Skip to main content

Nitric Oxide Biochemistry: Pathophysiology of Nitric Oxide-Mediated Protein Modifications

  • Chapter
  • First Online:
Book cover Oxidative Neural Injury

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 555 Accesses

Abstract

Nitric oxide (NO) is a pluripotent signaling molecule, which has been proposed to be critically important in both physiological and pathological processes of the brain. The wide-ranging functionality of NO is in opposition to its relatively simple chemical structure. In this chapter we attempt to summarize the functional involvement of NO within the neurological system and then discuss how such complex signaling may be achieved via the differential post-translational modification of protein targets. It is our contention that the redox properties of NO allow this molecule to modify proteins in a variety of ways with physiological or pathological consequences. In this way the effects of NO production are dependent on the quantity produced, the redox environment in which it is synthesized, and the presence of reactive targets. A summary of known post-translational modifications is given as well as the functional consequences of their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736.

    Article  PubMed  CAS  Google Scholar 

  2. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S. Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem. 2004 Aug 27;279(35):36167–36170.

    Google Scholar 

  3. Bredt DS. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res. 1999 Dec;31(6):577–596.

    Google Scholar 

  4. Campese VM, Sindhu RK, Ye S, Bai Y, Vaziri ND, Jabbari B. Regional expression of NO synthase, NAD(P)H oxidase and superoxide dismutase in the rat brain. Brain Res. 2007 Feb 23;1134(1):27–32.

    Google Scholar 

  5. Chen J, Tu Y, Moon C, Matarazzo V, Palmer AM, Ronnett GV. The localization of neuronal nitric oxide synthase may influence its role in neuronal precursor proliferation and synaptic maintenance. Dev Biol. 2004 May 1;269(1):165–182.

    Google Scholar 

  6. Menendez L, Insua D, Rois JL, Santamarina G, Suarez ML, Pesini P. The immunohistochemical localization of neuronal nitric oxide synthase in the basal forebrain of the dog. J Chem Neuroanat. 2006 Apr;31(3):200–209.

    Google Scholar 

  7. Ventura RR, Aguiar JF, Antunes-Rodrigues J, Varanda WA. Nitric oxide modulates the firing rate of the rat supraoptic magnocellular neurons. Neuroscience. 2008 Aug 13;155(2):359–365.

    Google Scholar 

  8. Yang S, Cox CL. Excitatory and anti-oscillatory actions of nitric oxide in thalamus. J Physiol. 2008 Aug 1;586(Pt 15):3617–3628.

    Google Scholar 

  9. Liu P, Smith PF, Appleton I, Darlington CL, Bilkey DK. Hippocampal nitric oxide synthase and arginase and age-associated behavioral deficits. Hippocampus. 2005;15(5):642–655.

    Article  PubMed  CAS  Google Scholar 

  10. Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci. 2000 Jan;3(1):15–21.

    Google Scholar 

  11. Saransaari P, Oja SS. GABA release under normal and ischemic conditions. Neurochem Res. 2008 May;33(5):962–969.

    Google Scholar 

  12. Trabace L, Cassano T, Tucci P, Steardo L, Kendrick KM, Cuomo V. The effects of nitric oxide on striatal serotoninergic transmission involve multiple targets: an in vivo microdialysis study in the awake rat. Brain Res. 2004 May 22;1008(2):293–298.

    Google Scholar 

  13. Hopper RA, Garthwaite J. Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci. 2006 Nov 8;26(45):11513–11521.

    Google Scholar 

  14. Kodama T, Koyama Y. Nitric oxide from the laterodorsal tegmental neurons: its possible retrograde modulation on norepinephrine release from the axon terminal of the locus coeruleus neurons. Neuroscience. 2006;138(1):245–256.

    Article  PubMed  CAS  Google Scholar 

  15. Hars B. Endogenous nitric oxide in the rat pons promotes sleep. Brain Res. 1999 Jan 16;816(1):209–219.

    Google Scholar 

  16. Datta S, Patterson EH, Siwek DF. Endogenous and exogenous nitric oxide in the pedunculopontine tegmentum induces sleep. Synapse. 1997 Sep;27(1):69–78.

    Google Scholar 

  17. Gadek-Michalska A, Bugajski J. Nitric oxide in the adrenergic-and CRH-induced activation of hypothalamic-pituitary-adrenal axis. J Physiol Pharmacol. 2008 Jun;59(2):365–378.

