Skip to main content

Neuronal Vulnerability to Oxidative Damage in Aging

  • Chapter
  • First Online:
Oxidative Neural Injury

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The aging process in the brain is as robust as it is in other body organs and manifests as decrements in cognition, sensory and motor abilities, and autonomic control of various organ systems. This is due to the fact that, with advancing age, brain cells are exposed to increasing levels of oxidative stress, disturbed energy homeostasis, and accumulation of damage to protein, lipids, and nucleic acids. While these changes occur during normal aging, they are exacerbated in neurons that are susceptible to neurodegenerative disorders. The final outcome of the balance between a person’s own genetic background and the environmental changes that affect him or her determines if and when a neurodegenerative disorder will occur. Oxidative molecular alterations that occur during normal aging and that are amplified in the neurons that are affected in neurodegenerative disorders include protein nitrosylation, oxidation of amino acids and DNA bases, lipid peroxidation, and increased amounts of neurotoxic amino acid derivates such as homocysteine. Oxidative damage may render neurons vulnerable to metabolic stress, excitotoxicity, and apoptosis in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Oxidative stress contributes to the abnormal protein aggregations specific to each disorder − amyloid β-peptide (Aβ) in AD, α-synuclein in PD, huntingtin in HD, and Cu/Zn-superoxide dismutase (Cu/Zn-SOD) in ALS. These protein inclusions may arise, in part, from impaired proteasome function and autophagy. Although the utility of antioxidant ingestion as a preventative strategy for age-related neurological disorders has not yet been demonstrated, age- and disease-related oxidative damage to neurons can be decreased by dietary energy restriction and exercise and accelerated by overeating and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals and brain aging. Clin Geriatr Med. 2004 May;20(2):329−359.

    Google Scholar 

  2. Wagner JR, Motchnik PA, Stocker R, Sies H, Ames BN. The oxidation of blood plasma and low density lipoprotein components by chemically generated singlet oxygen. J Biol Chem. 1993 Sep 5;268(25):18502−18506.

    Google Scholar 

  3. Fishel ML, Vasko MR, Kelley MR. DNA repair in neurons: so if they don't divide what's to repair? Mutat Res. 2007 Jan 3;614(1−2):24−36.

    Google Scholar 

  4. Reynolds A, Laurie C, Mosley RL, Gendelman HE. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol. 2007;82:297−325.

    Article  PubMed  CAS  Google Scholar 

  5. Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A. Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res. 2006 Oct 27;99(9):924−932.

    Google Scholar 

  6. Powers SK, Lennon SL. Analysis of cellular responses to free radicals: focus on exercise and skeletal muscle. Proc Nutr Soc. 1999 Nov;58(4):1025−1033.

    Google Scholar 

  7. Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann N Y Acad Sci. 1999;893:13−18.

    Article  PubMed  CAS  Google Scholar 

  8. Hyun DH, Hernandez JO, Mattson MP, de Cabo R. The plasma membrane redox system in aging. Ageing Res Rev. 2006 May;5(2):209−220.

    Google Scholar 

  9. Hipkiss AR. Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol. 2006 May;41(5):464−473.

    Google Scholar 

  10. Galletti P, De Bonis ML, Sorrentino A, Raimo M, D'Angelo S, Scala I, Andria G, D'Aniello A, Ingrosso D, Zappia V. Accumulation of altered aspartyl residues in erythrocyte proteins from patients with Down's syndrome. FEBS J. 2007 Oct;274(20):5263−5277.

    Google Scholar 

  11. Stamler JS, Lamas S, Fang FC. Nitrosylation the prototypic redox-based signaling mechanism. Cell. 2001 Sep 21;106(6):675−683.

    Google Scholar 

  12. Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med. 1999 Dec;222(3):236−245.

    Google Scholar 

  13. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys. 1998 Aug 1;356(1):1−11.

    Google Scholar 

  14. Mattson MP. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 1998 Feb;21(2):53−57.

    Google Scholar 

  15. Zarkovic K. 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med. 2003 Aug−Oct;24(4−5):293−303.

    Google Scholar 

  16. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2070−2075.

