

  168. MacKenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JP, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW. The UDP-glucuronosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997;7:255–269.

    CAS  Google Scholar 

  169. Ambrose PJ. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet 1984;9:222–238.

    CAS  Google Scholar 

  170. Upton RA, Buskin JN, Williams RL, Holford NHG, Riegelman S. Negligible excretion of unchanged ketoprofen, naproxen, and probenecid in urine. J Pharm Sci 1980;69:1254–1257.

    CAS  Google Scholar 

  171. Cohen AF, Land GS, Breimer DD, Yuen WC, Winton C, Peck AW. Lamotrigine, a new anticonvulsant: pharmacokinetics in normal humans. Clin Pharmacol Ther 1987;42:535–541.

    CAS  Google Scholar 

  172. Greenblatt DJ, Allen MD, Locniskar A, Harmatz JS, Shader RI. Lorazepam kinetics in the elderly. Clin Pharmacol Ther 1979;26:103–113.

    CAS  Google Scholar 

  173. Osborne R, Joel S, Trew D, Slevin M. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine 6-glucuronide. Clin Pharmacol Ther 1990;47:12–19.

    CAS  Google Scholar 

  174. Alvan G, Siwers B, Vessman J. Pharmacokinetics of oxazepam in healthy volunteers. Acta Pharmacol Tox 1977;40(Suppl 1):40–51.

    CAS  Google Scholar 

  175. Simons PJ, Cockshott ID, Douglas EJ, Gordon EA, Hopkins K, Rowland M. Disposition in male volunteers of a subanaesthetic intravenous dose of an oil in water emulsion of 14C-propofol. Xenobiotica 1988;18:429–440.

    CAS  Google Scholar 

  176. Schwartz HJ. Pharmacokinetics and metabolism of temazepam in man and several animal species. Br J Clin Pharmacol 1979;8:23S-29S.

    Google Scholar 

  177. Blum MR, Liao SHT, Good SS, De Miranda P. Pharmacokinetics and bioavailability of zidovudine in humans. Am J Med 1988;85(Suppl 2A):189–194.

    CAS  Google Scholar 

  178. O'Neill PJ, Yorgey KA, Renzi NL, Williams RL, Benet LZ. Disposition of zomepirac sodium in man. J Clin Pharmacol 1982;22:470–476.

    Google Scholar 

  179. Brockmeyer NH, Mertins L, Klimek K, Goos M, Ohnhaus EE. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 1990;28:387–393.

    CAS  Google Scholar 

  180. Scott AK, Khir ASM, Steele WH, Hawksworth GM, Petrie JC. Oxazepam pharmacokinetics in patients with epilepsy treated long-term with phenytoin alone or in combination with phenobarbital. Br J Clin Pharmacol 1983;16:441–444.

    CAS  Google Scholar 

  181. Panesar SK, Orr JM, Farrell K, Burton RW, Kassahun K, Abbott FS. The effect of carbamazepine on valproic acid disposition in adult volunteers. Br J Clin Pharmacol 1989;27:323–328.

    CAS  Google Scholar 

  182. Stoehr GP, Kroboth PD, Juhl RP, Wender DB, Phillips JP, Smith RB. Effect of oral contraceptives on triazolam, temazepam, alprazolam and lorazepam kinetics. Clin Pharmacol Ther 1984;36:683–690.

    CAS  Google Scholar 

  183. Hecht SS, Carmella SG, Murphy SE. Effects of watercress consumption on urinary metabolites of nicotine in smokers. Cancer Epidemiol Biomarkers Prev 1999;8:907–913.

    CAS  Google Scholar 

  184. Samara EE, Granneman RG, Witt GF, Cavanaugh JH. Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol 1997;37:442–450.

    CAS  Google Scholar 

  185. Desiraju RK, Nayak RK, Pritchard JF. Zomepirac-aspirin interactions in man. J Clin Pharmacol 1984;24:371–380.

    CAS  Google Scholar 

  186. De Miranda P, Good SS, Yarchoan R, Thomas RV, Blum MR, Myers CE, Broder S. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharmacol Ther 1989;46:494–500.

    Google Scholar 

  187. Kiang TKL, Ensom MHH, Chang TKH. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 2005;106:97–132.

    CAS  Google Scholar 

  188. Radominska-Pandya A, Little JM, Czernik PJ. Human UDP-glucuronosyltransferase 2B7. Curr Drug Metab 2001;2:283–298.

    CAS  Google Scholar 

  189. Zaya MJ, Hines RN, Stevens JC. Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos 2006;34:2097–2101.

    CAS  Google Scholar 

  190. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 2004;32:1201–1208.

    CAS  Google Scholar 

  191. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, Tsutsui H, Sugawara M. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull 2007;30:537–542.

    CAS  Google Scholar 

  192. Daly AK, Aithal GP, Leathart JBS, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007;132:272–281.

    CAS  Google Scholar 

  193. Darbari DS, van Schaik RHN, Capparelli EV, Rana S, McCarter R, van den Anker J. UGT2B7 promoter variant -840G>A contributes to the variability in hepatic clearance of morphine in patients with sickle cell disease. Am J Hematol 2008;83:200–202.

    Google Scholar 

  194. Levesque E, Delage R, Benoit-Biancamano MO, Caron P, Barnard O, Couture F, Guillemette C. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther 2007;81:392–400.