    Google Scholar 

  18. Contestabile A, Ciani E. Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem Int. 2004 Nov;45(6):903–914.

    Google Scholar 

  19. Mancuso C. Heme oxygenase and its products in the nervous system. Antioxid Redox Signal. 2004 Oct;6(5):878–887.

    Google Scholar 

  20. Good PF, Werner P, Hsu A, Olanow CW, Perl DP. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol. 1996 July;149(1):21–28.

    Google Scholar 

  21. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ. Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol. 2000 Nov;157(5):1439–1445.

    Google Scholar 

  22. Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005 Jun;76(2):126–152.

    Google Scholar 

  23. Bermejo P, Martin-Aragon S, Benedi J, Susin C, Felici E, Gil P, Ribera JM, Villar AM. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease. Immunol Lett. 2008 May 15;117(2):198–202.

    Google Scholar 

  24. Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C. Peripheral inflammatory cytokines as biomarkers in Alzheimer's disease and mild cognitive impairment. Neurodegener Dis. 2007;4(6):406–412.

    Article  PubMed  CAS  Google Scholar 

  25. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006 Aug 30;26(35):9057–9068.

    Google Scholar 

  26. Elfering SL, Haynes VL, Traaseth NJ, Ettl A, Giulivi C. Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2004 Feb;286(1):H22–H29.

    Google Scholar 

  27. Luth HJ, Holzer M, Gartner U, Staufenbiel M, Arendt T. Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res. 2001 Sep 14;913(1):57–67.

    Google Scholar 

  28. Fernandez-Vizarra P, Fernandez AP, Castro-Blanco S, Encinas JM, Serrano J, Bentura ML, Munoz P, Martinez-Murillo R, Rodrigo J. Expression of nitric oxide system in clinically evaluated cases of Alzheimer's disease. Neurobiol Dis. 2004 Mar;15(2):287–305.

    Google Scholar 

  29. Rejdak K, Petzold A, Stelmasiak Z, Giovannoni G. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis. Mult Scler. 2008 Jan;14(1):59–66.

    Google Scholar 

  30. O'Brien NC, Charlton B, Cowden WB, Willenborg DO. Nitric oxide plays a critical role in the recovery of Lewis rats from experimental autoimmune encephalomyelitis and the maintenance of resistance to reinduction. J Immunol. 1999 Dec 15;163(12):6841–6847.

    Google Scholar 

  31. O'Brien NC, Charlton B, Cowden WB, Willenborg DO. Inhibition of nitric oxide synthase initiates relapsing remitting experimental autoimmune encephalomyelitis in rats, yet nitric oxide appears to be essential for clinical expression of disease. J Immunol. 2001 Nov 15;167(10):5904–5912.

    Google Scholar 

  32. Lizasoain I, Weiner CP, Knowles RG, Moncada S. The ontogeny of cerebral and cerebellar nitric oxide synthase in the guinea pig and rat. Pediatr Res. 1996 May;39(5):779–783.

    Google Scholar 

  33. Boehning D, Snyder SH. Novel neural modulators. Annu Rev Neurosci. 2003;26:105–131.

    Article  PubMed  CAS  Google Scholar 

  34. Feil R, Kleppisch T. NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol. 2008(184):529–560.

    Google Scholar 

  35. Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis. 2007 May;12(5):993–1010.

    Google Scholar 

  36. Gautier-Sauvigne S, Colas D, Parmantier P, Clement P, Gharib A, Sarda N, Cespuglio R. Nitric oxide and sleep. Sleep Med Rev. 2005 Apr;9(2):101–113.

    Google Scholar 

  37. Yang SJ, Denbow DM. Interaction of leptin and nitric oxide on food intake in broilers and Leghorns. Physiol Behav. 2007 Nov 23;92(4):651–657.

    Google Scholar 

  38. Gregg AR. Mouse models and the role of nitric oxide in reproduction. Curr Pharm Des. 2003;9(5):391–398.

    Article  PubMed  CAS  Google Scholar 

  39. Fejgin K, Palsson E, Wass C, Svensson L, Klamer D. Nitric oxide signaling in the medial prefrontal cortex is involved in the biochemical and behavioral effects of phencyclidine. Neuropsychopharmacology. 2008 Jul;33(8):1874–1883.

    Google Scholar 

  40. Ding Z, Gomez T, Werkheiser JL, Cowan A, Rawls SM. Icilin induces a hyperthermia in rats that is dependent on nitric oxide production and NMDA receptor activation. Eur J Pharmacol. 2008 Jan 14;578(2–3):201–208.

    Google Scholar 

  41. Naik AK, Tandan SK, Kumar D, Dudhgaonkar SP. Nitric oxide and its modulators in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol. 2006 Jan 13;530(1–2):59–69.

    Google Scholar 

  42. Reis WL, Giusti-Paiva A, Ventura RR, Margatho LO, Gomes DA, Elias LL, Antunes-Rodrigues J. Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious rats. Exp Physiol. 2007 Sep;92(5):903–911.

    Google Scholar 

  43. Gow AJ, Ischiropoulos H. Nitric oxide chemistry and cellular signaling. J Cell Physiol. 2001 June;187(3):277–282.

    Google Scholar 

  44. Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, Cook J, Pacelli R, Liebmann J, Krishna M, Ford PC, Mitchell JB. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. [Review]. Curr Top Cell Regul 1996. 1996;34:159–187.

    Article  CAS  Google Scholar 

  45. Keilin D, Hartree EF. Reaction of nitric oxide with haemoglobin and methaemoglobin. Nature. 1937 March 27–32676;139:548–548.

    Google Scholar 

  46. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376.

    Google Scholar 

  47. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269.

    Google Scholar 

  48. Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO- cyclic GMP signal transduction system. Adv Pharmacol. 1994;26:19–33.

    Article  PubMed  CAS  Google Scholar 

  49. Sharma VS, Magde D. Activation of soluble guanylate cyclase by carbon monoxide and nitric oxide: a mechanistic model. Methods. 1999 Dec;19(4):494–505.

    Google Scholar 

  50. Doyle MP, Hoekstra JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem. 1981 July;14(4):351–358.

    Google Scholar 

  51. Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293(12):1477–1484.

    Article  PubMed  CAS  Google Scholar 

  52. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO, III, Gladwin MT. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003 Dec;9(12):1498–1505.

    Google Scholar 

  53. McMahon TJ, Moon RE, Luschinger BP, Carraway MS, Stone AE, Stolp BW, Gow AJ, Pawloski JR, Watke P, Singel DJ, Piantadosi CA, Stamler JS. Nitric oxide in the human respiratory cycle. Nat Med. 2002 July;8(7):711–717.

    Google Scholar 

  54. Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature. 1998 Jan 08;391(6663):169–173.

    Google Scholar 

  55. Gow AJ, Luchsinger BP, Pawloski JP, Singel DJ, Stamler JS. The oxyhemoglobin reaction of nitric oxide. Proc Natl Acad Sci U S A. 1999;in press.

    Google Scholar 

  56. Herold S, Fago A, Weber RE, Dewilde S, Moens L. Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J Biol Chem. 2004 May 28;279(22):22841–22847.

    Google Scholar 

  57. Tsubaki M, Hiwatashi A, Ichikawa Y, Fujimoto Y, Ikekawa N, Hori H. Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of 20(R),22(R)-dihydroxycholesterol and reduced adrenodoxin. Biochemistry. 1988 June 28;27(13):4856–4862.

    Google Scholar 

  58. Takemura S, Minamiyama Y, Imaoka S, Funae Y, Hirohashi K, Inoue M, Kinoshita H. Hepatic cytochrome P450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J Hepatol. 1999 June;30(6):1035–1044.

    Google Scholar 

  59. Muller CM, Scierka A, Stiller RL, Kim YM, Cook DR, Lancaster JR, Jr., Buffington CW, Watkins WD. Nitric oxide mediates hepatic cytochrome P450 dysfunction induced by endotoxin. Anesthesiology. 1996 June;84(6):1435–1442.

    Google Scholar 

  60. Giuffre A, Barone MC, Mastronicola D, D'Itri E, Sarti P, Brunori M. Reaction of nitric oxide with the turnover intermediates of cytochrome c oxidase: reaction pathway and functional effects. Biochemistry. 2000 Dec 19;39(50):15446–15453.

    Google Scholar 

  61. Lancaster JR, Jr. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137–8141.

    Google Scholar 

  62. Shen W, Hintze TH, Wolin MS. Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation. 1995 Dec 15;92(12):3505–3512.

    Google Scholar 

  63. Clementi E, Brown GC, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1559–1562.

    Google Scholar 

  64. Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998 June 23;95(13):7631–7636.

    Google Scholar 

  65. Gardner PR, Costantino G, Szabo C, Salzman AL. Nitric oxide sensitivity of the aconitases. J Biol Chem. 1997 Oct 03;272(40):25071–25076.

    Google Scholar 

  66. Hausladen A, Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem. 1994 Nov 25;269(47):29405–29408.

    Google Scholar 

  67. St Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR. Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol. 2002 Feb;282(2):L185–L192.

    Google Scholar 

  68. Schwarz MA, Lazo JS, Yalowich JC, Allen WP, Whitmore M, Bergonia HA, Tzeng E, Billiar TR, Robbins PD, Lancaster JR, Jr. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide. Proc Natl Acad Sci U S A. 1995 May 09;92(10):4452–4456.

    Google Scholar 

  69. Pearce LL, Gandley RE, Han W, Wasserloos K, Stitt M, Kanai AJ, McLaughlin MK, Pitt BR, Levitan ES. Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci U S A. 2000 Jan 04;97(1):477–482.

    Google Scholar 

  70. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc- deficient superoxide dismutase. Science. 1999 Dec 24;286(5449):2498–2500.

    Google Scholar 

  71. Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci. 2008 Apr 16;28(16):4115–4122.

    Google Scholar 

  72. Johnson MA, Macdonald TL, Mannick JB, Conaway MR, Gaston B. Accelerated S-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper, zinc-superoxide dismutase. J Biol Chem. 2001 Aug 22.

    Google Scholar 

  73. Inoue K, Akaike T, Miyamoto Y, Okamoto T, Sawa T, Otagiri M, Suzuki S, Yoshimura T, Maeda H. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem. 1999 Sep 17;274(38):27069–27075.

    Google Scholar 

  74. Akaike T. Mechanisms of biological S-nitrosation and its measurement. Free Radic Res. 2000;33(5):461–469.

    Article  PubMed  CAS  Google Scholar 

  75. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem. 1994 Feb 25;269(8):5881–5883.

    Google Scholar 

  76. Wink DA, Grisham MB, Mitchell JB, Ford PC. Direct and indirect effects of nitric oxide in chemical reactions relevant to biology. Methods Enzymol. 1996;268:12–31.

    Article  PubMed  CAS  Google Scholar 

  77. Liu X, Miller MJS, Joshi MS, Thomas DD, Lancaster JR, Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci U S A. 1998 Mar 03;95(5):2175–2179.

    Google Scholar 

  78. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996 Nov;271(5 Pt 1):C1424–C1437.

    Google Scholar 

  79. Beckman JS. Parsing the effects of nitric oxide, S-nitrosothiols, and peroxynitrite on inducible nitric oxide synthase-dependent cardiac myocyte apoptosis. Circ Res. 1999 Oct 29;85(9):870–871.

    Google Scholar 

  80. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun. 2003 June 06;305(3):776–783.

    Google Scholar 

  81. Schopfer FJ, Baker PR, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci. 2003 Dec;28(12):646–654.

    Google Scholar 

  82. Kuo WN, Kocis JM. Nitration/S-nitrosation of proteins by peroxynitrite-treatment and subsequent modification by glutathione S-transferase and glutathione peroxidase. Mol Cell Biochem. 2002 Apr;233(1–2):57–63.

    Google Scholar 

  83. Yang Y, Loscalzo J. S-nitrosoprotein formation and localization in endothelial cells. Proc Natl Acad Sci U S A. 2005 Jan 04;102(1):117–122.

    Google Scholar 

  84. Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res. 2001 June;34(6):541–581.

    Google Scholar 

  85. Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, Torbet J, Vilaire G, Bennett JS, Murciano JC, Muzykantov V, Penn MS, Hazen SL, Weisel JW, Ischiropoulos H. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem. 2004 Mar 05;279(10):8820–8826.

    Google Scholar 

  86. Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR, Batthyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA, Chen YE. Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. J Biol Chem. 2006 Aut 03.

    Google Scholar 

  87. O'Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol. 1999 Jan;12(1):83–92.

    Google Scholar 

  88. Lim DG, Sweeney S, Bloodsworth A, White CR, Chumley PH, Krishna NR, Schopfer F, O'Donnell VB, Eiserich JP, Freeman BA. Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15941–15946.

    Google Scholar 

  89. Baker PR, Schopfer FJ, Sweeney S, Freeman BA. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11577–11582.

    Google Scholar 

  90. Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA. Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2340–2345.

    Google Scholar 

  91. Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, McLoughlin RM, Giddings JC, Lewis MJ, Haslam RJ, Freeman BA, O'Donnell VB. Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem. 2002 Feb 22;277(8):5832–5840.

    Google Scholar 

  92. Coles B, Bloodsworth A, Clark SR, Lewis MJ, Cross AR, Freeman BA, O'Donnell VB. Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circ Res. 2002 Sep 06;91(5):375–381.

    Google Scholar 

  93. Schopfer FJ, Baker PRS, Giles G, Chumley P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR, Freeman BA. Fatty acid transduction of nitric oxide signaling – Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J Biol Chem. 2005;280(19):19289–19297.

    Article  PubMed  CAS  Google Scholar 

  94. Batthyany C, Schopfer FJ, Baker PR, Duran R, Baker LM, Huang Y, Cervenansky C, Branchaud BP, Freeman BA. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J Biol Chem. 2006 July 21;281(29):20450–20463.

    Google Scholar 

  95. Baker LMS, Baker PRS, Golin-Bisello F, Schopfer FJ, Fink M, Woodcock SR, Branchaud BP, Radi R, Freeman BA. Nitro-fatty acid reaction with glutathione and cysteine: kinetic analysis of thiol alkylation by a Michael addition reaction. J Biol Chem. 2007 Oct 19, 2007;282(42):31085–31093.

    Google Scholar 

  96. Lancaster JR, Jr. Protein cysteine thiol nitrosation: maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling? Nitric Oxide. 2008 Sep;19(2):68–72.

    Google Scholar 

  97. Lancaster JR, Jr. Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol. 2006 Sep;19(9):1160–1174.

    Google Scholar 

  98. Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226.

    Google Scholar 

  99. Stamler JS, Toone EJ, Lipton SA, Sucher NJ. (S)NO signals: translocation, regulation, and a consensus motif. Neuron. 1997 May ;18(5):691–696.

    Google Scholar 

  100. Gow AJ, Buerk DG, Ischiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem. 1997 Jan 31;272(5):2841–2845.

    Google Scholar 

  101. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS. Fas-induced caspase denitrosylation. Science. 1999 Apr 23;284(5414):651–654.

    Google Scholar 

  102. Greco TM, Hodara R, Parastatidis I, Heijnen HFG, Dennehy MK, Liebler DC, Ischiropoulos H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. PNAS. 2006 May 9, 2006;103(19):7420–7425.

    Google Scholar 

  103. Hao G, Derakhshan B, Shi L, Campagne F, Gross SS. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci. 2006 Jan 24;103(4):1012–1017.

    Google Scholar 

  104. Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE. 2001 June 12;2001(86):L1.

    Google Scholar 

  105. Stamler JS, Lamas S, Fang FC. Nitrosylation. The prototypic redox-based signaling mechanism. Cell. 2001 Sep 21;106(6):675–683.

    Google Scholar 

  106. Williams JG, Pappu K, Campbell SL. Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6376–6381.

    Google Scholar 

  107. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem. 1997 Feb 14;272(7):4323–4326.

    Google Scholar 

  108. Marshall HE, Stamler JS. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry. 2001 Feb 13;40(6):1688–1693.

    Google Scholar 

  109. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol. 2005 July ;7(7):665–674.

    Google Scholar 

  110. Eu JP, Xu L, Stamler JS, Meissner G. Regulation of ryanodine receptors by reactive nitrogen species. Biochem Pharmacol. 1999 May 15;57(10):1079–1084.

    Google Scholar 

  111. Park H-S, Huh S-H, Kim M-S, Lee SH, Choi E-J. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. PNAS. 2000 Dec 19, 2000;97(26):14382–14387.

    Google Scholar 

  112. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10810–10814.

    Google Scholar 

  113. Choi YB, Chen HSV, Lipton SA. Three pairs of cysteine residues mediate both redox and Zn2+ modulation of the NMDA receptor. J Neurosci. 2001 Jan 15;21(2):392–400.

    Google Scholar 

  114. Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-Nitrosylates, and activates cyclooxygenase-2. Science. 2005 Dec 23;310(5756):1966–1970.

    Google Scholar 

  115. Tian J, Kim SF, Hester L, Snyder SH. S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10537–10540.

    Google Scholar 

  116. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron. 2000 Oct;28(1):183–193.

    Google Scholar 

  117. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002 Mar 21;416(6878):337–339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rossi-George, A., Gow, A. (2009). Nitric Oxide Biochemistry: Pathophysiology of Nitric Oxide-Mediated Protein Modifications. In: Veasey, S. (eds) Oxidative Neural Injury. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-342-8_2

Download citation

Publish with us

Policies and ethics