    Google Scholar 

  17. Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol. 2002 Oct;52(4):448−457.

    Google Scholar 

  18. Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett. 2002 Feb 8;319(1):25−28.

    Google Scholar 

  19. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol. 1998 Nov;44(5):819−824.

    Google Scholar 

  20. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem. 1997 May;68(5):2092−2097.

    Google Scholar 

  21. Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol. 2005 Sep;64(9):816−830.

    Google Scholar 

  22. Rebrin I, Sohal RS. Pro-oxidant shift in glutathione redox state during aging. Adv Drug Deliv Rev. 2008 Jul 4.

    Google Scholar 

  23. Rebrin I, Forster MJ, Sohal RS. Effects of age and caloric intake on glutathione redox state in different brain regions of C57BL/6 and DBA/2 mice. Brain Res. 2007 Jan 5;1127(1):10−18.

    Google Scholar 

  24. Cardozo-Pelaez F, Song S, Parthasarathy A, Hazzi C, Naidu K, Sanchez-Ramos J. Oxidative DNA damage in the aging mouse brain. Mov Disord. 1999 Nov;14(6):972−980.

    Google Scholar 

  25. Petropoulos I, Mary J, Perichon M, Friguet B. Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Biochem J. 2001 May 1;355(Pt 3):819−825.

    Google Scholar 

  26. Zhu Y, Carvey PM, Ling Z. Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res. 2006 May 23;1090(1):35−44.

    Google Scholar 

  27. Sasaki T, Unno K, Tahara S, Shimada A, Chiba Y, Hoshino M, Kaneko T. Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell. 2008 May 9;7(4):459−469.

    Google Scholar 

  28. West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet. 1994 Sep 17;344(8925):769−772.

    Google Scholar 

  29. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci. 2006 Apr;7(4):278−294.

    Google Scholar 

  30. Sohur US, Emsley JG, Mitchell BD, Macklis JD. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci. 2006 Sep 29;361(1473):1477−1497.

    Google Scholar 

  31. Mattson MP, Duan W, Pedersen WA, Culmsee C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis. 2001 Feb-Apr;6(1−2):69−81.

    Google Scholar 

  32. Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003 Oct−Nov;34(4−5):325−337.

    Google Scholar 

  33. Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci. 2008;31(9):454−463.

    Google Scholar 

  34. Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 2003;3(2):65−94.

    Article  PubMed  CAS  Google Scholar 

  35. Mattson MP. Pathways towards and away from Alzheimer's disease. Nature. 2004 Aug 5;430(7000):631−639.

    Google Scholar 

  36. Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci. 2004 Oct;27(10):601−606.

    Google Scholar 

  37. Brown MR, Geddes JW, Sullivan PG. Brain region-specific, age-related, alterations in mitochondrial responses to elevated calcium. J Bioenerg Biomembr. 2004 Aug;36(4):401−406.

    Google Scholar 

  38. Murchison D, Griffith WH. Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell. 2007 Jun;6(3):297−305.

    Google Scholar 

  39. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10804−10809.

    Google Scholar 

  40. Reddy PH. Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons. Antioxid Redox Signal. 2007 Oct;9(10):1647−1658.

    Google Scholar 

  41. Schapira AH. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim Biophys Acta. 1999 Feb 9;1410(2):159−170.

    Google Scholar 

  42. Begley JG, Duan W, Chan S, Duff K, Mattson MP. Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J Neurochem. 1999 Mar;72(3):1030−1039.

    Google Scholar 

  43. Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem. 1999 Mar;72(3):1019−1029.

    Google Scholar 

  44. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A, Muller WE. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2008 Feb 21. (Epub ahead of print)

    Google Scholar 

  45. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998 Jan 15;18(2):687−697.

    Google Scholar 

  46. Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60(5):748−766.

    Google Scholar 

  47. Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice − a model of familial Parkinson's disease. Neurobiol Dis. 2005 Apr;18(3):492−498.

    Google Scholar 

  48. Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007 Apr;6(4):352−361.

    Google Scholar 

  49. Nixon RA, Cataldo AM. Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. J Alzheimers Dis. 2006;9(3 Suppl):277−289.

    PubMed  CAS  Google Scholar 

  50. Szweda PA, Camouse M, Lundberg KC, Oberley TD, Szweda LI. Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev. 2003 Oct;2(4):383−405.

    Google Scholar 

  51. Keller JN, Hanni KB, Markesbery WR. Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev. 2000 Jan 24;113(1):61−70.

    Google Scholar 

  52. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S. Abeta-degrading enzymes in Alzheimer's disease. Brain Pathol. 2008 Apr;18(2):240−252.

    Google Scholar 

  53. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3270−3274.

    Google Scholar 

  54. Mattson MP. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci. 2004 Mar;1012:37−50.

    Google Scholar 

  55. Mattson MP, Fu W, Waeg G, Uchida K. 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport. 1997 Jul 7;8(9−10):2275−2281.

    Google Scholar 

  56. Munch G, Kuhla B, Luth HJ, Arendt T, Robinson SR. Anti-AGEing defences against Alzheimer's disease. Biochem Soc Trans. 2003 Dec;31(Pt 6):1397−1399.

    Google Scholar 

  57. Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G. Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med. 2008 Apr 15;44(8):1493−1505.

    Google Scholar 

  58. Yang JL, Weissman L, Bohr VA, Mattson MP. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst). 2008 Jul 1;7(7):1110−1120.

    Google Scholar 

  59. Weissman L, Jo DG, Sorensen MM, de Souza-Pinto NC, Markesbery WR, Mattson MP, Bohr VA. Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Res. 2007;35(16):5545−5555.

    Article  PubMed  CAS  Google Scholar 

  60. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA. Gene regulation and DNA damage in the ageing human brain. Nature. 2004 Jun 24;429(6994):883−891.

    Google Scholar 

  61. Kyng KJ, Bohr VA. Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Res Rev. 2005 Nov;4(4):579−602.

    Google Scholar 

  62. Boothby LA, Doering PL. Vitamin C and vitamin E for Alzheimer's disease. Ann Pharmacother. 2005 Dec;39(12):2073−2080.

    Google Scholar 

  63. Evans J. Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis. Eye. 2008 Jun;22(6):751−760.

    Google Scholar 

  64. Mattson MP, Cheng A. Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 2006 Nov;29(11):632−639.

    Google Scholar 

  65. Arumugam TV, Gleichmann M, Tang SC, Mattson MP. Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res Rev. 2006 May;5(2):165−178.

    Google Scholar 

  66. Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev. 2006 Aug;5(3):332−353.

    Google Scholar 

  67. Halagappa VK, Guo Z, Pearson M, Matsuoka Y, Cutler RG, Laferla FM, Mattson MP. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol Dis. 2007 Apr;26(1):212−220.

    Google Scholar 

  68. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, Carson RE, Cohen RM, Mouton PR, Quigley C, Mattson MP, Ingram DK. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18171−18176.

    Google Scholar 

  69. Xu X, Zhan M, Duan W, Prabhu V, Brenneman R, Wood W, Firman J, Li H, Zhang P, Ibe C, Zonderman AB, Longo DL, Poosala S, Becker KG, Mattson MP. Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biol. 2007;8(11):R234.

    Article  PubMed  Google Scholar 

  70. Radak Z, Kumagai S, Taylor AW, Naito H, Goto S. Effects of exercise on brain function: role of free radicals. Appl Physiol Nutr Metab. 2007 Oct;32(5):942−946.

    Google Scholar 

  71. Stranahan AM, Lee K, Pistell PJ, Nelson CM, Readal N, Miller MG, Spangler EL, Ingram DK, Mattson MP. Accelerated cognitive aging in diabetic rats is prevented by lowering corticoserone levels. Neurobiol Learn Mem. 2008;90(2):479−483.

    Google Scholar 

  72. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008 Mar;11(3):309−317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Okun, E., Mattson, M.P. (2009). Neuronal Vulnerability to Oxidative Damage in Aging. In: Veasey, S. (eds) Oxidative Neural Injury. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-342-8_5

Download citation

Publish with us

Policies and ethics