    CAS  Google Scholar 

  195. Munzel PA, Schmohl S, Heel H, Kalberer K, Bock-Hennig BS, Bock KW. Induction of human UDP glucuronosyltransferases (UGT1A6, UGT1A9, and UGT2B7) by t-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin in Caco-2 cells. Drug Metab Dispos 1999;27:569–573.

    CAS  Google Scholar 

  196. Lu Y, Heydel JM, Li X, Bratton S, Lindblom T, Radominska-Pandya A. Lithocholic acid decreases expression of UGT2B7 in Caco-2 cells: a potential role for a negative farnesoid X receptor response element. Drug Metab Dispos 2005;33:937–946.

    CAS  Google Scholar 

  197. Toide K, Takahashi Y, Yamazaki H, Terauchi Y, Fujii t, Parkinson A, Kamataki T. Hepatocyte nuclear factor-1 is a causal factor responsible for interindividual differences in the expression of UDP-glucuronosyltransferase 2B7 mRNA in human livers. Drug Metab Dispos 2002;30:613–615.

    CAS  Google Scholar 

  198. Burger DM, Meenhorst PL, Koks CHW, Beijnen JH. Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 1993;37:1426–1431.

    CAS  Google Scholar 

  199. Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, von Moltke LL, Greenblatt DJ. Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 2003;31:1125–1133.

    CAS  Google Scholar 

  200. Valentini A, Biancolella M, Amati F, Gravina P, Miano R, Chillemi G, Farcomeni A, Bueno S, Vespasiani G, Desideri A, Federici G, Novelli G, Bernardini S. Valproic acid induces neuroendocrine differentiation and UGT2B7 up-regulation in human prostate carcinoma cell line. Drug Metab Dispos 2007;35:968–972.

    CAS  Google Scholar 

  201. Lancon A, Hanet N, Jannin B, Delmas D, Heydel JM, Lizard G, Chagnon MC, Artur Y, Latruffe N. Resveratrol in human hepatoma HepG2 cells: metabolism and inducibility of detoxifying enzymes. Drug Metab Dispos 2007;35:699–703.

    CAS  Google Scholar 

  202. Sahai J, Gallicano K, Pakuts A, Cameron DW. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 1994;169:1103–1107.

    CAS  Google Scholar 

  203. Hayes JD, Flanagan JU, Jowsey IR. Glutathione S-transferases. Annu Rev Pharmacol Toxicol 2005;45:51–88.

    CAS  Google Scholar 

  204. Peters WH, Kock L, Nagengast FM, Kremers PG. Biotransformation enzymes in human intestine: critical low levels in the colon? Gut 1991;32:408–412.

    CAS  Google Scholar 

  205. Campbell JAH, Corrigall AV, Guy A, Kirsch RE. Immunohistologic localization of alpha, mu, and pi class glutathione S-transferases in human tissues. Cancer 1991;67:1608–1613.

    CAS  Google Scholar 

  206. Lakehal F, Wendum D, Barbu V, Becquemont L, Poupon R, Balladur P, Hannoun L, Ballet F, Beaune PH, Housset C. Phase I and phase II drug-metabolizing enzymes are expressed and heterogeneously distributed in the biliary epithelium. Hepatology 1999;30:1498–1506.

    CAS  Google Scholar 

  207. Gallagher EP, Gardner JL. Comparative expression of two alpha class glutathione S-transferases in human adult and prenatal liver tissues. Biochem Pharmacol 2002;63:2025–2036.

    CAS  Google Scholar 

  208. Bolt HM, Thier R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab 2006;7:613–628.

    CAS  Google Scholar 

  209. Slattery JT, Wilson JM, Kalhorn TF, Nelson SD. Dose-dependent pharmacokinetics of acetaminophen: evidence of glutathione depletion in humans. Clin Pharmacol Ther 1987;41:413–418.

    CAS  Google Scholar 

  210. Kassahun K, Farrell K, Abbott FS. Identification and characterization of the glutathione and N-acetylcysteine conjugates of (E)-2-propyl-2,4-pentadienoic acid, a toxic metabolite of valproic acid, in rats and humans. Drug Metab Dispos 1991;19:525–535.

    CAS  Google Scholar 

  211. Poonkuzhali B, Chandy M, Srivastava A, Dennison D, Krishnamoorthy R. Glutathione S-transferase activity influences busulfan pharmacokinetics in patients with beta thalassemia major undergoing bone marrow transplantation. Drug Metab Dispos 2001;29:264–267.

    CAS  Google Scholar 

  212. McIlwain CC, Townsend DM, Tew KD. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 2006;25:1639–1648.

    CAS  Google Scholar 

  213. Bredschneider M, Klein K, Murdter TE, Marx C, Eichelbaum M, Nussler AK, Neuhaus P, Zanger UM, Schwab M. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther 2002;71:479–487.

    CAS  Google Scholar 

  214. Gupta E, Olopade OI, Ratain MJ, Mick R, Baker TM, Berezin FK, Benson 3rd AB, Dolan ME. Pharmacokinetics and pharmacodynamics of oltipraz as a chemopreventive agent. Clin Cancer Res 1995;1:1133–1138.

    CAS  Google Scholar 

  215. Bogaards JJP, Verhagen H, Willems MI, van Poppel G, van Bladeren PJ. Consumption of brussels sprouts results in elevated alpha-class glutathione S-transferase levels in human blood plasma. Carcinogenesis 1994;15:1073–1075.

    CAS  Google Scholar 

  216. Nijhoff WA, Grubben MJAL, Nagengast FM, Jansen JBMJ, Verhagen H, van Poppel G, Peters WHM. Effects of consumption of brussels sprouts on intestinal and lymphocytic glutathione S-transferases in humans. Carcinogenesis 1995;16:2125–2128.

    CAS  Google Scholar 

  217. Lampe JW, Chen C, Li S, Prunty J, Grate MT, Meehan DE, Barale KV, Dightman DA, Feng Z, Potter JD. Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiol Biomerkers Prev 2000;9:787–793.

    CAS  Google Scholar 

  218. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 2001;7:1894–1900.

    CAS  Google Scholar 

  219. Rompelberg CJ, Vogels JT, de Vogel N, Bruijntjes-Rozier GC, Stenhuis WH, Bogaards JJ, Verhagen H. Effect of short-term dietary administration of eugenol in humans. Hum Exp Toxicol 1996;15:129–135.

    CAS  Google Scholar 

  220. Kharasch ED, Russell M, Mautz D, Thummel KE, Kunze KL, Bowdle A, Cox K. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997;87:36–50.

    CAS  Google Scholar 

  221. Micuda S, Hodac M, Sispera L, Parizek P, Pleskot M, Zimova G, Cerman J, Martinkova J, Pidrman V. Influence of amiodarone on urinary excretion of 6-beta-hydroxycortisol in humans. Physiol Res 2001;50:191–196.

    CAS  Google Scholar 

  222. Yasui N, Otani K, Kaneko S, Ohkubo T, Osanai T, Sugawara K, Chiba K, Ishizaki T. A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism. Clin Pharmacol Ther 1996;59:514–519.

    CAS  Google Scholar 

  223. Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O'Mara Jr EM, Hall SD. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998;64:133–143.

    CAS  Google Scholar 

  224. Brophy DF, Israel DS, Pastor A, Gillotin C, Chittick GE, Symonds WT, Lou Y, Sadler BM, Polk RE. Pharmacokinetic interaction between amprenavir and clarithromycin in healthy male volunteers. Antimicrob Agents Chemother 2000;44:978–984.

    CAS  Google Scholar 

  225. Tran JQ, Petersen C, Garrett M, Hee B, Kerr BM. Pharmacokinetic interaction between amprenavir and delavirdine: evidence of induced clearance by amprenavir. Clin Pharmacol Ther 2002;72:615–626.

    CAS  Google Scholar 

  226. Venkatakrishnan K, Schmider J, Harmatz JS, Ehrenberg BL, von Moltke LL, Graf JA, Mertzanis P, Corbett KE, Rodriguez MC, Shader RI, Greenblatt DJ. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 2001;41:1043–1054.

    CAS  Google Scholar 

  227. Masica AL, Azie NE, Brater DC, Hall SD, Jones DR. Intravenous diltiazem and CYP3A-mediated metabolism. Br J Clin Pharmacol 2000;50:273–276.

    CAS  Google Scholar 

  228. van Giersbergen PL, Halabi A, Dingemanse J. Single- and multiple-dose pharmacokinetics of bosentan and its interaction with ketoconazole. Br J Clin Pharmacol 2002;53:589–595.

    Google Scholar 

  229. Greenblatt DJ, von Moltke LL, Harmatz JS, Counihan M, Graf JA, Durol AL, Mertzanis P, Duan SX, Wright CE, Shader RI. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 1998;64:278–285.

    CAS  Google Scholar 

  230. Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT. Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P450 3A inhibitor itraconazole. Clin Pharmacol Ther 2002;72:362–369.

    CAS  Google Scholar 

  231. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, Ang CYW. Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly. St John's wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 2005;22:525–539.

    CAS  Google Scholar 

  232. Kivisto KT, Lamberg TS, Kantola T, Neuvonen PJ. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997;62:348–354.

    CAS  Google Scholar 

  233. Koup JR, Anderson GD, Loi CM. Effect of troglitazone on urinary excretion of 6-beta-hydroxycortisol. J Clin Pharmacol 1998;38:815–818.

    CAS  Google Scholar 

  234. Greenblatt DJ, Ptaki KC, von Moltke LL, Shader RI. Drug interactions with grapefruit juice: an update. J Clin Psychopharmacol 2001;21:357–359.

    CAS  Google Scholar 

  235. Lucey MR, Kolars JC, Merion RM, Campbell DA, Aldrich M, Watkins PB. Cyclosporin toxicity at therapeutic blood levels and cytochrome P450 IIIA. Lancet 1990;335:11–15.

    CAS  Google Scholar 

  236. Pfister M, Labbe L, Lu JF, Hammer SM, Mellors J, Bennett KK, Rosenkranz S, Sheiner LB, AIDS Clinical Trial Group Protocol 398 Investigators. Effect of coadministration of nelfinavir, indinavir, and saquinavir on the pharmacokinetics of amprenavir. Clin Pharmacol Ther 2002;72:133–141.

    CAS  Google Scholar 

  237. Jones DR, Gorski JC, Haehner BD, O'Mara Jr. EM, Hall SD. Determination of cytochrome P450 3A4/5 activity in vivo with dextromethorphan N-demethylation. Clin Pharmacol Ther 1996;60:374–384.

    CAS  Google Scholar 

  238. Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997;62:510–517.

    CAS  Google Scholar 

  239. May DG, Porter J, Wilkinson GR, Branch RA. Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity in the white population. Clin Pharmacol Ther 1994;55:492–500.

    CAS  Google Scholar 

  240. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH. The effect of an individual's cytochrome P450 3A4 activity on docetaxel clearance. Clin Cancer Res 2000;6:1255–1258.

    CAS  Google Scholar 

  241. Boulton DW, Arnaud P, DeVane CL. A single dose of methadone inhibits cytochrome P-450 3A activity in healthy volunteers as assessed by the urinary cortisol ratio. Br J Clin Pharmacol 2001;51:350–354.

    CAS  Google Scholar 

  242. Back DJ, Bates M, Bowden A, Breckenridge AM, Hall MJ, Jones H, MacIver M, Orme M, Perucca E, Richens A, Rowe PH, Smith E. The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy. Contraception 1980;22:495–503.

    CAS  Google Scholar 

  243. Watkins PB, Wrighton SA, Maurel P, Schuetz EG, Mendez-Picon G, Parker GA, Guzelian PS. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci USA 1985;82:6310–6314.

    CAS  Google Scholar 

  244. Wright DH, Lake KD, Bruhn PS, Emery Jr. RW. Nefazodone and cyclosporine drug-drug interaction. J Heart Lung Transplant 1999;18:913–915.

    CAS  Google Scholar 

  245. Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effect of felodipine. Clin Pharmacol Ther 1997;61:410–415.

    CAS  Google Scholar 

  246. Hamaoka N, Oda Y, Hase I, Mizutani K, Nakamoto T, Ishizaki T, Asada A. Propofol decreases the clearance of midazolam by inhibiting CYP3A4: an in vivo and in vitro study. Clin Pharmacol Ther 1999;66:110–117.

    CAS  Google Scholar 

  247. Greenblatt DJ, von Moltke LL, Harmatz JS, Durol AL, Daily JP, Graf JA, Mertzanis P, Hossman JL, Shader RI. Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acquir Immune Defic Syndr 2000;24:129–136.

    CAS  Google Scholar 

  248. Kerbusch T, Jansen RL, Mathot RA, Huitema AD, Jansen M, van Rijswijk REN, Beijnen JH. Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin. Clin Pharmacol Ther 2001;70:132–141.

    CAS  Google Scholar 

  249. Wang JS, Wang W, Xie HG, Huang SL, Zhou HH. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol 1997;44:195–198.

    CAS  Google Scholar 

  250. Kehrer DFS, Mathijssen RHJ, Verweij L, de Bruijn P, Sparreboom A. Modulation of irinotecan metabolism by ketoconazole. J Clin Oncol 2002;20:3122–3129.

    CAS  Google Scholar 

  251. Williamson KM, Patterson JH, McQueen RH, Adams Jr. KF, Pieper JA. Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 1998;63:316–323.

    CAS  Google Scholar 

  252. Varis T, Kivisto KT, Backman JT, Neuvonen PJ. Itraconazole decreases the clearance and enhances the effects of intravenously administered methylprednisolone in healthy volunteers. Pharmacol Toxicol 1999;85:29–32.

    CAS  Google Scholar 

  253. Thummel KE, O'Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, Wilkinson GR. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996;59:491–502.

    CAS  Google Scholar 

  254. Hsu A, Granneman GR, Bertz RJ. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998;35:275–291.

    CAS  Google Scholar 

  255. Holtbecker N, Fromm MF, Kroemer HK, Ohnhaus EE, Heidemann H. The nifedipine-rifampin interaction. Evidence of induction of gut wall metabolism. Drug Metab Dispos 1996;24:1121–1123.

    CAS  Google Scholar 

  256. Desta Z, Kerbusch T, Flockhart DA. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther 1999;65:10–20.

    CAS  Google Scholar 

  257. Damkier P, Brosen K. Quinidine as a probe for CYP3A4 activity: intrasubject variability and lack of correlation with probe-based assays for CYP1A2, CYP2C9, CYP2C19, and CYP2D6. Clin Pharmacol Ther 2000;68:199–209.

    CAS  Google Scholar 

  258. Mirghani RA, Hellgren U, Westerberg PA, Ericsson O, Bertilsson L, Gustafsson LL. The roles of cytochrome P450 3A4 and 1A2 in the 3-hydroxylation of quinine in vivo. Clin Pharmacol Ther 1999;66:454–460.

    CAS  Google Scholar 

  259. Kato Y, Fujii t, Mizoguchi N, Takata N, Ueda K, Feldman MD, Kayser SR. Potential interaction between ritonavir and carbamazepine. Pharmacotherapy 2000;20:851–854.

    CAS  Google Scholar 

  260. Grub S, Bryson H, Goggin T, Ludin E, Jorga The interaction of saquinavir (soft geltatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients. Eur J Clin Pharmacol 2001;57:115–121.

    CAS  Google Scholar 

  261. Milligan PA, Marshall SF, Karlsson MO. A population pharmacokinetic analysis of sildenafil citrate in patients with erectile dysfunction. Br J Clin Pharmacol 2002;53(Suppl 1):45S–52S.

    CAS  Google Scholar 

  262. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998;63:332–341.

    CAS  Google Scholar 

  263. Hebert MF, Fisher RM, Marsh CL, Dressler D, Bekersky I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999;39:91–96.

    CAS  Google Scholar 

  264. Fromm MF, Busse D, Kroemer HK, Eichelbaum M. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996;24:796–801.

    CAS  Google Scholar 

  265. Villikka K, Kivisto KT, Maenpaa H, Joensuu H, Neuvonen PJ. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999;66:589–593.

    CAS  Google Scholar 

  266. Breyer-Pfaff U, Pfandl B, Nill K, Nusser E, Monney C, Jonzier-Perey M, Baettig D, Baumann P. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochromes P450 isozymes. Clin Pharmacol Ther 1992;52:350–358.

    CAS  Google Scholar 

  267. Funck-Brentano C, Becquemont L, Kroemer HK, Buhl K, Knebel NG, Eichelbaum M, Jaillon P. Variable disposition kinetics and electrocardiographic effects of flecainide during repeated dosing in humans: contribution of genetic factors, dose-dependent clearance, and interaction with amiodarone. Clin Pharmacol Ther 1994;55:256–269.

    CAS  Google Scholar 

  268. Cui YM, Teng CH, Pan AX, Yuen E, Yeo KP, Zhou Y, Zhao X, Long AJ, Bangs ME, Wise SD. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. Br J Clin Pharmacol 2007;64:445–449.

    CAS  Google Scholar 

  269. Wennerholm A, Nordmark A, Pihisgard M, Mahindi M, Bertilsson L, Gustafsson LL. Amodiaquine, its desethylated metabolite, or both, inhibit the metabolism of debrisoquine (CYP2D6) and losartan (CYP2C9) in vivo. Eur J Clin Pharmacol 2006;62:539–546.

    CAS  Google Scholar 

  270. Zhou HH, Wood AJ. Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther 1995;57:518–524.

    CAS  Google Scholar 

  271. Philip PA, James CA, Rogers HJ. The influence of cimetidine on debrisoquine 4-hydroxylation in extensive metabolizers. Eur J Clin Pharmacol 1989;36:319–321.

    CAS  Google Scholar 

  272. Yasuda SU, Zannikos P, Young AE, Fried KM, Wainer IW, Woosley RL. The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol 2002;53:519–525.

    CAS  Google Scholar 

  273. Bramer SL, Suri A. Inhibition of CYP2D6 by quinidine and its effects on the metabolism of cilostazol. Clin Pharmacokinet 1999;37(Suppl. 2):41–51.

    CAS  Google Scholar 

  274. Hamelin BA, Bouayad A, Methot J, Jobin J, Desgagnes P, Poirier P, Allaire J, Dumesnil J, Turgeon J. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 2000;67:466–477.

    CAS  Google Scholar 

  275. Sindrup SH, Brosen K, Hansen MG, Aaes-Jorgensen T, Overo KF, Gram LF. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 1993;15:11–17.

    CAS  Google Scholar 

  276. Nielsen KK, Brosen K, Hansen MG, Gram LF. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin Pharmacol Ther 1994;55:518–527.

    CAS  Google Scholar 

  277. Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J Pharmacol Exp Ther 1996;278:1165–1174.

    CAS  Google Scholar 

  278. Schadel M, Wu D, Otton SV, Kalow W, Sellers EM. Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2D6 phenotype and quinidine inhibition. J Clin Psychopharmacol 1995;15:263–269.

    CAS  Google Scholar 

  279. Wu D, Otton SV, Sproule BA, Busto U, Inaba T, Kalow K, Sellers EM. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone. Br J Clin Pharmacol 1993;35:30–34.

    CAS  Google Scholar 

  280. Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine; a prospective study. Eur J Clin Pharmacol 1997;51:395–398.

    CAS  Google Scholar 

  281. Fromm MF, Hofmann U, Griese EU, Mikus G. Dihydrocodeine: a new opioid substrate for tolymorphic CYP2D6 in humans. Clin Pharmacol Ther 1995;58:374–382.

    CAS  Google Scholar 

  282. Kirchheiner J, Henckel HB, Franke L, Meineke I, Tzvetkov M, Uebelhack R, Roots I, Brockmoller J. Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets. Pharmacogenet Genomics 2005;15:579–587.

    CAS  Google Scholar 

  283. Labbe L, O'Hara G, Lefebvre M, Lessard E, Gilbert M, Adedoyin A, Champagne J, Hamelin B, Turgeon J. Pharmacokinetic and pharmacodynamic interaction between mexiletine and propafenone in human beings. Clin Pharmacol Ther 2000;68:44–57.

    CAS  Google Scholar 

  284. Funck-Brentano C, Thomas G, Jacqz-Aigrain E, Poirier JM, Simon T, Bereziat G, Jaillon P. Polymorphism of dextromethorphan metabolism: relationships between phenotype, genotype and response to the administration of encainide in humans. J Pharmacol Exp Ther 1992;263:780–786.

    CAS  Google Scholar 

  285. Zhang Y, Britto MR, Valderhaug KL, Wedlund PJ, Smith RA. Dextromethorphan: enhancing its sytemic availability by way of low-dose quinidine-mediated inhibition of cytochrome P4502D6. Clin Pharmacol Ther 1992;51:647–655.

    CAS  Google Scholar 

  286. Tenneze L, Tarral E, Ducloux N, Funck-Brentano C. Pharmacokinetics and electrocardiographic effects of a new controlled-release form of flecainide acetate: comparison with the standard form and influence of the CYP2D6 polymorphism. Clin Pharmacol Ther 2002;72:112–122.

    CAS  Google Scholar 

  287. Kurtz DL, Bergstrom RF, Goldberg MJ, Cerimele BJ. The effect of sertraline on the pharmacokinetics of desipramine and imipramine. Clin Pharmacol Ther 1997;62:145–156.

    CAS  Google Scholar 

  288. Hamelin BA, Turgeon J, Vallee F, Belanger PM, Paquet F, LeBel M. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 1996;60:512–521.

    Google Scholar 

  289. Madani S, Barilla D, Cramer J, Wang Y, Paul C. Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP2D6) extensive metabolizers. J Clin Pharmacol 2002;42:1211–1218.

    CAS  Google Scholar 

  290. Carrillo JA, Dahl ML, Svensson JO, Alm C, Rodriguez I, Bertilsson L. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996;60:183–190.

    CAS  Google Scholar 

  291. Suzuki A, Otani K, Mihara K, Yasui N, Kaneko S, Inoue Y, Hayashi K. Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics 1997;7:415–418.

    CAS  Google Scholar 

  292. Otton SV, Schadel M, Cheung SW, Kaplan HL, Busto UE, Sellers EM. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin Pharmacol Ther 1993;54:463–472.

    CAS  Google Scholar 

  293. Madsen H, Nielsen KK, Brosen K. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms – a population study. Br J Clin Pharmacol 1995;39:433–439.

    CAS  Google Scholar 

  294. Yin OQP, Shi XJ, Tomlinson B, Chow MSS. Effect of CYP2D6*10 allele on the pharmacokinetics of loratadine in Chinese subjects. Drug Metab Dispos 2005;33:1283–1287.

    CAS  Google Scholar 

  295. Firkusny L, Gleiter CH. Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994;37:383–388.

    CAS  Google Scholar 

  296. DeVane CL, Markowitz JS, Carson SW, Boulton DW, Gill HS, Nahas Z, Risch SC. Single-dose pharmacokinetics of methylphenidate in CYP2D6 extensive and poor metabolizers. J Clin Psychopharmacol 2000;20:347–349.

    CAS  Google Scholar 

  297. Johnson JA, Burlew BS. Metoprolol metabolism via cytochrome P4502D6 in ethnic populations. Drug Metab Dispos 1996;24:350–355.

    CAS  Google Scholar 

  298. Abolfathi Z, Fiset C, Gilbert M, Moerike K, Belanger PM, Turgeon J. Role of polymorphic debrisoquin 4-hydroxylase activity in the stereoselective disposition of mexiletine in humans. J Pharmacol Exp Ther 1993;266:1196–1201.

    CAS  Google Scholar 

  299. Barbhaiya RH, Buch AB, Greene DS. Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. Br J Clin Pharmacol 1996;42:573–581.

    CAS  Google Scholar 

  300. Bottiger Y, Dostert P, Benedetti MS, Bani M, Fiorentini F, Casati M, Poggesti I, Alm C, Alvan G, Bertilsson L. Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol 1996;42:707–711.

    CAS  Google Scholar 

  301. Yue QY, Zhong ZH, Tybring G, Dalen P, Dahl ML, Bertilsson L, Sjoqvist F. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998;64:384–390.

    CAS  Google Scholar 

  302. Ashforth EI, Palmer JL, Bye A, Bedding A. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolizers of debrisoquine. Br J Clin Pharmacol 1994;37:389–391.

    CAS  Google Scholar 

  303. Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 1998;64:603–611.

    CAS  Google Scholar 

  304. Yoon CR, Cha IJ, Shon JH, Kim KA, Cha YN, Jang IJ, Park CW, Shin SG, Flockhart DA, Shin JG. Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6*10 genotype of Korean subjects. Clin Pharmacol Ther 2000;67:567–576.

    CAS  Google Scholar 

  305. Inglis SC, Herbert MK, Davies BJ, Coller JK, James HM, Horowitz JD, Morris RG, Milne RW, Somogyi AA, Sallustio BC. Effect of CYP2D6 metabolizer status on the disposition of the (+) and (–) enantiomers of perhexiline in patients with myocardial ischaemia. Pharmacogenet Genomics 2007;17:305–312.

    CAS  Google Scholar 

  306. Jerling M, Dahl ML, Aberg-Wistedt A, Liljenberg B, Landell NE, Bertilsson L, Sjoqvist F. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 1996;59:423–428.

    CAS  Google Scholar 

  307. Lessard E, Hamelin BA, Labbe L, O'Hara G, Belanger PM, Turgeon J. Involvement of CYP2D6 activity in the N-oxidation of procainamide in man. Pharmacogenetics 1999;9:683–696.

    CAS  Google Scholar 

  308. Siddoway LA, Thompson KA, McAllister CB, Wang T, Wilkinson GR, Roden DM, Woosley RL. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987;75:785–791.

    CAS  Google Scholar 

  309. Ward SA, Walle T, Walle UK, Wilkinson GR, Branch RA. Propranolol's metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 1989;45:72–79.

    CAS  Google Scholar 

  310. Roh HK, Kim CE, Chung WG, Park CS, Svensson JO, Bertilsson L. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001;57:671–675.

    CAS  Google Scholar 

  311. Berecz R, de la Rubia A, Dorado P, Fernandez-Salguero P, Dahl ML, Llerena A. Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol 2003;59:45–50.

    CAS  Google Scholar 

  312. McGourty JC, Silas JH, Fleming JJ, McBurney A, Ward JW. Pharmacokinetics and beta-blocking effects of timolol in poor and extensive metabolizers of debrisoquin. Clin Pharmacol Ther 1985;38:409–413.

    CAS  Google Scholar 

  313. Brynne N, Dalen P, Alvan G, Bertilsson L, Gabrielsson J. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamics of tolterodine. Clin Pharmacol Ther 1998;63:529–539.

    CAS  Google Scholar 

  314. Gan SH, Ismail R, Wan Adnan WA, Wan Z. Correlation of tramadol pharmacokinetics and CYP2D6*10 genotype in Malaysian subjects. J Pharm Biomed Anal 2002;30:189–195.

    CAS  Google Scholar 

  315. Kees F, Farber L, Bucher M, Mair G, Morike K, Grobecker H. Pharmacokinetics of therapeutic doses of tropisetron in healthy volunteers. Br J Clin Pharmacol 2001;52:705–707.

    CAS  Google Scholar 

  316. Lessard E, Yessine MA, Hamelin BA, O'Hara G, LeBlanc J, Turgeon J. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999;9:435–443.

    CAS  Google Scholar 

  317. Kirchheiner J, Kudlicz D, Meisel C, Bauer S, Meineke I, Roots I, Brockmoller J. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003;74:186–194.

    CAS  Google Scholar 

  318. Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL. Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos 2004;32:1370–1376.

    CAS  Google Scholar 

  319. Wang R, Chen K, Wen SY, Li J, Wang SQ. Pharmacokinetics of glimepiride and cytochrome P450 2C9 genetic polymorphisms. Clin Pharmacol Ther 2005;72:90–92.

    Google Scholar 

  320. Yin OQP, Tomlinson B, Chow MSS. CYP2C9, but not CYP2C19, polymorphisms affect the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects. Clin Pharmacol Ther 2005;78:370–377.

    CAS  Google Scholar 

  321. Garcia-Martin E, Martinez C, Tabares B, Frias J, Agundez JA. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther 2004;76:119–127.

    CAS  Google Scholar 

  322. Hong X, Zhang S, Mao G, Jiang S, Zhang Y, Yu Y, Tang G, Xing H, Xu X. CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. Eur J Clin Pharmacol 2005;61:629–634.

    Google Scholar 

  323. Zhang Y, Zhong D, Si D, Guo Y, Chen X, Zhou H. Lornoxicam pharmacokinetics in relation to cytochrome P450 2C9 genotype. Br J Clin Pharmacol 2005;59:14–17.

    CAS  Google Scholar 

  324. Sekino K, Kubota T, Okada Y, Yamada Y, Yamamoto K, Horiuchi R, Kimura K, Iga T. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol 2003;59:589–592.

    CAS  Google Scholar 

  325. Kirchheiner J, Meineke I, Muller G, Bauer S, Rohde W, Meisel C, Roots I, Brockmoller J. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet 2004;43:267–278.

    CAS  Google Scholar 

  326. Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G. CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther 2004;76:18–26.

    CAS  Google Scholar 

  327. Vormfelde SV, Engelhardt S, Zirk A, Meineke I, Tuchen F, Kirchheiner J, Brockmoller J. CYP2C9 polymorphisms and the interindividual variability in pharmacokinetics and pharmacodynamics of the loop diuretic drug torsemide. Clin Pharmacol Ther 2004;76:557–566.

    CAS  Google Scholar 

  328. Jiang ZP, Shu Y, Chen XP, Huang SL, Zhu RH, Wang W, He N, Zhou HH. The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur J Clin Pharmacol 2002;58:109–113.

    CAS  Google Scholar 

  329. Yao C, Kunze KL, Trager WF, Kharasch ED, Levy RH. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 2003;31:565–571.

    CAS  Google Scholar 

  330. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, Aiach M, Lechat P, Gaussem P. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006;108:2244–2247.

    CAS  Google Scholar 

  331. Timm R, Kaiser R, Lotsch J, Heider U, Sezer O, Weisz K, Montemurro M, Roots I, Cascorbi I. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J 2005;5:365–373.

    CAS  Google Scholar 

  332. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Sawe J, Villen T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 1989;45:348–355.

    CAS  Google Scholar 

  333. Liu ZQ, Cheng ZN, Huang SL, Chen XP, Ou-Yang DS, Jiang CH, Zhou HH. Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol 2001;52:96–99.

    CAS  Google Scholar 

  334. Skjelbo E, Brosen K, Hallas J, Gram LF. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991;49:18–23.

    CAS  Google Scholar 

  335. Kobayashi K, Morita J, Chiba K, Wanibuchi A, Kimura M, Irie S, Urae A, Ishizaki T. Pharmacogenetic roles of CYP2C19 and CYP2B6 in the metabolism of R- and S-mephobarbital in humans. Pharmacogenetics 2004;14:549–556.

    CAS  Google Scholar 

  336. Khaliq Y, Gallicano K, Seguin I, Fyke K, Carignan G, Bulman D, Badley A, Cameron DW. Single and multiple dose pharmacokinetics of nelfinavir and CYP2C19 activity in human immunodeficiency virus-infected patients with chronic liver disease. Br J Clin Pharmacol 2000;50:108–115.

    CAS  Google Scholar 

  337. Ieiri I, Mamiya K, Urae A, Wada Y, Kimura M, Irie S, Amamoto T, Kubota T, Yoshioka S, Nakamura K, Nakano S, Tashiro N, Higuchi S. Stereoselective 4′-hydroxylation of phenytoin: relationship to (S)-mephenytoin polymorphism in Japanese. Br J Clin Pharmacol 1997;43:441–445.

    CAS  Google Scholar 

  338. Brosen K, Skjelbo E, Flachs H. Proguanil metabolism is determined by the mephenytoin oxidation polymorphism in Vietnamese living in Denmark. Br J Clin Pharmacol 1993;36:105–108.

    CAS  Google Scholar 

  339. Miura M, Kagaya H, Tada H, Uno T, Yasui-Furukori N, Tateishi T, Suzuki T. Enantioselective disposition of rabeprazole in relation to CYP2C19 genotypes. Br J Clin Pharmacol 2006;61:315–320.

    CAS  Google Scholar 

  340. Wang JH, Liu ZQ, Wang W, Chen XP, Shu Y, He N, Zhou HH. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001;70:42–47.

    CAS  Google Scholar 

  341. Wang LS, Zhu B, Abd El-Aty AM, Zhou G, Li Z, Wu J, Chen GL, Liu J, Tang ZR, An W, Li Q, Wang D, Zhou HH. The influence of St. John's wort on CYP2C19 activity with respect to genotype. J Clin Pharmacol 2004;44:577–581.

    Google Scholar 

  342. Ando Y, Price DY, Dahut WL, Cox MC, Reed E, Figg WD. Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide. Cancer Biol Ther 2002;1:669–673.

    CAS  Google Scholar 

  343. Ikeda Y, Umemura K, Kondo K, Sekiguchi K, Miyoshi S, Nakashima M. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther 2004;75:587–588.

    CAS  Google Scholar 

  344. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE, Roots I, Brockmoller J. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003;13:619–626.

    CAS  Google Scholar 

  345. Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 2003;74:32–43.

    CAS  Google Scholar 

  346. Nakajima M, Komagata S, Fujiki Y, Kanada Y, Ebi H, Itoh K, Mukai H, Yokoi T, Minami H. Genetic polymorphism of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 2007;17:431–445.

    CAS  Google Scholar 

  347. Palovaara S, Pelkonen O, Uusitalo J, Lundgren S, Laine K. Inhibition of cytochrome 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther 2003;74:326–333.

    CAS  Google Scholar 

  348. Saitoh A, Sarles E, Capparelli E, Aweeka F, Kovacs A, Burchett SK, Wiznia A, Nachman S, Fenton T, Spector SA. CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS 2007;21:2191–2199.

    CAS  Google Scholar 

  349. Kim RB, O'Shea D, Wilkinson GR. Relationship in healthy subjects between CYP2E1 genetic polymorphisms and the 6-hydroxylation of chlorzoxazone: a putative measure of CYP2E1 activity. Pharmacogenetics 1994;4:162–165.

    CAS  Google Scholar 

  350. Mitra AK, Thummel KE, Kalhorn TF, Kharasch ED, Unadkat JD, Slattery JT. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther 1995;58:556–566.

    CAS  Google Scholar 

  351. Kharasch ED, Thummel KE, Mautz D, Bosse S. Clinical enflurane metabolism by cytochrome P450 2E1. Clin Pharmacol Ther 1994;55:434–440.

    CAS  Google Scholar 

  352. Kharasch ED, Armstrong AS, Gunn K, Artru A, Cox K, Karol MD. Clinical sevoflurance metabolism and disposition. II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology 1995;82:1379–1388.

    CAS  Google Scholar 

  353. Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, Beaune P, Janezic S, Grant D, Meyer UA, Staib AH. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man byin vivo versus in vitro correlations. Pharmacogenetics 1996;6:159–176.

    CAS  Google Scholar 

  354. Kalow W, Tang BK. Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking. Clin Pharmacol Ther 1991;49:44–48.

    CAS  Google Scholar 

  355. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 2004;75:80–88.

    CAS  Google Scholar 

  356. von Bahr C, Ursing C, Yasui N, Tybring G, Bertilsson L, Rojdmark S. Fluvoxamine but not citalopram increases serum melatonin in healthy subjects – an indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin. Eur J Clin Pharmacol 2000;56:123–127.

    Google Scholar 

  357. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, Tsutsui H, Sugawara K. Contribution of polymorphisms in UDP-glucuronosyltransferases and CYP2D6 to the individual variation in disposition of carvedilol. J Pharm Pharmaceut Sci 2006;9:101–112.

    CAS  Google Scholar 

  358. Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K, Kaniwa N, Sawada J, Hamaguchi T, Yamamoto N, Shirao K, Yamada Y, Ohmatsu H, Kubota K, Yoshida T, Ohtsu A, Saijo N. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics 2007;17:497–504.

    CAS  Google Scholar 

  359. Tankanitlert J, Morales NP, Howard TA, Fucharoen P, Ware RE, Fucharoen S, Chantharaksri U. Effects of combined UDP-glucuronosyltransferase (UGT) 1A1*28 and 1A6*2 on paracetamol pharmacokinetics in beta-thalassemia/HbE. Pharmacology 2007;79:97–103.

    CAS  Google Scholar 

  360. Inoue K, Miura M, Satoh S, Kagaya H, Saito M, Habuchi T, Suzuki T. Influence of UGT1A7 and UGT1A9 intronic I399 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Ther Drug Monit 2007;29:299–304.

    CAS  Google Scholar 

  361. Fujita K, Ando Y, Nagashima F, Yamamoto W, Eodo H, Araki K, Kodama K, Miya T, Narabayashi M, Sasaki Y. Genetic linkage of UGT1A7 and UGT1A9 polymorphisms to UGT1A1*6 is associated with reduced activity for SN-38 in Japanese patients with cancer. Cancer Chemother Pharmacol 2007;60:515–522.

    CAS  Google Scholar 

  362. Chung JY, Cho JY, Yu KS, Kim JR, Jung HR, Lim KS, Jang IJ, Shin SG. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther 2005;77:486–494.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, T.K. (2009). Drug-Metabolizing Enzymes. In: Boullata, J., Armenti, V. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-362-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-362-6_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-363-3

  • Online ISBN: 978-1-60327-362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics