Skip to main content

Influence of Neurological Medication on Nutritional Status

  • Chapter
  • First Online:
Handbook of Drug-Nutrient Interactions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg MJ. Effects of antiepileptics on nutritional status. In: Boullata JI, Armenti VT, eds. Handbook of drug-nutrient interactions. Totowa, NJ: Humana Press, 2004:285–299.

    Google Scholar 

  2. van Staa TP, Leufkens HG, Cooper C. Utility of medical and drug history in fracture risk prediction among men and women. Bone 2002;31(4):508–514.

    Article  Google Scholar 

  3. Fitzpatrick LA. Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav 2004;5(Suppl 2):S3–15.

    Article  Google Scholar 

  4. Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: Expression, function, and regulation. Annu Rev Nutr 2002;22:139–166.

    Article  CAS  Google Scholar 

  5. Souverein PC, Webb DJ, Weil JG, Van Staa TP, Egberts AC. Use of antiepileptic drugs and risk of fractures: case-control study among patients with epilepsy. Neurology 2006;66(9):1318–1324.

    Article  CAS  Google Scholar 

  6. Farhat G, Yamout B, Mikati MA, Demirjian S, Sawaya R, El-Hajj Fuleihan G. Effect of antiepileptic drugs on bone density in ambulatory patients. Neurology 2002;58(9):1348–1353.

    CAS  Google Scholar 

  7. Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology 2001;57(3):445–449.

    CAS  Google Scholar 

  8. Kim SH, Lee JW, Choi KG, Chung HW, Lee HW. A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy. Epilepsy Behav 2007;10(2):291–295.

    Article  Google Scholar 

  9. Andress DL, Ozuna J, Tirschwell D, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol 2002;59(5):781–786.

    Article  Google Scholar 

  10. Looker AC, Wahner HW, Dunn WL, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 1998;8(5):468–489.

    Article  CAS  Google Scholar 

  11. Looker AC, Wahner HW, Dunn Wt et al. Proximal femur bone mineral levels of US adults. Osteoporos Int 1995;5(5):389–409.

    Article  CAS  Google Scholar 

  12. Ensrud KE, Walczak TS, Blackwell T, Ensrud ER, Bowman PJ, Stone KL. Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology 2004;62(11):2051–2057.

    CAS  Google Scholar 

  13. Pack AM, Olarte LS, Morrell MJ, Flaster E, Resor SR, Shane E. Bone mineral density in an outpatient population receiving enzyme-inducing antiepileptic drugs. Epilepsy Behav 2003;4(2):169–174.

    Article  Google Scholar 

  14. McGuire JM, B.C.P.P., Baram V, Asher JM. Osteopenia associated with divalproex sodium. J Clin Psychopharmacol 2004;24(3):357–358.

    Article  Google Scholar 

  15. Ali FE, Al-Bustan MA, Al-Busairi WA, Al-Mulla FA. Loss of seizure control due to anticonvulsant-induced hypocalcemia. Ann Pharmacother 2004;38(6):1002–1005.

    Article  Google Scholar 

  16. Souverein PC, Webb DJ, Petri H, Weil J, Van Staa TP, Egberts T. Incidence of fractures among epilepsy patients: a population-based retrospective cohort study in the general practice research database. Epilepsia 2005;46(2):304–310.

    Article  Google Scholar 

  17. Sheth RD, Gidal BE, Hermann BP. Pathological fractures in epilepsy. Epilepsy Behav 2006;9(4):601–605.

    Article  Google Scholar 

  18. Valmadrid C, Voorhees C, Litt B, Schneyer CR. Practice patterns of neurologists regarding bone and mineral effects of antiepileptic drug therapy. Arch Neurol 2001;58(9):1369–1374.

    Article  CAS  Google Scholar 

  19. Pedrera JD, Canal ML, Carvajal J, et al. Influence of vitamin D administration on bone ultrasound measurements in patients on anticonvulsant therapy. Eur J Clin Invest 2000;30(10):895–899.

    Article  CAS  Google Scholar 

  20. Petty SJ, Paton LM, O'Brien TJ, et al. Effect of antiepileptic medication on bone mineral measures. Neurology 2005;65(9):1358–1365.

    Article  CAS  Google Scholar 

  21. Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement. 2000 Mar 27–29;17(1):1–45.

    Google Scholar 

  22. Ray NF, Chan JK, Thamer M, Melton LJ. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the national osteoporosis foundation. J Bone Miner Res 1997;12(1):24–35.

    Google Scholar 

  23. Drezner MK. Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav 2004;5(Suppl 2):S41–47.

    Article  Google Scholar 

  24. Elliott JO, Jacobson MP, Haneef Z. Homocysteine and bone loss in epilepsy. Seizure 2007;16(1):22–34.

    Article  Google Scholar 

  25. Ono H, Sakamoto A, Eguchi T, et al. Plasma total homocysteine concentrations in epileptic patients taking anticonvulsants. Metabolism 1997;46(8):959–962.

    Article  CAS  Google Scholar 

  26. Apeland T, Mansoor MA, Pentieva K, McNulty H, Seljeflot I, Strandjord RE. The effect of B-vitamins on hyperhomocysteinemia in patients on antiepileptic drugs. Epilepsy Res 2002;51(3):237–247.

    Article  CAS  Google Scholar 

  27. Schwaninger M, Ringleb P, Winter R, et al. Elevated plasma concentrations of homocysteine in antiepileptic drug treatment. Epilepsia 1999;40(3):345–350.

    Article  CAS  Google Scholar 

  28. Lewis DP, Van Dyke DC, Willhite LA, Stumbo PJ, Berg MJ. Phenytoin-folic acid interaction. Ann Pharmacother. 1995;29(7–8):726–735.

    CAS  Google Scholar 

  29. Barrett C, Richens A. Epilepsy and pregnancy: Report of an epilepsy research foundation workshop. Epilepsy Res 2003;52(3):147–187.

    Google Scholar 

  30. Yerby MS. Management issues for women with epilepsy: Neural tube defects and folic acid supplementation. Neurology 2003;61(6 Suppl 2):S23–26.

    CAS  Google Scholar 

  31. Rosa FW. Spina bifida in infants of women treated with carbamazepine during pregnancy. N Engl J Med 1991;324(10):674–677.

    Article  CAS  Google Scholar 

  32. Lindhout D, Schmidt D. In-utero exposure to valproate and neural tube defects. Lancet 1986;1(8494):1392–1393.

    Article  CAS  Google Scholar 

  33. Wyszynski DF, Nambian M, Surve T, et al. Increased rate of major malformations in offspring exposed to valproate during pregnancy. Neurology 2005;64:961–965.

    CAS  Google Scholar 

  34. Nulman I, Koren G. Epilepsy and pregnancy. In: Koren G, ed. Medication safety in pregnancy and breastfeeding. New York: McGraw-Hill, 2007:31–38.

    Google Scholar 

  35. Kaaja E, Kaaja R, Hiilesmaa V. Major malformations in offspring of women with epilepsy. Neurology 2003;60(4):575–579.

    Google Scholar 

  36. Pippenger CE. Pharmacology of neural tube defects. Epilepsia 2003;44(Suppl 3):24–32.

    Article  CAS  Google Scholar 

  37. Centers for Disease Control and Prevention. Recommendations for use of folic acid to reduce number of spina bifida cases and other neural tube defects. JAMA 1993;269(10):1233–1238.

    Article  Google Scholar 

  38. Prevention of neural tube defects: Results of the medical research council vitamin study. MRC vitamin study research group. Lancet 1991;338(8760):131–137.

    Article  Google Scholar 

  39. Committee on educational bulletins of the American College of Obstetricians and Gynecologists. Seizure disorders in pregnancy. Int J Gynaecol Obstet 1997;56(3):279–286.

    Article  Google Scholar 

  40. Tamura T, Aiso K, Johnston KE, Black L, Faught E. Homocysteine, folate, vitamin B-12 and vitamin B-6 in patients receiving antiepileptic drug monotherapy. Epilepsy Res 2000;40(1):7–15.

    Article  CAS  Google Scholar 

  41. Gidal BE, Tamura T, Hammer A, Vuong A. Blood homocysteine, folate and vitamin B-12 concentrations in patients with epilepsy receiving lamotrigine or sodium valproate for initial monotherapy. Epilepsy Res 2005;64(3):161–166.

    Article  CAS  Google Scholar 

  42. Apeland T, Mansoor MA, Strandjord RE, Kristensen O. Homocysteine concentrations and methionine loading in patients on antiepileptic drugs. Acta Neurol Scand 2000;101(4):217–223.

    Article  CAS  Google Scholar 

  43. Sener U, Zorlu Y, Karaguzel O, Ozdamar O, Coker I, Topbas M. Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6. Seizure 2006;15(2):79–85.

    Article  Google Scholar 

  44. Craig J, Morrison P, Morrow J, Patterson V. Failure of periconceptual folic acid to prevent a neural tube defect in the offspring of a mother taking sodium valproate. Seizure 1999;8(4):253–254.

    Article  CAS  Google Scholar 

  45. Baggot PJ, Kalamarides JA, Shoemaker JD. Valproate-induced biochemical abnormalities in pregnancy corrected by vitamins: A case report. Epilepsia 1999;40(4):512–515.

    Google Scholar 

  46. Candito M, Naimi M, Boisson C, et al. Plasma vitamin values and antiepileptic therapy: case reports of pregnancy outcomes affected by a neural tube defect. Birth Defects Res Part A Clin Mol Teratol 2007;79(1):62–64.

    Article  CAS  Google Scholar 

  47. Candito M, Gueant JL, Naimi M, Bongain A, Van Obberghen E. Antiepileptic drugs: A case report in a pregnancy with a neural tube defect. Pediatr Neurol 2006;34(4):323–324.

    Google Scholar 

  48. Annegers JF, Hauser WA, Shirts SB. Heart disease mortality and morbidity in patients with epilepsy. Epilepsia 1984;25(6):699–704.

    Article  CAS  Google Scholar 

  49. Nilsson L, Tomson T, Farahmand BY, Diwan V, Persson PG. Cause-specific mortality in epilepsy: A cohort study of more than 9,000 patients once hospitalized for epilepsy. Epilepsia 1997;38(10):1062–1068.

    Article  CAS  Google Scholar 

  50. Gerstner T, Buesing D, Longin E, et al. Valproic acid induced encephalopathy – 19 new cases in germany from 1994 to 2003 – a side effect associated to VPA-therapy not only in young children. Seizure 2006;15(6):443–448.

    Article  Google Scholar 

  51. Lheureux PE, Penaloza A, Zahir S, Gris M. Science review: carnitine in the treatment of valproic acid-induced toxicity – what is the evidence? Crit Care 2005;9(5):431–440.

    Article  Google Scholar 

  52. Segura-Bruna N, Rodriguez-Campello A, Puente V, Roquer J. Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand 2006;114(1):1–7.

    Article  CAS  Google Scholar 

  53. Moreno FA, Macey H, Schreiber B. Carnitine levels in valproic acid-treated psychiatric patients: A cross-sectional study. J Clin Psych 2005;66(5):555–558.

    Article  CAS  Google Scholar 

  54. Gomceli YB, Kutlu G, Cavdar L, Sanivar F, Inan LE. Different clinical manifestations of hyperammonemic encephalopathy. Epilepsy Behav 2007;10(4):583–587.

    Article  Google Scholar 

  55. Cuturic M, Abramson RK. Acute hyperammonemic coma with chronic valproic acid therapy. Ann Pharmacother 2005;39(12):2119–2123.

    Article  Google Scholar 

  56. Laub MC. Nutritional influence on serum ammonia in young patients receiving sodium valproate. Epilepsia 1986;27(1):55–59.

    Article  CAS  Google Scholar 

  57. Russell S. Carnitine as an antidote for acute valproate toxicity in children. Curr Opin Pediatr 2007;19(2):206–210.

    Article  Google Scholar 

  58. Bohan TP, Helton E, McDonald I, Konig S, Gazitt S, Sugimoto T, et al. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2001;56(10):1405–1409.

    CAS  Google Scholar 

  59. Rollins CJ. Drug-nutrient interactions. In: Gottschlich MM, DeLegge MH, Mattox T, Mueller C, Worthington P, eds. The A.S.P.E.N. Nutrition support core curriculum: a case-based approach – the adult patient. Silver Spring, MD: American Society for Parenteral and Enteral Nutrition, 2007:340–359.

    Google Scholar 

  60. Au Yeung SC, Ensom MH. Phenytoin and enteral feedings: Does evidence support an interaction? Ann Pharmacother 2000;34(7–8):896–905.

    Article  CAS  Google Scholar 

  61. Doak KK, Haas CE, Dunnigan KJ, et al. Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings. Pharmacotherapy 1998;18(3):637–645.

    CAS  Google Scholar 

  62. Splinter MY, Seifert CF, Bradberry JC, Allen LV, Tu YH, Welsh JD. Recovery of phenytoin suspension after in vitro administration through percutaneous endoscopic gastrostomy pezzer catheters. Am J Hosp Pharm 1990;47(2):373–377.

    CAS  Google Scholar 

  63. Fleisher D, Sheth N, Kou JH. Phenytoin interaction with enteral feedings administered through nasogastric tubes. JPEN J Parenter Enteral Nutr 1990;14(5):513–516.

    Article  CAS  Google Scholar 

  64. Hooks MA, Longe RL, Taylor AT, Francisco GE. Recovery of phenytoin from an enteral nutrient formula. Am J Hosp Pharm 1986;43(3):685–688.

    CAS  Google Scholar 

  65. Cacek AT, DeVito JM, Koonce JR. In vitro evaluation of nasogastric administration methods for phenytoin. Am J Hosp Pharm 1986;43(3):689–692.

    CAS  Google Scholar 

  66. Guidry JR, Eastwood TF, Curry SC. Phenytoin absorption in volunteers receiving selected enteral feedings. West J Med 1989;150(6):659–661.

    CAS  Google Scholar 

  67. Bass J, Miles MV, Tennison MB, Holcombe BJ, Thorn MD. Effects of enteral tube feeding on the absorption and pharmacokinetic profile of carbamazepine suspension. Epilepsia 1989;30(3):364–369.

    Article  CAS  Google Scholar 

  68. Kassam RM, Friesen E, Locock RA. In vitro recovery of carbamazepine from Ensure. JPEN J Parenter Enteral Nutr 1989;13(3):272–276.

    Article  CAS  Google Scholar 

  69. Gilbert S, Hatton J, Magnuson B. How to minimize interaction between phenytoin and enteral feedings: Two approaches. Nutr Clin Pract 1996;11(1):28–31.

    Article  CAS  Google Scholar 

  70. Bauer LA. Interference of oral phenytoin absorption by continuous nasogastric feedings. Neurology 1982;32(5):570–572.

    CAS  Google Scholar 

  71. Parkinson's disease [homepage on the Internet]. WebMD.com. 2005.

    Google Scholar 

  72. Rivera-Calimlim L, Dujovne CA, Morgan JP, Lasagna L, Bianchine JR. Absorption and metabolism of L-dopa by the human stomach. Eur J Clin Invest 1971;1(5):313–320.

    Article  CAS  Google Scholar 

  73. Nissinen E, Tuominen R, Perhoniemi V, Kaakkola S. Catechol-O-methyltransferase activity in human and rat small intestine. Life Sci 1988;42(25):2609–2614.

    Article  CAS  Google Scholar 

  74. Pfeiffer RF. Gastrointestinal dysfunction in parkinson's disease. Lancet Neurology 2003;2(2):107–116.

    Article  Google Scholar 

  75. Uchino H, Kanai Y, Kim DK, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter-1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 2002;61:729–737.

    Article  CAS  Google Scholar 

  76. Ferri FF. Parkinsonism. In: Ferri FF, Fretwell MD, Watchtel TJ, eds. The care of the geriatric patient, 2nd ed. St. Louis, MO: Mosby, 1997:143–152.

    Google Scholar 

  77. Berry EM, Growdon JH, Wurtman JJ, Caballero B, Wurtman RJ. A balanced carbohydrate: protein diet in the management of Parkinson’s disease. Neurology 1991;41(8):1295–1297.

    CAS  Google Scholar 

  78. Klein S. The myth of serum albumin as a measure of nutritional status. Gastroenterology 1990;99(6):1845–1846.

    CAS  Google Scholar 

  79. Karstaedt PJ, Pincus JH. Protein redistribution diet remains effective in patients with fluctuating parkinsonism. Arch Neurol 1992;49(2):149–151.

    CAS  Google Scholar 

  80. Ferri FF. Geriatric rehabilitation. In: Ferri FF, Fretwell MD, Watchtel TJ, eds. The care of the geriatric patient, 2nd ed. St. Louis, MO: Mosby, 1997:429–457.

    Google Scholar 

  81. Frankel JP, Kempster PA, Bovingdon M, Webster R, Lees AJ, Stern GM. The effects of oral protein on the absorption of intraduodenal levodopa and motor performance. J Neurology, Neurosurg Psych 1989;52(9):1063–1067.

    Article  CAS  Google Scholar 

  82. Evans NJ, Compher CW. Nutrition and the neurologically impaired patient. In: Torosian MH, ed. Nutrition for the hospitalized patient. New York: Marcel Dekker, 1995:567–589.

    Google Scholar 

  83. Brunner CS. Neurologic impairments. In: Matarese LE, Gottschlich MM, eds. Contemporary nutrition support practice: a clinical guide, 2nd ed. St. Louis, MO: WB Saunders, 2003:384–395.

    Google Scholar 

  84. Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. JAMA 1999;281(4):341–346.

    Article  CAS  Google Scholar 

  85. Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000;283(20):2674–2679.

    Article  CAS  Google Scholar 

  86. Tan EK, Tan C, Fook-Chong SM, et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 2003;216(1):163–167.

    Article  Google Scholar 

  87. Marder K, Logroscino G. The ever-stimulating association of smoking and coffee and Parkinson’s disease. Ann Neurol 2002;52(3):261–262.

    Article  Google Scholar 

  88. Louis ED, Luchsinger JA, Tang MX, Mayeux R. Parkinsonian signs in older people: Prevalence and associations with smoking and coffee. Neurology 2003;61(1):24–28.

    Google Scholar 

  89. James WH. Coffee drinking, cigarette smoking, and Parkinson’s disease. Ann Neurol 2003;53(4):546.

    Article  Google Scholar 

  90. Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 2002;52(3):276–284.

    Article  Google Scholar 

  91. Barichella M, Marczewska A, De Notaris R, et al. Special low-protein foods ameliorate postprandial off in patients with advanced Parkinson’s disease. Movement Disorders 2006;21(10):1682–1687.

    Article  Google Scholar 

  92. Pronsky ZM. Food-medication interactions. In: Crowe JP, Elbe D, Epstein S, Young VSL, Hamilton-Smith C, eds. Powers and moore's food medication interactions, 11th ed. Birchrunville, PA: Food-Medication Interactions, 2003:280.

    Google Scholar 

  93. Martin JE, Lutomski DM. Warfarin resistance and enteral feedings. JPEN J Parenter Enteral Nutr 1989;13(2):206–208.

    Article  CAS  Google Scholar 

  94. Penrod LE, Allen JB, Cabacungan LR. Warfarin resistance and enteral feedings: 2 case reports and a supporting in vitro study. Arch Phys Med Rehabil 2001;82(9):1270–1273.

    Article  CAS  Google Scholar 

  95. Dickerson RN, Garmon WM, Kuhl DA, Minard G, Brown RO. Vitamin K-dependent warfarin resistance after concurrent administration of warfarin and continuous enteral nutrition. Pharmacotherapy 2008;28:308–313.

    Article  CAS  Google Scholar 

  96. Petretich DA. Reversal of osmolite-warfarin interaction by changing warfarin administration time. Clin Pharm 1990;9(2):93.

    CAS  Google Scholar 

  97. Drugs.com Drug Information Online. Mannitol Drug Information, 2004. Available from: http://www.drugs.com/pro/mannitol.html, accessed April 2008.

  98. Roberts I, Smith R, Evans S. Doubts over head injury studies. BMJ 2007;334(7590):392–394.

    Article  Google Scholar 

  99. Cruz J, Minoja G, Okuchi K. Improving clinical outcomes from acute subdural hematomas with the emergency preoperative administration of high doses of mannitol: a randomized trial. Neurosurg 2001;49(4):864–871.

    Article  CAS  Google Scholar 

  100. Cruz J, Minoja G, Okuchi K. Major clinical and physiological benefits of early high doses of mannitol for intraparenchymal temporal lobe hemorrhages with abnormal pupillary widening: a randomized trial. Neurosurg 2002;51(3):628–637.

    Article  Google Scholar 

  101. Cruz J, Minoja G, Okuchi K, Facco E. Successful use of the new high-dose mannitol treatment in patients with Glasgow coma scale scores of 3 and bilateral abnormal pupillary widening: a randomized trial. J Neurosurg 2004;100(3):376–383.

    Article  Google Scholar 

  102. Wakai A, Roberts I, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev 2007(1):001049.

    Google Scholar 

  103. Marshall LF. High-dose mannitol. J Neurosurg 2004;100(3):367–368.

    Article  Google Scholar 

  104. Miner JR, Burton JH. Clinical practice advisory: Emergency department procedural sedation with propofol. Ann Emerg Med 2007;50(2):182–187.

    Article  Google Scholar 

  105. APP Pharmaceuticals, LLC. Diprivan® (propofol) injectable emulsion prescribing information. Schaumburg, IL, February 2008. Available from: http://www.fda.gov/cder/foi/label/2008/019627s046lbl.pdf, accessed April 2008.

  106. Chen K, Li HZ, Ye N, Zhang J, Wang JJ. Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res Bull 2005;67(4):310–318.

    Article  CAS  Google Scholar 

  107. Leisure GS, O'Flaherty J, Green L, Jones DR. Propofol and postoperative pancreatitis. Anesthesiology 1996;84(1):224–227.

    Article  CAS  Google Scholar 

  108. Ruzek KA, Campeau NG, Miller GM. Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. Am J Neuroradiol 2004;25(2):210–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aloupis, M.S., Golaszewski, A.L. (2009). Influence of Neurological Medication on Nutritional Status. In: Boullata, J., Armenti, V. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-362-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-362-6_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-363-3

  • Online ISBN: 978-1-60327-362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics